Processing math: 5%

CBSE Questions for Class 12 Commerce Maths Application Of Integrals Quiz 4 - MCQExams.com

The area of the region of the plane bounded by max(|x|,|y|)1 and xy12 is
  • 12+ln 2 sq. units
  • 3+ln 2 sq. units
  • 314 sq. units
  • 1+2 ln 2 sq. units
The area bounded between the parabolas x2=y4 and x2=9y, and the straight line y=2 is:
  • 102
  • 202
  • 1023
  • 2023
The parabola y2=4x and x2=4y divide the square region bounded by the lines x=4,y=4 and the coordinate axes. If S1,S2 and S3 are respectively the areas of these parts numbered from top-to-bottom, then S1:S2:S3 is
  • 1:1:1
  • 2:1:2
  • 1:2:3
  • 1:2:1
The area enclosed between the parabolas y^{2} = 16x and x^{2} = 16y is
  • \dfrac {64}{3} sq. units
  • \dfrac {256}{3} sq. units
  • \dfrac {16}{3} sq. units
  • None of these
The area of the region described by \begin{Bmatrix} (x,,y)/x^2 +y^2 \leq 1 and\   y^2\leq1-x\end{Bmatrix} is
  • \dfrac{\pi}{2}-\dfrac {2}{3}
  • \dfrac {\pi}{2} +\dfrac {2}{3}
  • \dfrac {\pi}{2} + \dfrac {4}{3}
  • \dfrac {\pi}{2}- \dfrac {4}{3}
Area of the region bounded by the curves y={ 2 }^{ x },y=2x-{ x }^{ 2 },x=0 and x=2 is given by
  • \cfrac { 3 }{ \log { 2 } } -\cfrac { 4 }{ 3 }
  • \cfrac { 3 }{ \log { 2 } } +\cfrac { 4 }{ 3 }
  • 3\log { 2 } -\cfrac { 4 }{ 3 }
  • 3\log { 2 } +\cfrac { 4 }{ 3 }
The area enclosed by the curves |y + x|\leq 1, |y - x|\leq 1 and 2x^{2} + 2y^{2} = 1 is
  • \left (2 + \dfrac {\pi}{2}\right ) sq. units
  • \left (2 - \dfrac {\pi}{2}\right ) sq. units
  • \left (3 + \dfrac {\pi}{2}\right ) sq. units
  • \left (3 - \dfrac {\pi}{2}\right ) sq.units
Area bounded by f(x)=max.\left( \sin { x } ,\cos { x }  \right) \quad \forall 0\le x\le \cfrac { \pi  }{ 2 } and the co-ordinate axis is equal to
  • \cfrac { 1 }{ \sqrt { 2 } } sq. units
  • \sqrt { 2 } sq. units
  • 2 sq. units
  • 1 sq. unit
What is the area of the rectangle , whose length is 5\sqrt 3\ cm and breadth is 5\ cm.
  • 43.3\ cm^2
  • \sqrt {75}\ cm^2
  • 25\ cm^2
  • None of these
The area bounded by the circles { x }^{ 2 }+{ y }^{ 2 }=1, { x }^{ 2 }+{ y }^{ 2 }=4 in the first Quadrant is 
  • \dfrac { \pi }{ 2 }
  • \dfrac {3\pi }{ 4 }
  • 3\pi
  • \dfrac { \pi }{ 4 }
Find the area of a shaded portion.
879024_38a3d068f3c84fa8af016bf73421d7fc.png
  • 270cm^2
  • 360cm^2
  • 180cm^2
  • 150cm^2
If the area bounded by the curve y=a{ x }^{ 2 }\quad and x=a{ y }^{ 2 },\left( a>0 \right) is 3sq.units, then the value of a is
  • \cfrac { 2 }{ 3 }
  • \cfrac { 1 }{ 3 }
  • 1
  • 4
If the area of the region bounded by the curves, y=x^2, y=\displaystyle\frac{1}{x} and the lines y=0 and x=t(t > 1) is 1 sq. unit, then t is equal to?
  • \displaystyle\frac{4}{3}
  • e^{{2}/{3}}
  • \displaystyle\frac{3}{2}
  • e^{{3}/{2}}
The area of the closed figure bounded by the following curves.
y = 7x - 2x^2,  x + y = 7/2= 8 sq m
  • True
  • False
Find the area of the closed figure bounded by the following curves
y = \sqrt{x}, y \, = \,  \sqrt{4 - 3x}, y = 0.
