Explanation
$$y=\tan ^{ -1 }{ \left( \cfrac { \log { \cfrac { e }{ { x }^{ 2 } } } }{ \log { e{ x }^{ 2 } } } \right) } +\tan ^{ -1 }{ \left( \cfrac { 3+2\log { x } }{ 1-6\log { x } } \right) } \\ \quad =\tan ^{ -1 }{ \left( \cfrac { \log { e } -\log { { x }^{ 2 } } }{ \log { e } +\log { { x }^{ 2 } } } \right) } +\tan ^{ -1 }{ \left[ \cfrac { 3+2\log { x } }{ 1-3-2\log { x } } \right] } \\ \quad =\tan ^{ -1 }{ \left[ \cfrac { 1-\log { { x }^{ 2 } } }{ 1+\log { { x }^{ 2 } } } \right] + } \tan ^{ -1 }{ 3 } +\tan ^{ -1 }{ 2\log { x } } \\ \quad =\tan ^{ -1 }{ 1 } -\tan ^{ -1 }{ \log { { \left( x \right) }^{ 2 } } +\tan ^{ -1 }{ 3 } } +\tan ^{ -1 }{ \log { { \left( x \right) }^{ 2 } } } \\ \quad =\tan ^{ -1 }{ 1+\tan ^{ -1 }{ 3 } } \\ y=\tan ^{ -1 }{ 1 } +\tan ^{ -1 }{ 3 } $$ is constant
So, $$\cfrac { dy }{ dx } =0$$
Answer C
The function $$f : R /{0} \rightarrow R$$ given by $$f(x) =\dfrac{1}{x} - \dfrac{2}{e^{2x} -1}$$ can be made continuous at $$x=0$$ bydefining $$f(0)$$ as
We have,
$$ y={{\left( {{x}^{x}} \right)}^{x}} $$
$$ y={{x}^{{{x}^{2}}}} $$
On taking $$\log $$ both sides, we get
$$\log y={{x}^{2}}\log x$$ …… (1)
On differentiating w.r.t $$x$$, we get
$$ \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{{{x}^{2}}}{x}+\log x\left( 2x \right) $$
$$ \dfrac{1}{y}\dfrac{dy}{dx}=x+2x\log x $$
$$ \dfrac{dy}{dx}=y\left( x+2x\log x \right) $$
$$ \dfrac{dy}{dx}={{\left( {{x}^{x}} \right)}^{x}}\left( x+2x\log x \right) $$
$$ \dfrac{dy}{dx}=x{{\left( {{x}^{x}} \right)}^{x}}\left( 1+2\log x \right) $$
Hence, this is the answer.
Consider the given equation.
$$y={{\tan }^{-1}}x+{{\cot }^{-1}}x+{{\sec }^{-1}}x+{{\csc }^{-1}}x$$
$$ \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}-\dfrac{1}{1+{{x}^{2}}}+\dfrac{1}{\left| x \right|\sqrt{{{x}^{2}}-1}}-\dfrac{1}{\left| x \right|\sqrt{{{x}^{2}}-1}}$$
$$ \dfrac{dy}{dx}=0$$
Please disable the adBlock and continue. Thank you.