Explanation
$$x=a\left( \theta +\sin { \theta } \right) $$
$$y=a\left( 1+\cos { \theta } \right) $$
If tangent to curve at $$\theta = { \pi }/{ 3 }$$, makes angle $$\alpha$$ with x-axis,
$$\Rightarrow$$ slope of tangent = $$\tan { \alpha } $$
$$\Rightarrow$$ $$\left. \begin{matrix} \tan { \alpha } ={ { \dfrac { { dy }/{ { d\theta } } }{ { dx }/{ { d\theta } } } } }{ { } } \\ \end{matrix} \right| _{ \theta ={ \pi }/{ 3 } }$$
$$=\dfrac {-a\sin \theta}{ a\left( 1+\cos { \theta } \right) }$$
$$\left. \begin{matrix}\dfrac{-\sin \theta} { 1+\cos { \theta } } \\ \end{matrix}\right|_{ \theta ={ \pi }/{ 3 } }$$
$$=-\dfrac{\sqrt{3}/2} { 1+{ 1 }/{ 2 } }$$
$$\tan { \alpha } \ =-\dfrac{1}{\sqrt { 3 }} $$
Ans. $$\alpha \ =\ { 5{ \pi } }/{ 6 }$$
Please disable the adBlock and continue. Thank you.