  • \dfrac 89
  • \dfrac 79
  • \dfrac 59
  • \dfrac 13
The area of a square inscribed in a semicircle is to the area of the square inscribed in the entire circle as:
  • 1:2
  • 2:3
  • 2:5
  • 3:4
  • 3:5
The area enclosed by the curves
f(x) = \vert sin x - cos x \vert + \vert cos x + sin x \vert \  \text {and}  \ g(x) = 2\vert cos x + sin x \vert , 0 \leq x \leq \pi
  • 2(2 - \sqrt2)
  • 4(2 + \sqrt2)
  • 4(2 - \sqrt2)
  • 2(2 + \sqrt2)
The area of figure bounded by the curve y=2x-{x}^{2} and the straight line y=-x is
  • \frac { 9 }{ 2 }
  • 9
  • \frac { 7 }{ 2 }
  • 7
\int { [g(x)-f(x)]dx=5 } , then the area between two curves for 0 < x < 2, is 
  • 5
  • 10
  • 15
  • 20
The area bounded by the curve y=x^2 and y \, = \, \dfrac{2}{1 \, + \, x^2} is \lambda\  sq.\ unit, then the value of [\lambda ] is 
  • 2
  • 3
  • 4
  • 5
Area of region bounded by x=0,y=0 x=2,y=2,y\le {e}^{x}&y\ge lnx is
  • 6-4ln2
  • 4 ln2-2
  • 2ln2-4
  • 6-2ln2
The area bounded by the curves y=\left| x \right| -1 and y=-\left| x \right| +1 is
  • 1
  • 2
  • 2\sqrt{ 2 }
  • 4
Area common to the curves { y }^{ 2 }=ax and { x }^{ 2 }+{ y }^{ 2 }= 4ax is equal to
  • (9\sqrt { 3 } +4\pi )\cfrac { { a }^{ 2 } }{ 3 }
  • (9\sqrt { 3 } +4\pi ){ a }^{ 2 }
  • (9\sqrt { 3 } -4\pi )\cfrac { { a }^{ 2 } }{ 3 }
  • none of the above
Find the area bounded by the curves x = a\cos t, y = b\sin t in the first quadrant 
  • \dfrac{\pi ab}{4}
  • \dfrac{\pi a^2b}{4}
  • None of these
  • \dfrac{\pi ab^2}{4}
A point P moves in xy-plane In such a way that [|x|] + [|y|] = 1 were [.] denotes the greatest integer function. Area of the region representing all possible positions of the point 'P' is equal to 
  • 4 sq. units
  • 16 sq. units
  • 2 \sqrt{2} sq. units
  • 8 sq. units
The area common to the circles r=a\sqrt{2} and r=2a\cos{\theta} is:
  • {a}^{2}\dfrac{\pi}{2}
  • {a}^{2}\pi
  • {a}^{2}\left(\pi+1\right)
  • {a}^{2}\left(\pi-1\right)
The area under the curve y= 2\sqrt x bounded by the lines x=0 and x= 1 is
  • \frac{4}{3}
  • \frac{2}{3}
  • 1
  • \frac{8}{3}
Area of the region, bounded by the parabolas 3x^{2}=16y and 4y^{2}=9x, is
  • 4
  • 6
  • 8
  • 16
The area common to the cardioids r=a\left(1+\cos{\theta}\right) and r=a\left(1-\cos{\theta}\right) is:
  • \left(\dfrac{3\pi}{2}+4\right){a}^{2}
  • \left(\dfrac{3\pi}{2}-4\right){a}^{2}
  • \left(\dfrac{\pi}{2}+4\right){a}^{2}
  • \left(\dfrac{\pi}{2}-4\right){a}^{2}
Area bounded by y = x^2 and y = \dfrac{2}{1 + x^2} is:
  • \pi - \dfrac{1}{3}
  • \pi - \dfrac{2}{3}
  • 2 \pi - \dfrac{1}{3}
  • none of these
The area between the curves y= \tan x, y=2 \sin x  and x-axis in -\dfrac{\pi}{3} \leq x \leq \dfrac{\pi}{3} is
  • 2-\ln2
  • 3-ln2
  • 4-\ln2
  • None of these
The area of the region bounded by the curve {a}^{4}{y}^{2}=\left(2a-x\right){x}^{5} is to that of the circle whose radius is a, is given by the ratio
  • 4:5
  • 5:8
  • 2:3
  • 3:2
The area of the region described by A=((x,y): {x}^{2}+{y}^{2}\le1) and B=((x,y):{y}^{2}\le1-x)
  • \dfrac {\pi}{2}-\dfrac {2}{3}
  • \dfrac {\pi}{2}+\dfrac {2}{3}
  • \dfrac {\pi}{2}+\dfrac {4}{3}
  • \dfrac {\pi}{2}-\dfrac {4}{3}
Area bounded by the curves y=\left[\dfrac{{x}^{2}}{64}+2\right], y=x-1 and x=0 above x-axis is (\left[.\right] denotes the greatest integer function.)
