Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

CBSE Questions for Class 12 Commerce Maths Continuity And Differentiability Quiz 10 - MCQExams.com

If y=tan1(a+x1ax) then dydx=?
  • 1(1+x)
  • 1x(1+x)
  • 2x(1+x)
  • 12x(1+x)
If y=sec1(x2+1x21) then dydx=?
  • 2(1+x2)
  • 2(1+x2)
  • 1(1x2)
  • none of these
 If y=tan1x+1x1, then dydx is
  • 12|x|x21
  • 12xx21
  • 12xx21
  • None of these
f(x)=x2+xg(1)+g(2) and g(x)=f(1)x2+xf(x)+f(x)
The value of f(3) is
  • 1
  • 0
  • -1
  • -2
The function given by y=|x1| is differentiable function and f(1/n) = 0 n1 and n\epsilon I $$, then
  • f(x)=0, xϵ(0,1]
  • f(0)=0, f'(0) =0
  • f(0)= 0=f'(0), xϵ(0,1]
  • f(0)=0 and f'(0) need not to be zero
If P(1)=0 and dP(x)dx>P(x) for all x1, then
  • P(x)>0x>1
  • P(x) is a constant function
  • P(x)<0x>1
  • None of these
The function f(x)=x1+|x| is differentiable 
  • only at non-integer points
  • everywhere
  • only at x=0
  • none of these
If H(x0)=0 for some x=x0 and ddxH(x)>2cxH(x) for all xx0, where c>0, then
  • H(x)=0 has root for x>x0
  • H(x)=0 has no root for x>x0
  • H(x)=0 is constant function
  • None of these
Given a function f:[0,4]R is differentiable, then for someα,β(0,2),40f(t)dt equals to
  • f(α2)+f(β2)
  • 2αf(α2)+2βf(β2)
  • αf(b2)+βf(α2)
  • f(α)f(β)[f(α)+f(β)]
If f(x)=[sin1(sin2x)](where, [] denotes the greatest integer function), then 
  • π/20f(x)dx=π2sin1(sin1)
  • f(x) is periodic with period
  • limxπ2f(x)=1
  • None of the above
If f:R(0,) be a differentiable function f(x) satisfying f(x+y)f(xy)=f(x){f(y)f(y)y},x,yϵR,(f(y)f(y) for all yϵR) and f(0)=2010.
Now answer the following questions

Which of the following is true for f(x)
  • f(x) is one-one and into
  • {f(x)} is non-periodic, where {.} denotes fractional part of x.
  • f(x)=4 has only two solutions.
  • f(x)=f1x has only one solution
If f(x) = x0(f(t))2dtf:RR be differentiable function and f(g(x)) is differentiable function at x=a, then
  • g(x) must be differentiable at x=a
  • g(x) may be non-differentiable at x=a
  • g(x) must be discontinuous at x=a
  • None of the above
y=f(x) is
  • injective but not surjective
  • surjective but not injective
  • bijective
  • neither injective nor surjective
The current statement(s) is/are
  • f(1)<0
  • f(2)<0
  • f(x)0 for any x(1,3)
  • f(x)=0 for some x(1,3)
If u=sin1(2x1+x2) and v=tan1(2x1x2), then dudv is
  • 12
  • x
  • 1x21+x2
  • 1
The function f(x)={sinxx+cosx,ifx0k,ifx=0  is continuous at x=0,then the value of k is
  • 3
  • 2
  • 1
  • 1.5
|sinx| is a differentiable function for every value of x.
  • True
  • False
The function f(x)=|x|+|x1| is
  • continuous at x=0 as well as at x=1.
  • continuous at x=1 but not at x=0.
  • discontinuous at x=0 as well as at x=1.
  • continuous at x=0 but not at x=1.
If f(x)=sin1(4x+121+24x), which of the following is not the derivative of f(x)?
  • 2.4xlog41+42x
  • 4x+1log21+42x
  • 4x+1log41+44x
  • 22(x+1)log21+24x
If ytan1(axa+x), where -a < x < a, then dydx=.....
  • xa2x2
  • aa2x2
  • 12a2x2
  • 12a2x2
If y=tan1(x1+1x2)+sin[2tan1(1x1+x)] then dydx=...........
  • x1x2
  • 12x1x2
  • 12x21x2
  • 12x21x2
If y=sin(2sin1x), then dx = .......
  • 24x21x2
  • 2+4x21x2
  • 4x211x2
  • 12x21x2
If function f(x)=x29x3 is continuous at x=3, then value of (3) will be:
  • 6
  • 3
  • 1
  • 0
If f(x)={log(1+mx)log(1nx)x;x0k;x=0
is continuous at x=0 then the value of k will be:
  • 0
  • m+n
  • mn
  • m.n
If function f(x)={sin3xx;x0m;x=0
is continuous at x=2 then value of m will be:
  • 3
  • 1/3
  • 1
  • 0
Let x=f  and y={-f}''(t) sint+{f}'(t) cost. Then \displaystyle \int \left [ \left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 \right ]^{\frac{1}{2}} dt equals
(Note : f(x), f'(x), f''(x) , f'''(x) >0 )
  • {f}'(t)+{f}''(t)+c
  • {f}''(t)+{f}'''(t)+c
  • f(t)+{f}''(t)+c
  • {f}'(t)-{f}''(t)+c
The set of all points where the function f(\displaystyle \mathrm{x})=\frac{x}{1+|x|} is differentiable is 
  • (-\infty, \infty)
  • (0,\infty)
  • (-\infty ,0)\cup (0,\infty )
  • (-\infty, 0)
If y=x^{\displaystyle x^{\displaystyle x^{\displaystyle \dots^{\displaystyle\infty}}}}, find \displaystyle\frac{dy}{dx}.
  • \displaystyle\frac{y^2}{x(1-y\log{x})}
  • \displaystyle\frac{y}{x(1-\log{x})}
  • \displaystyle\frac{y^2}{x(y-\log{x})}
  • None of these
Derivative of ({\log{x}})^{\displaystyle\cos{x}} with respect to x is
  • \displaystyle({\log{x}})^{\displaystyle\cos{x}}\left[\frac{\cos{x}}{x\log{x}}-\sin{x}\log{(\log{x})}\right]
  • \displaystyle({\log{x}})^{\displaystyle\cos{x}}\left[\frac{\cos{x}}{x\log{x}}-\cos{x}\log{(\log{x})}\right]
  • \displaystyle({\log{x}})^{\displaystyle\sin{x}}\left[\frac{\sin{x}}{x\log{x}}-\cos{x}\log{(\log{x})}\right]
  • None of these
If y=x^{\left(x^{ x}\right)}, then \displaystyle\frac{dy}{dx} is
  • y\left[x^{\displaystyle x}\left(\log{ex}\right)\log{x}+x^{\displaystyle x}\right]
  • y\left[x^{\displaystyle x}\left(\log{ex}\right)\log{x}+x\right]
  • y\left[x^{\displaystyle x}\left(\log{ex}\right)\log{x}+x^{\displaystyle x-1}\right]
  • y\left[x^{\displaystyle x}\left(\log_e{x}\right)\log{x}+x^{\displaystyle x-1}\right]
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers