Explanation
Given, y=sin−1x
y1=dydx=1√1−x2
y2=d2ydx2=−121(1−x2)32(−2x)=x(1−x2)√1−x2
Thus the value of (1−x2)y2−xy1 is
(1−x2)x(1−x2)√1−x2−x1√1−x2
=x√1−x2−x√1−x2=0
Please disable the adBlock and continue. Thank you.