  • 2.sq.unit
  • 3.sq.unit
  • 4.sq.unit
  • none of these
Area of the region bounded by the curves y\left|y\right|\pm x\left|x\right|=1 and y=\left|x\right| is: 
  • \dfrac{\pi}{8} sq.unit
  • \dfrac{\pi}{4} sq.unit
  • \dfrac{\pi}{2} sq.unit
  • \pi sq.unit
Find the area included between the parabolas y^{2} = x and x = 3 - 2y^{2}.
  • 1
  • 2
  • 3
  • 4
The area of the region bounded by 1-{y}^{2}=\left|x\right| and \left|x\right|+\left|y\right|=1 is
  • \dfrac{1}{3}.sq.unit
  • \dfrac{2}{3}.sq.unit
  • \dfrac{4}{3}.sq.unit
  • 1.sq.unit
The area of the figure bounded by the curves y=\left|x-1\right| and y=3-\left|x\right| is
  • 1 sq.unit
  • 2 sq.unit
  • 3 sq.unit
  • 4 sq.unit
The area between the curve y=2{x}^{4}-{x}^{2}, the x-axis and the ordinates of two minima of the curve is:
  • \dfrac{7}{120} sq.unit
  • \dfrac{9}{120} sq.unit
  • \dfrac{11}{120} sq.unit
  • \dfrac{13}{120} sq.unit
The area of a loop bounded by the curve y=a \sin x and x- axis is 
  • a
  • 2a^2
  • 0
  • 2a
The area enclosed between the curves {x}^{2}=y and {y}^{2}=x is equal to
  • \dfrac{1}{3}.sq.unit
  • 2\int_{0}^{1}{\left(x-{x}^{2}\right)dx}
  • area of the region \left\{\left(x,y\right):{x}^{2}\le y\le \left|x\right|\right\}
  • none of the above
The area bounded by the curves \left|x\right|+\left|y\right|\ge 1 and {x}^{2}+{y}^{2}\le 1 is:
  • 2 sq.unit
  • \pi sq.unit
  • \left(\pi-2\right) sq.unit
  • \left(\pi+2\right) sq.unit
The area bounded by the curves y=\left|x\right|-1 and y=-\left|x\right|+1 is
  • 1.sq.unit
  • 2.sq.unit
  • 2\sqrt{2}.sq.unit
  • 4\sqrt{2}.sq.unit
Let f\left(x\right)={x}^{2}-3x+2 be a function,for all x\in ROn the basis of given information, answer the given question
The number of solutions of \left|y\right|=\left|f\left(\left|x\right|\right)\right| and {x}^{2}+{y}^{2}=2 is,
  • 4
  • 6
  • 8
  • 5
Let f\left(x\right)={x}^{2}-3x+2 be a function, for all x\in ROn the basis of given information, answer the given question.
The area bounded by f\left(x\right), the x-axis and y-axis is,
  • \dfrac{1}{3}.sq.unit
  • \dfrac{2}{3}.sq.unit
  • \dfrac{3}{5}.sq.unit
  • \dfrac{5}{6}.sq.unit
The area of the figure bounded by two branches of the curve {\left(y-x\right)}^{2}={x}^{3} and the straight line x=1 is:
  • \dfrac{1}{3} sq.unit
  • \dfrac{4}{5} sq.unit
  • \dfrac{5}{4} sq.unit
  • 3 sq.unit
Let f and g be continuous function on a\le x\le b and set p\left(x\right)=max\left\{f\left(x\right),g\left(x\right)\right\} and q\left(x\right)=min\left\{f\left(x\right),g\left(x\right)\right\}, the area bounded by the curves y=p\left(x\right),y=q\left(x\right) and the ordinates x=a and x=b is given by 
  • \int_{a}^{b}{\left(f\left(x\right)-g\left(x\right)\right)dx}
  • \int_{a}^{b}{\left(p\left(x\right)-q\left(x\right)\right)dx}
  • \int_{a}^{b}{\left|p\left(x\right)-q\left(x\right)\right|dx}
  • \int_{a}^{b}{\left|f\left(x\right)-g\left(x\right)\right|dx}
Area bounded by the curve y=\ln{x}, y=0 and x=3 is 
  • \left(\ln{9}-2\right).sq.unit
  • \left(\ln{27}-2\right).sq.unit
  • \ln\left(\dfrac{27}{{e}^{2}}\right).sq.unit
  • >3.sq.unit
The area bounded by y=2-\left|2-x\right| , y=\dfrac{3}{\left|x\right|} is
  • \dfrac{5-4\ln{2}}{3}.sq.unit
  • \dfrac{2-\ln{3}}{2}.sq.unit
  • \dfrac{4-3\ln{3}}{2}.sq.unit
  • none of these
If f\left(x+y\right)=f\left(x\right)+f\left(y\right)-xy for all x,y\in R and \lim _{ h\rightarrow 0 }{ \frac { f(h) }{ h }  } =3, then the area bounded by the curves y=f\left(x\right) and y={x}^{2} is:
  • 1
  • 2
  • 3
  • 4
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers