Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

CBSE Questions for Class 12 Commerce Maths Continuity And Differentiability Quiz 5 - MCQExams.com

Let y=tan1(secx+tanx). Then, dydx=
  • 14
  • 12
  • 1secx+tanx
  • 1sec2x
  • 1tanx
If x=sint and y=tant, then dydx is equal to
  • cos3t
  • 1cos3t
  • 1cos2t
  • sin2t
  • 1sin2t
If f(x)=cos1{1(logex)21+(logex)2}, then f(e)
  • Does not exist
  • Is equal to 2e
  • Is equal to 1e
  • Is equal to 1
If y=tan1(acosxbsinxbcosx+asinx), then dydx is equal to
  • 2
  • 1
  • ab
  • 0
If x=cosθ,y=sin5θ, then
(1x2)d2ydx2xdydx=
  • 5y
  • 5y
  • 25y
  • 25y
If y=xlog(xa+bx), then x3d2ydx2 is equal to
  • xdydxy
  • (xdydxy)2
  • ydydxx
  • (ydydxx)2
Let f(x) be a non-negative continuous function such that the area bounded by the curve y=f(x), x-axis and the ordinates x=π4 and x=β>π4 is (βsinβ+π4cosβ+2β). Then, f(π2) is
  • (1π4+2)
  • (1π42)
  • (π42+1)
  • (π4+21)
Let f(x)=2tan1x+sin1(2x1+x2). Then
  • f(2)=f(3)
  • f(2)=0
  • f(1/2)=16/5
  • All of these
The value of a for which the function f(x)={tan1a3x2,0<x<16x,x1 has a maximum at x=1, is?
  • 0
  • 1
  • 2
  • None of these
If yx=2x, then dydx is equal to :
  • yxlog(2y)
  • xylog(2y)
  • yxlog(y2)
  • xylog(y2)
  • yxlog(2y)
If y=xx2, then the derivative of y2w.r.t.x2 is
  • 2x2+3x1
  • 2x23x+1
  • 2x2+3x+1
  • None of these
Find the derivative of sin(2sin1x).
  • 2cos(2sin1x)1x2
  • cos(2sin1x)1x2
  • 2cos(2cos1x)1x2
  • cos(2cos1x)1x2
Let y=sin1x, then find (1x2)y2xy1.
Where y1 and y2 denote the first and second order derivatives respectively.
  • 1
  • 1
  • 0
  • 2
Differentiate cos1(4x33x) w.r.t x.
  • 31x2
  • 31x2
  • 11x2
  • 11x
Find derivative of tan1cosx1+sinx.
  • 12
  • 12
  • 32
  • 32
If y=12(sin1x)2, then find (1x2)y2xy1
Where y1 and y2 denote first and second derivatives of y respectively.
  • 1
  • 0
  • 1
  • 2
The derivative of sin1x with respect to cos11x2 is?
  • 11x2
  • cos1x
  • 1
  • 0
If y=sec1x+1x1+sin1x1x+1, then dydx=
  • 0
  • 1
  • 2
  • 3
If y=sin1(x2) then find dydx using first principle.
  • 2x1x4
  • 21x2
  • x1x4
  • 11x4
If y=cos1(x), then find dydx using first principle.
  • 11x
  • 11x
  • 12x1x
  • 12x1x
Find derivative of sin1(x2) using first principle.
  • 2x1x2
  • 2x1x
  • 2x1x4
  • x1x4
If (f(x))g(y)=ef(x)g(y) then dydx=.
  • f1(x)logf(x)g1(y)(1+logf(x))2
  • f1(x)logf(x)g1(y)(1+logf(x))3
  • f1(x).logf(x)g1(y)(1logf(x))2
  • f1(x)logf(x)g(y)(1+logf(x))2
If x+y=tan1y and y then f(y) =
  • \dfrac {1}{y(1+y^2)}
  • \dfrac {3}{y(1+y^2)}
  • \dfrac {2}{y(1+y^2)}
  • \dfrac {-2}{y(1+y^2)}
Let f be differentiable (x\epsilon R), if f(2) = -2 and f'(x) \geq 2 for x\epsilon [1, 6], then
  • f(6) < 6
  • f(6) \geq 6
  • f(6) = 5
  • f(6) \leq 5
Given \quad f(x)=\begin{cases} \log _{ a }{ { \left( a\left| \left[ x \right] +\left[ -x \right]  \right|  \right)  }^{ x } } \left( \cfrac { { a }^{ \cfrac { 2 }{ \left( \cfrac { \left[ x \right] +\left[ -x \right]  }{ \left| x \right|  }  \right)  } -5 } }{ 3+{ a }^{ \cfrac { 1 }{ \left|x\right| }  } }  \right) \quad \text{for}\quad \left| x \right| \neq 0;a>1 \\ 0\quad \quad \quad \quad \quad \quad \quad \text{for}\quad x=0\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  \end{cases},
where \left[ . \right] represents the integral part function, then;
  • f is continuous but not differentiable at x=0
  • f is continuous and differentiable at x=0
  • The differentiability of f at x=0 depends on the value of a
  • f is continuous and differentiable at x=0 and for a=e only
If y = \sin^{-1}\dfrac {1}{2}(\sqrt {1 + x} + \sqrt {1 - x}) then y' =
  • \dfrac {1}{2\sqrt {1 - x^{2}}}
  • \dfrac {-1}{2\sqrt {1 - x^{2}}}
  • \dfrac {1}{2\sqrt {1 + x^{2}}}
  • \dfrac {-1}{2\sqrt {1 + x^{2}}}
Let g: [1, 6]\rightarrow [0, \infty] be a real valued differentiable function satisfying g'(x) = \dfrac {2}{x + g(x)} and g(1) = 0, the maximum value of g cannot exceed.
  • ln\ 2
  • ln\ 6
  • 6\ ln\ 2
  • 2\ ln\ 6
Let f:(-1,1)\rightarrow R be the differentiable function with f(0)=-1 and f'(0)=1

If g(x)={ \left( f(2f(x)+2 \right)  }^{ 2 }, then g'(0)=
  • 0
  • -2
  • 4
  • -4
Determine the value of k for which the following function is continuous at x=3.
f(x)=\dfrac{x^2-9}{x-3}, x \neq 3

f(x)=k, x=3
  • 2
  • 4
  • 6
  • 8
Let f(x)=4 and f'(x)=4, then \displaystyle \lim _{ x\rightarrow 2 }{ \cfrac { xf(2)-2f(x) }{ x-2 }  }
  • 2
  • -2
  • -4
  • 4
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers