Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Maths Continuity And Differentiability Quiz 11 - MCQExams.com

If y=x(logx)log(logx), then dydx is
  • yx((lnxx1)+2lnxln(lnx))
  • yx(logx)log(logx)(2log(logx)+1)
  • yxlnx[(lnx)2+2ln(lnx)]
  • yxlogylogx[2log(logx)+1]
If f(x)=|x||sinx|, then f(π4)=
  • (π5)12(22log5π22π)
  • (π4)12(22log4π22π)
  • (π3)12(22log3π33π)
  • None of these
If x=sin1t and y=log(1t2) , then d2ydx2|t=12=
  • 83
  • 83
  • 34
  • 34
If a function is represented parametrically by the equations x=1+logett2y=3+2logett, then which of the following statements are true?
  • y(x2xy)=y
  • yy=2x(y)2+1
  • xy=2y(y)2+2
  • y(y4xy)=(y)2
y=(1+1x)x+x1+1x.
Differentiate
  • (1+1x)x[log(1+1x)1x+1]+x1+1/x[x+1logxx2].
  • (1+1x)x[log(1+1x)1x+1]+x1+1/x[x+1+logxx2].
  • (1+1x)x[log(1+1x)1x+1]+x11/x[x+1logxx2].
  • (1+1x)x[log(1+1x)1x+1]+x11/x[x+1+logxx2].
If x=sint, y=sinkt then value of (1x2)y2xy1 is
  • k2y
  • k2y
  • ky2
  • ky2
If y=xlnxln(lnx), then dydx is equal to:
  • yx(lnxlnx1+2lnxln(lnx))
  • yxlnxln(lnx)(2ln(lnx)+1)
  • yxlnxlnx2+2ln(lnx)
  • ylnxxlnx(2ln(lnx)+1)
If f(x)=|x|+|cosx|, then
  • f(π2)=2
  • f(π2)=0
  • f(π2)=1
  • f(π2) does not exist
Given the parametric equations x=f(t),y=g(t). Then d2ydx2 equals
  • d2ydt2.dxdtdydt.d2xdt2(dxdt)2
  • d2ydt2.dxdtdydt.d2xdt2(dxdt)3
  • d2ydt2d2xdt2
  • None of these
Derivative of (xcosx)x with respect to x is
  • (xcosx)x[(logx+1){logcosx+xcosx.(sinx)}]
  • (xcosx)x[(logx+1)+{logcosx+xcosx.(sinx)}]
  • (xcosx)x[(logx+1)+{logsinx+xcosx.(cosx)}]
  • None of these
The value of y(1) if x32x2y2+5x+y5=0 when y(1)>1, is equal to
  • 227
  • 72128
  • 8
  • 82227
The weight W of a certain stock of fish is given by W=nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n=2t2+3 and w=t2t+2, then the rate of change of W with respect to t at t=1 is.
  • 1
  • 5
  • 8
  • 31
If x=log(1+t2) and y=ttan1t. Then, dydx is equal to 
  • ex1
  • t21
  • ex12
  • exy
The function f(x)={ax(x1)+bwhenx<1x1when1x3px2+qx+2whenx>3 Find the values of the constants a,b,p,q so that (i)f(x) is continuous for all x  (ii)f(1) does not exist  (iii)f(x) is continuous at x=3
  • a=1,b=0,p=1/3,q=1
  • a1,b=0,p=1/3,q=1
  • a1,b=0,p=1/3,q=1
  • a=1,b=0,p=1/3,q=1
Length of the subtangent at (xl,yl) on xnym=am+n,m,n>0,is
  • nmxl
  • mn|xl|
  • nm|yl|
  • nm|xl|
x12345
f(x)43713
The function f is continuous on the closed interval [1,5] and values of the function are shown in the table above. If the values in the table are used to calculate a trapezoidal sum, the approximate value of 51f(x)dx is
  • 14
  • 14.5
  • 15
  • 29
The derivative of (tanx)x is equal to-
  • x(tanx)x1
  • (tanx)x[secx+tanx]
  • (tanx)x[xsecxcscx+logtanx]
  • (tanx)x[sec2x+xtanx]
Examine for continuity and differentiability at the points x=1,x=2, the function f defined by f(x)={x[x],0x<2(x1)[x],2x3 where [x]= greatest integer less than or equal to x
  • discontinuous and not derivable at x=1,2
  • discontinuous and not derivable at x=1, continuous but not derivable at x=2
  • continuous and not derivable at x=1,2.
  • continuous and not derivable at x=1, discontinuous but not derivable at x=2.
If y=(ax)(xb)(ab)tan1axxb, then dydx is equal to
  • 1
  • axxb
  • (ax)(xb)
  • 1(ax)(bx)
The derivative of y=x2x w.r.t x is :
  • x2x2x(1x+lnxln2)
  • x2x(1xlnxln2)
  • x2x2x(1xlnx)
  • x2x2x(1x+lnxln2)
Let f(x)={2ax,if a<x<a3x2a,if ax. Then, which of the following is true?
  • f(x) is discontinuous at x=a
  • f(x) is not differentiable at x=a
  • f(x) is differentiable at xa
  • f(x) is continuous at all x<a
If x=secθcosθ and y=secnθcosnθ, then (dydx)2 is equal to
  • n2(y2+4)x2+4
  • n2(y24)x2
  • n(y24x24)
  • (nyx)24
If a curve is given by x=acost+b2cos2t and y=sint+b2sin2t, then the points for which d2ydx2=0, are given by.
  • sint=2a2+b23ab
  • cost=[a2+2b23ab]
  • tant=a/b
  • None of the above
If sin1(x2y2x2+y2)=loga, then d2ydx2 equals
  • xy
  • yx2
  • yx
  • 0
Find derivative of tan1cosxsinxcosx+sinx w.r.t. x.
  • 1
  • 0
  • 1
  • 2
If y=tan1(4x1+5x2)+tan1(2+3x23x), then dydx is
  • 61+4x2
  • 31+4x2
  • 51+25x2
  • 5(1+25x2)1(1+x2)1.5(1+2.25x2)
If x=Acos4t+Bsin4t, then d2xdt2 is equal to
  • 16x
  • 16x
  • x
  • x
Let f(x) and g(x) be defined and differentiable for xx0 and f(x0)=g(x0),f(x)>g(x)for x>x0 then
  • f(x)<g(x) for some x>x0
  • f(x)=g(x) for some x>x0
  • f(x)>g(x) for all x>x0
  • None of these
Find the derivative of tan1x1+tan1x w.r.t. tan1x.
  • 1sec1x
  • 1(tan1x)2
  • 11+tan2x
  • 1(1+tan1x)2
If the function f:[0,8]R is differentiable, then for 0<a,b<2,80f(t)dt is equal to
  • $$2\left[ { \alpha }^{ 3 }f({ \alpha }^{ 2 })+{ \beta }^{ 2 }f({ \beta }^{ 2 }) \right] $
  • 3[α3f(α)+β2f(β)]
  • 3[α2f(α3)+β2f(β3)]
  • 3[α2f(α2)+β2f(β2)]
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers