CBSE Questions for Class 12 Commerce Maths Continuity And Differentiability Quiz 2 - MCQExams.com

Find $$\displaystyle\frac{dy}{dx}$$ if $$x=a(\theta-\sin{\theta})$$ and $$y=a(1-\cos{\theta})$$.
  • $$\cot{\left(\displaystyle\frac{\theta}{2}\right)}$$
  • $$\tan{\left(\displaystyle\frac{\theta}{2}\right)}$$
  • $$-\cos{\left(\displaystyle\frac{\theta}{2}\right)}$$
  • None of these
The derivative of $$f(\tan x)$$ w.r.t. $$g (\sec x)$$ at $$x=\displaystyle \frac{\pi }{4},$$ where $${f}'(1)=2$$ and $${g}'(\sqrt{2})=4,$$ is
  • $$\displaystyle \frac{1}{\sqrt{2}}$$
  • $$\sqrt{2}$$
  • $$1$$
  • none of these
 If $$r=\sqrt{x^{2}+y^{2}+z^{2}}$$ and $$x=2\sin 3t,y=2\cos 3t,z=8t$$  then $$\displaystyle \frac{dr}{dt}=$$
  • $$\displaystyle \frac{32t}{\sqrt{1+16t^{2}}}$$
  • $$\displaystyle \frac{16t}{\sqrt{1+16t^{2}}}$$
  • $$\displaystyle \frac{t}{\sqrt{1+16t^{2}}}$$
  • $$\displaystyle \frac{4t}{\sqrt{1+16t^{2}}}$$
If $$y^x=x^y$$, then find $$\displaystyle\frac{dy}{dx}$$.
  • $$\displaystyle\frac{x(y\log{y}-y)}{y(x\log{x}-x)}$$
  • $$\displaystyle\frac{y(x\log{y}-y)}{x(y\log{x}-x)}$$
  • $${y(x\log{y}-y)}$$
  • $$\displaystyle\frac{y(x\log{x}-y)}{x(y\log{y}-x)}$$
If $$\displaystyle x=\frac{2t}{1+t^2}$$, $$\displaystyle y=\frac{1-t^2}{1+t^2}$$, then $$\displaystyle\frac{dy}{dx}$$ at $$t=2$$ is
  • $$\displaystyle\frac{4}{3}$$
  • $$\displaystyle -\frac{4}{3}$$
  • $$\displaystyle\frac{3}{4}$$
  • $$\displaystyle -\frac{3}{4}$$
$$\displaystyle\frac{dy}{dx}$$ for $$y=x^x$$ is
  • $$x^x(1-\log{x})$$
  • $$x^x(1-\log{y})$$
  • $$x^x(1+\log{y})$$
  • $$x^x(1+\log{x})$$
Let the function $$y=f(x)$$ be given by $$x=t^{5}-5t^{3}-20t+7$$ and $$y=4t^{3}-3t^{2}-18t+3$$, where $$t\epsilon \left ( -2, 2 \right )$$. Then $$f^{'}(x)$$ at $$t=1$$ is ?
  • $$\displaystyle \frac{5}{2}$$
  • $$\displaystyle \frac{2}{5}$$
  • $$\displaystyle \frac{7}{5}$$
  • none of these
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Both Assertion and Reason are incorrect
 $$\displaystyle\frac{dy}{dx}$$ at $$\displaystyle t=\frac{\pi}{4}$$ for $$\displaystyle x=a\left[\cos{t}+\frac{1}{2}\log{\tan^2{\frac{t}{2}}}\right]$$ and $$y=a\sin{t}$$ is
  • $$1$$
  • $$0$$
  • $$-1$$
  • $$ \displaystyle \frac { 1 }{ 2 }$$
The relation between the parameter '$$t$$' and the angle $$\alpha$$ between the tangent to the given curve and the $$x-$$axis is given by, '$$t$$' equals to
  • $$\displaystyle \dfrac {\pi}{2}-\alpha$$
  • $$\displaystyle \dfrac {\pi}{4}+\alpha$$
  • $$\alpha-\displaystyle \dfrac {\pi}{4}$$
  • $$\displaystyle \dfrac {\pi}{4}-\alpha$$
If $$y={(\tan{x})}^{\displaystyle{(\tan{x})}^{\displaystyle\tan{x}}}$$, then find $$\displaystyle\frac{dy}{dx}$$ at $$\displaystyle x=\frac{\pi}{4}$$.
  • $$0$$
  • $$1$$
  • $$-1$$
  • $$2$$
If $$x=a\sec^{3}{\theta}$$ and $$y=a\tan^{3}{\theta}$$, then $$\displaystyle\frac{dy}{dx}$$ at $$\theta=\displaystyle\frac{\pi}{3}$$ is 
  • $$\displaystyle\frac{\sqrt{3}}{2}$$
  • $$\displaystyle\frac{\sqrt{5}}{2}$$
  • $$\displaystyle\frac{\sqrt{2}}{3}$$
  • $$\displaystyle\frac{\sqrt{4}}{3}$$
If   $$\displaystyle y^{x}=x^{\sin y} $$, find $$\cfrac{dy}{dx}$$.
  • $$\displaystyle \frac{y}{x}\left [ \frac{x \log y-\sin y}{y \:\log x\: \cos y-x} \right ]$$
  • $$\displaystyle \frac{y}{x}\left [ \frac{x \log y+\sin y}{y \:\log x\: \cos y+x} \right ]$$
  • $$\displaystyle \frac{-y}{x}\left [ \frac{x \log y-\sin y}{y \:\log x\: \cos y-x} \right ]$$
  • $$\displaystyle \frac{y}{x}\left [ \frac{x \log y-\sin y}{y \:\log x\: \cos y+x} \right ]$$
Discuss the applicability of Rolle's theorem to $$\displaystyle f(x)=\log \left[\frac{x^{2}+ab}{(a+b)x}\right],$$ in the interval$$ [a,b].$$
  • Yes Rolle's theorem is applicable and the stationary point is $$x=\sqrt { ab } $$
  • No Rolle's theorem is not applicable due to the discontinuity in the given interval
  • Yes Rolle's theorem is applicable and the stationary point is $$x= ab $$
  • none of these
Verify the Rolle's theorem for the function $$\displaystyle f(x)=x^{2}-3x+2$$ on the interval[1,2]
  • No Rolle's theorem is not applicable in the given interval
  • Yes Rolle's theorem is applicable in the given interval and the stationary point $$x=\frac { 5 }{ 4 } $$
  • Yes Rolle's theorem is applicable in the given interval and the stationary point $$x=\frac { 3 }{ 2 } $$
  • nnone of these
Differentiate $$\displaystyle x^{\sin^{-1}x}$$ w.r.t. $$\displaystyle \sin ^{-1}x.$$
  • $$\displaystyle x^{\sin ^{-1}x}\left [ \log x+\sin ^{-1}x.\frac{\sqrt{\left ( 1-x^{2} \right )}}{x} \right ]$$
  • $$-\displaystyle x^{\sin ^{-1}x}\left [ \log x+\sin ^{-1}x\frac{\sqrt{\left ( 1-x^{2} \right )}}{x} \right ]$$
  • $$\displaystyle x^{\sin ^{-1}x}\left [ \log x+\sin ^{-1}x\frac{\sqrt{\left ( 1+x^{2} \right )}}{x} \right ]$$
  • $$-\displaystyle x^{\sin ^{-1}x}\left [ \log x+\sin ^{-1}x\frac{\sqrt{\left ( 1+x^{2} \right )}}{x} \right ]$$
$$\displaystyle y=(\cot x)^{\sin x}+(\tan  x)^{\cos x}$$.Find dy/dx 
  • $$\sin x(\cot x)^{ \sin x-1 }(-cosec ^{ 2 } x)+(\cot x)^{ \sin x }(log\cot x)\cos x+\\\cos { x } { (\tan { x } ) }^{ \cos { x-1 } }\sec ^{ 2 }{ x } +{ (\tan { x } ) }^{ cosx }(\log { tanx)(-sinx) } $$
  • $$\sin x(\cot x)^{ \sin x-1 }(-co\sec ^{ 2 } x)+\cos { x } { (\tan { x } ) }^{ \cos { x-1 } }\sec ^{ 2 }{ x } $$
  • $$\sin x(\cot x)^{ \sin x-1 }(-sec ^{ 2 } x)+(\cot x)^{ \sin x }(log\cot x)\cos x+\\\cos { x } { (\tan { x } ) }^{ \cos { x+1 } }co\sec ^{ 2 }{ x } +{ (\tan { x } ) }^{ cosx }(\log { tanx)(sinx) } $$
  • None of these
Verify Rolle's theorem for $$\displaystyle f(x)=x(x+3)e^{-x/2}$$ in $$(-3,0)$$
  • Yes Rolle's theorem is applicable and the stationary point is $$x=-2$$
  • Yes Rolle's theorem is applicable and the stationary point is $$x=-1$$
  • No Rolle's theorem is not applicable in the given interval
  • Both A and B
Verify Rolle's theorem the function $$\displaystyle f(x)=x^{3}-4x $$  on  $$ [-2,2].$$ If you think it is applicable in the given interval then find the stationary point ?
  • Yes Rolle's theorem is applicable and stationary point is $$x=\pm \dfrac{2}{\sqrt{3}}$$
  • No Rolle's theorem is not applicable
  • Yes Rolle's theorem is applicable and $$x=2\ or\  -2 $$
  • none of these
Verify the Rolle's theorem for the function $$\displaystyle f(x)=x^{2}$$ in $$(-1,1)$$
  • Yes Rolle's theorem is applicable and the stationary point is $$x=\frac { 1 }{ 2 } $$
  • Yes Rolle's theorem is applicable and the stationary point is $$x=0 $$
  • No Rolle's theorem is not applicable in the given interval
  • Both A and B
Verify Rolle's theorem for the function $$\displaystyle f(x)=10x-x^{2}$$ in the interval [0,10]
  • Yes Rolle's theorem is applicable and the stationary point is $$x=5$$
  • Yes Rolle's theorem is applicable and the stationary point is $$x=4$$
  • No Rolle's theorem is not applicable in the given interval
  • none of these
If $$y = \displaystyle (\tan x)^{\log x}$$, then $$\cfrac{dy}{dx} = $$
  • $$(\tan x)^{\log x} \left[\cfrac{\log \tan x}{x}+\cfrac{\log x}{\tan x}(\sec^2x) \right]$$
  • $$\frac { 1 }{ x } { tanx }^{ logx }log(tanx)+\frac { 1 }{ tanx } \sec ^{ 2 }{ x } logx$$
  • $$\frac { 1 }{ x } { tanx }^{ logx }log(tanx)+\frac { 1 }{ tanx } \sec ^{ 2 }{ x } $$
  • none of these
Verify Lagrange's mean value for the function $$f(x)=\displaystyle \sin x$$ in $$\displaystyle \left [ 0,\frac{\pi }{2} \right ]$$
  • No Lagrange's theorem is not applicable
  • Yes Lagrange's theorem is applicable and $$\displaystyle c =\cos ^{-1}\left ( \frac{2}{\pi } \right )$$
  • Yes Lagrange's theorem is applicable and $$\displaystyle c =\sin ^{-1}\left ( \frac{4}{\pi } \right )$$
  • none of these
Find 'c' of the mean value theorem, if $$\displaystyle f(x)=x(x-1)(x-2);a=0, b=1/2$$
  • $$\displaystyle c=\frac{1+\sqrt{21}}{6}$$
  • $$\displaystyle c=\frac{1-\sqrt{21}}{6}$$
  • $$\displaystyle c=\frac{1+\sqrt{6}}{3}$$
  • $$\displaystyle c=\frac{1-\sqrt{6}}{3}$$
Discuss the applicapibility of Rolle's Theorem to the function $$\displaystyle f(x)=x^{2/3}$$ in (-1,1).
  • Yes Rolle's theorem is applicable and the stationary point $$x=0$$
  • Yes Rolle's theorem is applicable and the stationary point $$x=\frac { 1 }{ 2 } $$
  • No Rolle's theorem is not applicable in the given interval
  • none of these
If $$\displaystyle x=2 \cos t-cos 2t, y=2\sin t-\sin 2t,$$ find the value of $$dy/dx$$.
  • $$ \tan\displaystyle \frac{3t}{2}$$
  • $$ \tan\displaystyle \frac{-3t}{2}$$
  • $$ \tan\displaystyle \frac{3t}{4}$$
  • $$ \tan\displaystyle \frac{-3t}{4}$$
The function $$f$$ is defined, where $$x=2t-\left| t \right|, t\in R$$. Draw the graph of $$f$$ for the interval $$-1\le x\le 1$$. Also discuss its continuity and differentiability at $$x=0$$ 
  • continuous and differentiable at $$x=0$$
  • not continuous but differentiable at $$x=0$$
  • neither continuous nor differentiable at $$x=0$$
  • differentiable but not continuous at $$x=0$$
The function $$f(x) = \displaystyle \sin ^{-1}(\cos x)is :-$$
  • discontinuous at $$x = 0$$
  • continuous at $$x = 0$$
  • differentiable at $$x = 0$$
  • none of these
Examine the origin for continuity and derivability in case of the function $$f$$ defined by $$f(x)=x\tan ^{ -1 }{ (1/x) } $$, $$x\ne 0$$ and $$f(0)=0$$.
  • continuous but not differentiable at $$x=0$$
  • continuous and differentiable at $$x=0$$
  • not continuous and not differentiable at $$x=0$$
  • none of these
State true or false:
If $$x=t^2+3t-8, y=2t^2-2t-5$$, then $$\dfrac {dy}{dx}$$ at $$(2, -1)$$ is $$\dfrac {6}{7}$$.
  • True
  • False
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers