Explanation
Step -1: Differentiating with respect to x
Given, y=xtany
⇒tan y=yx→(1)
Now,
⇒dydx=1×tany+xsec2ydydx [ Using Product rule of derivative ]
⇒dydx[1−xsec2y]=tany
⇒dydx=tany1−xsec2y→(2)
Step -2: Find the value of sec2y.
We know, sec2y−tan2y=1
⇒sec2y=1+tan2y
Putting the value from eq(1),
⇒sec2y=1+y2x2 →(3)
Step -3: Prove the desired.
From eq(2),
⇒dydx=tany1−xsec2y
⇒dydx=tany1−x(1+y2x2)
⇒dydx =xtanyx−x2−y2
⇒dydx =yx−x2−y2 [From eq(1)]
∴ If y=xtany then, dydx = yx−x2−y2.
Hence, the correct answer is option B.
{ 2 }^{ x }+{ 2 }^{ y }={ 2 }^{ x+y }
Differentiating both sides
\ln { 2 }. { 2 }^{ x }+\ln { 2 } .{ 2 }^{ y }\dfrac { dy }{ dx } =\ln { 2 }. { 2 }^{ x+y }\left( 1+\dfrac { dy }{ dx } \right) \\ { 2 }^{ x }+{ 2 }^{ y }\dfrac { dy }{ dx } ={ 2 }^{ x+y }\left( 1+\dfrac { dy }{ dx } \right) \\ { 2 }^{ x }+{ 2 }^{ y }\dfrac { dy }{ dx } ={ 2 }^{ x+y }+{ 2 }^{ x+y }\dfrac { dy }{ dx } \\ \left( { 2 }^{ y }-{ 2 }^{ x+y } \right) \dfrac { dy }{ dx } =\left( { 2 }^{ x+y }-{ 2 }^{ x } \right) \\ \dfrac { dy }{ dx } =\dfrac { { 2 }^{ x+y }-{ 2 }^{ x } }{ { 2 }^{ y }-{ 2 }^{ x+y } } \\ \dfrac { dy }{ dx } =\dfrac { { 2 }^{ x }({ 2 }^{ y }-1) }{ { 2 }^{ y }(1-{ 2 }^{ x }) } \\ \dfrac { dy }{ dx } ={ 2 }^{ x-y }\left( \dfrac { { 2 }^{ y }-1 }{ 1-{ 2 }^{ x } } \right)
So option C is correct.
Please disable the adBlock and continue. Thank you.