Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 12 Commerce Maths Continuity And Differentiability Quiz 1 - MCQExams.com

If f(x) is a differentiable function and g(x) is a double differentiable function such that |f(x)|1 and f(x)=g(x). If f2(0)+g2(0)=9such that there exists some c(3,3) such that g(c). g(c)<0, True or false
  • True
  • False
Let f be a polynomial function such that f(3x)=f(x)f(x), for all xR. Then.
  • f(2)f(2)=0
  • f(2)+f(2)=28
  • f(2)f(2)=4
  • f(2)f(2)+f(2)=10
If y=[x+x21]15+[xx21]15, then (x21)d2ydx2+xdydx is equal to.
  • 125y
  • 225y2
  • 225y
  • 224y2
Let f:RR and g:RR be functions satisfying f(x+y)=f(x)+f(y)+f(x)f(y) and f(x)=xg(x) for all x,yR. If lim, then which of the following statements is/are TRUE?
  • f is differentiable at every x \in R
  • If g(0) = 1, then g is differentiable at every x \in R
  • The derivative f'\left( 1 \right)  is equal to 1
  • The derivative { f }^{ \prime  }\left( 0 \right)  is equal to 1
For the curve x = t^2 - 1, y = t^2 - t, tangent is parallel to x - axis where,
  • t = 0
  • t=\dfrac{1}{\sqrt{3}}
  • t=\dfrac{1}{2}
  • t=-\dfrac{1}{\sqrt{3}}
\displaystyle \frac{d}{dx}(\tan ^{-1}x)
  • \displaystyle \frac{1}{1+x^{2}}.
  • \displaystyle \frac{-1}{1+x^{2}}.
  • \displaystyle \frac{-1}{1-x^{2}}.
  • \displaystyle \frac{1}{1-x^{2}}.
Say true or false.
Every continuous function is always differentiable.
  • True
  • False
\displaystyle \frac{d(sin^{-1}x)}{dx}
  • \displaystyle \frac{1}{\sqrt{\left ( 1-x^{2} \right )}}
  • \displaystyle \frac{1}{\sqrt{\left ( 1-x^{4} \right )}}
  • \displaystyle \frac{1}{\sqrt{\left ( 1-x^{3} \right )}}
  • \displaystyle \frac{1}{\sqrt{\left ( 1+x^{2} \right )}}
If y is expressed in terms of a variable x as y = f(x), then y is called
  • Explicit function
  • Implicit function
  • Linear function
  • Identity function
The function f(x)=\dfrac{1-\sin x+\cos x}{1+\sin x+\cos x} is not defined at x=\pi. The value of f(\pi) so that f(x) is continuous at x=\pi is
  • -\dfrac{1}{2}
  • \dfrac{1}{2}
  • -1
  • 1
If the tangent to the curve x=a \, (\theta + \sin \, \theta), y=a (1+ \cos \,\theta) at \theta=\dfrac{\pi}{3} makes an angle \alpha (0 \leq\alpha < \pi) with x-axis, then \alpha =
  • \dfrac{\pi}{3}
  • \dfrac{2 \pi}{3}
  • \dfrac{\pi}{6}
  • \dfrac{5 \pi}{6}
If f(x)=\begin{cases} ax &a<1&\\ ax^2+bx+2 &a\ge 1&. \end{cases}
Then the values of a, b for which f(x) is differentiable, are
  • a=\large{\frac{3}{4}}, b=\large{\frac{1}{4}}
  • a=2, b=-2
  • a=\large{\frac{3}{2}}, b=\large{\frac{1}{4}}
  • a=\large{\frac{3}{4}}, b=-2
If f(x)=\dfrac{1}{2}\left [ \left | \sin x \right |+\sin x \right ],\ 0 < x \leq 2\pi, then f is
  • Increasing in \left ( \dfrac{\pi}{2},\dfrac{3\pi}{2} \right )
  • Decreasing in \left ( 0,\dfrac{\pi}{2} \right ) and increasing in \left ( \dfrac{\pi}{2},\pi \right )
  • Increasing in \left ( 0,\dfrac{\pi}{2} \right ) and decreasing in \left ( \dfrac{\pi}{2},\pi \right )
  • Increasing in \left ( 0,\dfrac{\pi}{4} \right ) and decreasing in \left ( \dfrac{\pi}{4},\pi \right )
If x=a\cos ^{ 4 }{ t } ,y=b\ cosec^{ 4 }{ t } , then \cfrac { dx }{ dy } at t=\cfrac { 3\pi  }{ 4 }
  • \cfrac{-b}{a}
  • \cfrac{b}{a}
  • \cfrac{a}{b}
  • \cfrac{-a}{16b}
Let y=\sqrt{(\sin x+\sin 2x+\sin 3x)^2+(\cos x+\cos 2x+\cos 3x)^2} then which of  the following(s) is correct?
  • \dfrac{dy}{dx} when x=\dfrac{\pi}{2} is -2
  • Value of y when x=\dfrac{\pi}{5} is \dfrac{3+\sqrt{5}}{2}
  • Value of y when x=\dfrac{\pi}{12} is \dfrac{\sqrt{1}+\sqrt{2}+\sqrt{3}}{2}
  • y simplifies to (1+2\cos x) in [0, \pi]
If y=\tan^{-1}\left(\dfrac{2^{x+1}}{1+2^{2x}}\right) then \dfrac{dy}{dx} at x=0 is
  • \dfrac{1}{10}log2
  • \dfrac{1}{5}log2
  • -\dfrac{1}{10}log2
  • log2
\displaystyle \int _0^1 \dfrac {e^x}{1+e^{2x}}dx
  • \tan ^{-1}e-\dfrac \pi 4
  • \tan ^{-1}e+\dfrac \pi 4
  • \tan e-\dfrac \pi 4
  • None of these
If y = \tan ^ { - 1 } \left( \cot \left( \dfrac { \pi } { 2 } - x \right) \right) , then \dfrac { d y } { d x } =
  • 1
  • -1
  • 0
  • \dfrac { 1 } { 2 }
If \displaystyle\int \dfrac{f(x)dx}{\log(\sin x)} =\log (\log(\sin x)) then f(x) =
  • sinx
  • cosx
  • \log(sinx)
  • cotx
The set of points of continuity of the following \sqrt { \dfrac { 1 }{ 2 } -cos^{ 2 }x } contains in the interval 
  • \left[ \dfrac { \pi }{ 4 } ,\dfrac { 3\pi }{ 4 } \right]
  • \left[ \dfrac { 5\pi }{ 4 } ,\dfrac { 7\pi }{ 4 } \right]
  • \left[ \dfrac { 21\pi }{ 4 } ,\dfrac { 23\pi }{ 4 } \right]
  • All above the
If y=\log \sin x find x if y=0
  • \dfrac {\pi}2
  • \pi
  • {\dfrac {\pi}3}
  • \dfrac {-\pi}2
If f ( x ) =  \tan x and f is inverse of g , then g ^ { \prime } ( x )is equal to
  • \cot x
  • \dfrac{1}{1+x^2}
  • \dfrac{1}{1-x^2} 
  • \tan x
Find the values of a and b so that the function f(x)=\left\{\begin{matrix} x^2+3x+a, & if & x\leq 1\\ bx+2, & if & x > 1\end{matrix}\right. is differentiable at each x\in R.
  • a=1,b=3
  • a=5,b=3
  • a=3,b=5
  • a=3,b=1
The set of points where the functions f given by f(x)=|x-3|\cos x differentiable is
  • R
  • R-{3}
  • (0,\infty)
  • None of these
Let f(x) be differentiable function such that f\left (\displaystyle \frac{x+y}{1-xy}\right)=f(x)+f(y)\forall x and y. lf \displaystyle \lim_{x \rightarrow 0}\frac{f(x)}{x}=\frac{1}{3}, then f(1) equals
  • \displaystyle \frac{\pi}{4}
  • \displaystyle \frac{\pi}{12}
  • \displaystyle \frac{\pi}{6}
  • \displaystyle \frac{\pi}{3}

\displaystyle \mathrm{A}:\dfrac{d}{dx}(\sin x)\ at\ x=\frac{\pi}{2}

\displaystyle \mathrm{B}:\dfrac{d}{dx}(\tan^{-1}{x}) at {x}=1

\displaystyle \mathrm{C}:\dfrac{d}{dx}(\mathrm{e}^{x}) at {x}=0

\mathrm{D}:\dfrac{d}{dx}(x^{x})\ at\ x=e

Arrangement of the above values in the increasing order of the magnitude
  • B, C, A, D
  • D, A, B, C
  • D, B, C, A
  • A, B, C, D
{A} : If x = ct, y = \dfrac{c}{t}, then at t=1,  \dfrac{dy}{dx} =
B: If x=3\cos\theta -\cos^{3}\theta, y=3\sin\theta-\sin^{3}\theta, then at \theta = \dfrac{\pi}{3}, \dfrac{dy}{dx} =

C: If x = a\left(t+ \dfrac{1}{t}\right), y = a\left(t-\dfrac{1}{t}\right), then at t =2, \dfrac{dy}{dx} =
D: Derivative of \log(\sec x) with respect to \tan x at x = \dfrac{\pi}{4} is\\
Arrangement of the above values in the increasing order is
  • C, D, A, B
  • C, A, D, B
  • A, B, D, C
  • B, D, A, C
If t\left( 1+{ x }^{ 2 } \right) =x and { x }^{ 2 }+{ t }^{ 2 }=y, then at x=2, the value of \displaystyle\frac{dy}{dx}
  • \displaystyle\frac{488}{125}
  • \displaystyle\frac{88}{125}
  • \displaystyle\frac{101}{125}
  • None of these
If \mathrm{x}=\mathrm{a}\mathrm{t}^{2},\ \mathrm{y}=2\mathrm{a}\mathrm{t}, then \displaystyle \frac{\mathrm{d}^{2}\mathrm{y}}{\mathrm{d}\mathrm{x}^{2}} is
  • -\dfrac{1}{t^{2}}
  • -\dfrac{1}{2at^{2}}
  • -\dfrac{1}{t^{3}}
  • -\dfrac{1}{2at^{3}}

 \displaystyle \frac{\mathrm{d}}{\mathrm{d}\mathrm{x}}[l \mathrm{o}\mathrm{g}(\mathrm{a}\mathrm{x})^{\mathrm{x}}], where a is a constant, is equal to
  • 1
  • \log {ax}
  • 1/a
  • \log {(ax)+1}
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers