Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

CBSE Questions for Class 12 Commerce Maths Continuity And Differentiability Quiz 6 - MCQExams.com

If y=Tan1(log(e/x2)logex2)+Tan1(3+2logx16logx) then (dydx)x=2+(dydx)x=3.
  • 6
  • 2
  • 0
  • 2
If y=(tan1x)2 and (x2+1)2d2ydx2+2x(x2+1)dydx=k, then the value of k is
  • 3
  • 2
  • 1
  • 0
Let f(x)={xx<12x1x22+3xx2x>2
 then f(x) is 
  • differentiable at x=1
  • differentiable at x=2
  • differentiable at x=1 and x=2
  • not differentiable at x=10
Which of the following  is not differentiable in the interval (1,2)?
  • 2xx(logx)2dx
  • 2xxsinxxdx
  • 2xx1t+t21+t+t2dt
  • none of these
Let  f:(0,)R be a differentiable function such that f(x)=2f(x)x for all x(0,) and f(1)1
  • limx0f(1x)=1
  • limx0xf(1x)=2
  • limx0x2f(x)=0
  • |f(x)|2 for all x(0,2)
If x=at2,y=2at, then dydx=_____;t0
  • at
  • t2
  • 2t
  • 1t
Let f(x)={(x1)sin(1x1) if x10, if x1.
Then which one of the following is true?
  • f is differentiable neither at x=0 nor at x=1
  • f is differentiable at x=0 and x=1
  • f is differentiable at x=0 but not at x=1
  • f is differentiable at x=1 but not at x=0
If the function f(x)=ex2cosxx2 for x0 continuous at x=0 then f(0)=
  • 12
  • 32
  • 2
  • 13

The function f:R/0R given by f(x)=1x2e2x1 can be made continuous at x=0 by
defining f(0) as 

  • 0
  • 1
  • 2
  • -1
The function f(x)= sin1( cosx) is 
  • Discontinuous at x=0
  • continuous at x=0
  • differentiable at x=0
  • None of these
If y=xx then  d2ydx21y(dydx)2yx=0
  • True
  • False
Let f(x)={xx<12x1x22+3xx2x>2 then f(x) is
  • Differentiable at x=1
  • Differentiable at x=2
  • Differentiable at x=1 and x=2
  • Not differentiable at x=0
If y=(sinx)x, then dydx=
  • (sinx)x(ln(sinx)+xcotx)
  • (ln(sinx)+xcotx)
  • (sinx)x(ln(sinx)+xtanx)
  • (sinx)x(ln(sinx)cotx)
If f(x)=[a+x1+x]a+1+2x then aa+1[2 log a+1a2a] is
  • f(1)
  • f(0)
  • f(2)
  • f
If a continuous function f satisfies the relation 
t0(f(x)f(x))dx=0 and f(0)=12
Then f(x) is equal to
  • 1x+2
  • x+24
  • 1x2+2
  • x224
Differentiate with respect to x.
xcosx+sinxtanx
  • xcosx[cosxxsinx]+sinxtanx[1+sec2x.logsinx]
  • xcosx[cosxxsinx.logx]+sinxtanx[1+sec2x.logsinx]
  • xcosx[cosxsinx.logx]+sinxtanx[1+secx.logsinx]
  • None
If x=a (cosθ+θ sinθ), y=a (sinθθ cosθ), then d2xdθ2=a (cosθθsinθ), d2ydθ2=a (sinθ+θcosθ) 
  • True
  • False
Differentiate xtanx+tanxx with respect to x
  • xtanx(sec2xlogx+tanxx)+tanxx(logtanx+2sin2x)
  • xtanx(sec2xlogsecx+tanxx)+tanxx(logtanx+2sin2x)
  • xtanx(sec2xlogx+tanxx)tanxx(logtanx+2sin2x)
  • xtanx(sec2xlogx+tanxx)+tanxx(logtanx2sin2x)
If f:RR be a differentiable function, such that f(x+2y)=f(x)+f(2y)+4xy for all x,yR then
  • f(1)=f(0)+1
  • f(1)=f(0)1
  • f(0)=f(1)+2
  • f(0)=f(1)2
Let f(x)={12x0x21,0x2 and g (x)=|f(x)|+f|x| then the number of points which g(x) is non differentiable,is
  • at most one point
  • 2
  • exactly one point
  • infinite
If f(x) is twice differentiable function such that f(a)=0,f(b)=2,f(c)=1,f(d)=2,f(e)=0, where a<b<c<d<e, then the minimum number of zeroes of g(x)=(f(x))2+f in the interval [a, e] is 
  • 4
  • 5
  • 6
  • 7
f(x)=\dfrac { \left[ x \right] +1 }{ \left\{ x \right\} +1 } for f:\left[  0,\dfrac { 5 }{ 2 }  \right)   \rightarrow \left[  \dfrac { 1 }{ 2 } ,3 \right)   , where [.] represent the integer function and \left\{ . \right\} represent the fraction part of x. then which of the following is true?
  • f(x) is injective discontinuous function
  • f(x) is surjective non-differntiable function
  • \min { \left( \lim _{ x\rightarrow { 1 }^{ - } }{ f(x) } ,\lim _{ x\rightarrow { 1 }^{ + } }{ f(x) } \right) }
  • \max { \left( x\ values\ of\ point\ of\ discontinuity \right) =f(1) }
If y=(x^{x})^{x} then \dfrac {dy}{dx}=
  • (x^{x})^{x}(1+2\log x)
  • (x^{x})^{x}(1-2\log x)
  • x(x^{x})^{x}(1+2\log x)
  • x(x^{x})^{x}(1-2\log x)
Let f(x)=\dfrac{1}{ax+b} then f''(0)=
  • \dfrac{2a^3}{b^2}
  • \dfrac{2a^2}{b^3}
  • \dfrac{2a^3}{b^3}
  • none of these
If x=a(\cos\theta+log\ \tan\dfrac{\theta}{2}) and y=a\sin\theta, then\dfrac{dy}{dx} is equal to
  • \cot\theta
  • \tan\theta
  • \sin\theta
  • \cos\theta
If f(x)=\dfrac{a^x}{x^a} then f'(a)=?
  • log a-1
  • log a-a
  • a log a-a
  • a log a+a
If \sqrt { { x }^{ 2 }+{ y }^{ 2 } } ={ e }^{ t } where t=\sin ^{ -1 }{ \left( \cfrac { y }{ \sqrt { { x }^{ 2 }+{ y }^{ 2 } }  }  \right)  } then \cfrac { dy }{ dx } is equal to

  • \cfrac { x-y }{ x+y }
  • \cfrac { x+y }{ x-y }
  • \cfrac { y-x }{ y+x }
  • \cfrac { x-y }{ 2x+y }
If y=\tan^{-1}x+\cot^{-1}x+\sec^{-1}x+\csc^{-1}x,then \dfrac {dy}{dx} is equal to
  • -1
  • \pi
  • 0
  • 1
Solve this:-\dfrac{d}{{dx}}\left( {\tan^{ - 1}\left( {\sinh \,X} \right)} \right) =
  • \operatorname{csch} x
  • \operatorname{sech} x
  • \sinh x
  • \cosh x
If f(x)=\sin^4x+\cos^4x. Then f is an increasing function in the interval
  • \left [ \dfrac{5\pi}{8},\dfrac{3\pi}{4} \right ]
  • \left [ \dfrac{\pi}{2},\dfrac{5\pi}{8} \right ]
  • \left [ \dfrac{\pi}{4},\dfrac{\pi}{2} \right ]
  • \left [ 0,\dfrac{\pi}{4} \right ]
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers