Loading [MathJax]/jax/element/mml/optable/MathOperators.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Continuity And Differentiability Quiz 9 - MCQExams.com
CBSE
Class 12 Commerce Maths
Continuity And Differentiability
Quiz 9
If
f
(
x
)
is a differentiable function
∀
x
ϵ
R
so that,
f
(
2
)
=
4
,
f
′
(
x
)
≥
5
∀
x
ϵ
[
2
,
6
]
, then,
f
(
6
)
is :
Report Question
0%
≥
24
0%
≤
24
0%
≥
9
0%
≤
9
If
x
=
sin
−
1
(
2
θ
1
+
θ
2
)
,
y
=
sec
−
1
√
1
+
θ
2
, then
d
y
d
x
=
Report Question
0%
−
1
2
0%
1
2
0%
−
2
0%
2
If
f
(
x
)
=
0
for
x
<
0
and
f
(
x
)
is differential at
x
=
0
then for
x
≥
0
,
f
(
x
)
may be
Report Question
0%
x
2
0%
x
0%
−
x
0%
−
x
3
/
2
If
f
(
x
)
=
{
m
x
−
1
,
x
≤
5
3
x
−
5
,
x
>
5
is continuous then value of m is:
Report Question
0%
11
5
0%
5
11
0%
5
3
0%
3
5
Explanation
f
(
x
)
{
m
x
−
1
if
x
≤
5
3
x
−
5
if
x
>
5
Since the function is continuous at
x
=
5
.
Therefore,
lim
x
→
5
−
f
(
x
)
=
lim
x
→
5
+
f
(
x
)
=
f
(
5
)
lim
x
→
5
−
(
m
x
−
1
)
=
lim
x
→
5
+
(
3
x
−
5
)
5
m
−
1
=
15
−
5
5
m
=
10
+
1
⇒
m
=
11
5
Hence the value of
m
is
11
5
.
If
y
=
t
a
n
−
1
(
a
x
−
b
b
x
+
a
)
, the value of
d
y
d
x
is
Report Question
0%
a
1
+
x
2
0%
1
1
+
x
2
0%
−
b
1
+
x
2
0%
b
1
+
x
2
Let
f
:
[
0
,
2
]
→
R
be a twice differentiable function such that
f
"
(
x
)
>
0
, for all
x
∈
(
0
,
2
)
If
ϕ
(
x
)
=
f
(
x
)
+
f
(
2
−
x
)
, then
ϕ
is:
Report Question
0%
decreasing on
(
0
,
2
)
0%
decreasing on
(
0
,
1
)
and increasing on
(
1
,
2
)
0%
increasing on
(
0
,
2
)
0%
increasing on
(
0
,
1
)
and decreasing on
(
1
,
2
)
Explanation
ϕ
(
x
)
=
f
(
x
)
+
f
(
2
−
x
)
ϕ
′
(
x
)
=
f
′
(
x
)
−
f
′
(
2
−
x
)
...(1)
Since
f
"
(
x
)
>
0
⇒
f
′
(
x
)
i
s
i
n
c
r
e
a
s
i
n
g
∀
x
∈
(
0
,
2
)
case I when
x
>
2
−
x
⇒
x
>
1
⇒
ϕ
′
(
x
)
>
0
∀
x
∈
(
1
,
2
)
∴
case II: when
x<2-x \Rightarrow x<1
\Rightarrow \phi '(x) <0\forall x\in (0,1)
\therefore \phi (x)
is decreasing on
(0,1)
If
f(x)=|\cos x-\sin x|
, then
f'\left(\dfrac{\pi}{6}\right)
equal to?
Report Question
0%
-\dfrac{1}{2}(1+\sqrt{3})
0%
\dfrac{1}{2}(1+\sqrt{3})
0%
-\dfrac{1}{2}(1-\sqrt{3})
0%
\dfrac{1}{2}(1-\sqrt{3})
If
f(x)=\left\{\begin{matrix} \dfrac{log_ex}{x-1} & x\neq 1\\ k & x=1\end{matrix}\right.
continuous at
x=1
, then the value of k is?
Report Question
0%
e
0%
1
0%
-1
0%
0
Explanation
Given
f(x)=\left\{\begin{matrix} \dfrac{log_ex}{x-1} & x\neq 1\\ k & x=1\end{matrix}\right.
we know that at
x=1
is continuous so
k=\displaystyle\lim_{x\rightarrow 1}\dfrac{log_ex}{x-1}
It is
\dfrac 00
form so by applying L-hospital rule
=\displaystyle\lim_{x\rightarrow 1}\dfrac{1/x}{1}=1
.
Let
f(x)=15-|x-10|; x\in R
. Then the set of all values of x, at which the function,
g(x)=f(f(x))
is not differentiable, is?
Report Question
0%
\{5, 10, 15, 20\}
0%
\{10, 15\}
0%
\{5, 10, 15\}
0%
\{10\}
Explanation
f(x)=15-|x-10|, x\in R
f(f(x))=15-|f(x)-10|
=15-|15-|x-10|-10|
=15-|5-|x-10||
x=5, 10, 15
are points of non differentiability
Aliter:
At
x=10
f(x)
is no differentiable
also, when
15-|x-10|=10
\Rightarrow x=5, 15
\therefore
non differentiability points are
\{5, 10, 15\}
.
If
f(x)=\begin{vmatrix} \sqrt{1+kx}-\sqrt{1-kx} & if & -1\leq x < 0\\ \begin{matrix} 2x+1\\ x-1\end{matrix} & if & 0\leq x\leq 1\end{vmatrix}
is continuous at
x=0
, then the value of k is?
Report Question
0%
k=1
0%
k=-1
0%
k=0
0%
k=2
Explanation
\displaystyle\lim_{x\rightarrow 0^-}\dfrac{\sqrt{1+Kx}-\sqrt{1-Kx}}{x}=\displaystyle\lim_{x\rightarrow 0^+}\dfrac{mKx}{x(\sqrt{1-Kx}+\sqrt{x})}
\displaystyle\lim_{x\rightarrow 0^+}\dfrac{2x+1}{x-1}=-1=K
(after rationlation)
\therefore K=-1
.
If
f(x) = \begin{cases} \dfrac{\sin(p+1)x + \sin x}{x}& , &x < 0\\ \quad \quad \quad q&,& x = 0\\ \dfrac{\sqrt{x^2 + x}- \sqrt{x}}{x^{3/2}}&,& x > 0 \end{cases}
is continuous at
x = 0
the
(p, q)
is
Report Question
0%
\left(-\dfrac{1}{2}, - \dfrac{3}{2}\right)
0%
\left(\dfrac{3}{2}, \dfrac{1}{2}\right)
0%
\left(\dfrac{1}{2}, \dfrac{3}{2}\right)
0%
\left(-\dfrac{3}{2}, \dfrac{1}{2}\right)
If
x=3\sin {t} ,\ y=3\cos {t} ,
find
\dfrac {dy}{dx}
at
t=\dfrac { \pi }{ 3 }
Report Question
0%
3
0%
0
0%
-\sqrt{3}
0%
1
Explanation
x=3\sin t
\dfrac{dx}{dt}=3\cos t
y=3\cos t
\dfrac{dy}{dt}=-3\sin t
Thus,
\dfrac{dy}{dx}=-\tan t
At
t=\dfrac{\pi}{3}
,
\dfrac{dy}{dx}=-\sqrt3
Let
f(x)=(x+|x|)|x|
. Then, for all x.
Report Question
0%
f
is continuous
0%
f
is differentiable for some x
0%
f'
is continuous
0%
f''
is continuous
Explanation
Consider the given function.
f(x)=(x+|x|)|x|
f(x)=\left\{\begin{matrix} (x+x)x, & x>0\\ (x-x)x, & x<0 \end{matrix}\right.
f(x)=\left\{\begin{matrix} 2x^2, & x>0\\ 0, & x<0 \end{matrix}\right.
f'(x)=\left\{\begin{matrix} 4x, & x>0\\ 0, & x<0 \end{matrix}\right.
Now,
\lim_{x\to\ 0^{+}}\ 2x^2=\lim_{x\to 0^{-}}0=0
Since, it is polynomial function.
Hence, it is continuous and differentiable at
0
.
The set of points where the function
f(x)=x|x|
is differentiable is?
Report Question
0%
(-\infty, \infty)
0%
(-\infty, 0)\cup (0, \infty)
0%
(0, \infty)
0%
[0, \infty]
Explanation
Consider the given function.
f(x)=x|x|
f(x)=\left\{\begin{matrix} x^2, & x>0\\ -x^2, & x<0 \\ 0 & x =0\end{matrix}\right.
Since, it is polynomial function.
Hence, it is differentiable at
(-\infty, \infty)
.
Differentiate the following function with respect to x.
If for
f(x)=\lambda x^2+\mu x+12
,
f'(14)=15
and
f'(2)=11
, then find
\lambda
and
\mu
.
Report Question
0%
\lambda =1, \mu =6
.
0%
\lambda =1, \mu =7
.
0%
\lambda =6, \mu =7
.
0%
\lambda =6, \mu =1
.
Explanation
Given function
f(x)=\lambda x^2 +\mu x +12
\implies f^{\prime}(x)=\dfrac d{dx}(\lambda x^2+\mu x+12)
f^{\prime}(x)=2\lambda x+\mu
f^{\prime}(2)=2\lambda (2)+\mu
\implies 4\lambda +\mu=11\cdots (1)
f^{\prime}(4)=2\lambda (4)+\mu
\implies 8\lambda+\mu=15 \cdots (2)
(2)-(1)
8\lambda-4\lambda+\mu-\mu=15-11
4\lambda =4
\implies \lambda=1
Put it in
(1)
\implies 4(4)+\mu =11
\mu=11-4
\mu =7
If
f(9) = 9, f'(9) = 0
, then
\underset{x\to 9}{\lim} \dfrac{\sqrt{f(x)}-3}{\sqrt{x}-3}
is equal to
Report Question
0%
0
0%
f(0)
0%
f'(3)
0%
f(9)
0%
1
Explanation
\underset{x\to 9}{\lim} \dfrac{\sqrt{f(x)} -3}{\sqrt{x} -3}
\left[\dfrac{0}{0}from\right]
= \underset{x\to 9}{\lim} \dfrac{\dfrac{f'(x)}{2\sqrt{f(x)}}}{\dfrac{1}{2\sqrt{x}}}
= \dfrac{\sqrt{x}f'(x)}{\sqrt{f(x)}}
= \dfrac{\sqrt{9}f'(9)}{\sqrt{f(9)}}
= \dfrac{3\times 0}{3} = 0
Let
f : R \rightarrow R
be a continuous function such that
f(x^2) = f(x^3)
for all
x \in R
. Consider the following statements.
I. f is an odd function.
II. f is an even function.
III. f is differentiable everywhere
Report Question
0%
I is true and III is false
0%
II is true and III is false
0%
both I and III are true
0%
both II and III are true
Explanation
f:R\rightarrow\,R
be a continuous function such that
f\left({x}^{2}\right)=f\left({x}^{3}\right)
..........
(1)
for all
x\in R
Put
x=-x
f\left({x}^{2}\right)=f\left(-{x}^{3}\right)
From
(1)
we have
f\left({x}^{3}\right)=f\left(-{x}^{3}\right)
Put
{x}^{3}=t
we have
f\left(t\right)=f\left(-t\right)
\Rightarrow\,f\left(x\right)
is an even function.
(ii)
Now take
{x}^{3}=t
\Rightarrow\,f\left({t}^{\frac{2}{3}}\right)=f\left(t\right)
Put
t={t}^{\frac{2}{3}}\Rightarrow\,f\left({\left({t}^{\frac{2}{3}}\right)}^{2}\right)=f\left(t\right)
\Rightarrow\,f\left(t\right)=f\left({t}^{\frac{2}{3}}\right)=f\left({\left({t}^{\frac{2}{3}}\right)}^{2}\right)=f\left({\left({t}^{\frac{2}{3}}\right)}^{3}\right)=....=f\left({\left({t}^{\frac{2}{3}}\right)}^{n}\right)
This is true for all
t\in R
and any
n\in I
Hence if we take
n\rightarrow\,\infty,\,{\left(\dfrac{2}{3}\right)}^{n}\rightarrow\,0
Then
f\left(t\right)=f\left({t}^{\circ}\right)=1
\Rightarrow\,f\left(x\right)
is a constant function, hence it is differentiable everywhere.
Let
f(x + y) = f(x) f(y)
for all
x
and
y
. If
f(0) = 1, f(3) = 3
and
f'(0) = 11
, then
f'(3)
is equal to
Report Question
0%
11
0%
22
0%
33
0%
44
Explanation
We have,
f'(x) = \underset{h\to 0}{\lim} \dfrac{f(x+h)-f(x)}{h}
\Rightarrow f'(3) = \underset{h\to 0}{\lim} \dfrac{f(3+h)-f(3)}{h}
=\underset{h\to 0}{\lim} \dfrac{f(3)f(h) - f(3+0)}{h}
=\underset{h\to 0}{\lim} \dfrac{f(3)f(h) - f(3)f(0)}{h}
=f(3) \underset{h\to 0}{\lim} \dfrac{f(h)-f(0)}{h}
=f(3) \underset{h\to 0}{\lim} \dfrac{f(0+h)-f(0)}{h}
= f(3)f'(0)
=3\times 11
=33
Let
f(x+y) = f(x) f(y)
and
f(x) = 1+\sin(3x)g(x)
, where
g
is differentiable. The
f'(x)
is equal to
Report Question
0%
3f(x)
0%
g(0)
0%
3f(x) g(0)
0%
3g(x)
Explanation
f'(x) = \underset{h\to 0}{\lim} \dfrac{f(x+h) - f(x)}{h}
=\underset{h\to 0}{\lim} \dfrac{f(x)f(h) - f(x)}{h}
= f(x) \underset{h \to 0}{\lim} \left(\dfrac{1+\sin 3h(g(h))-1}{h}\right)
3f(x) \underset{h\to 0}{\lim} \dfrac{\sin 3h}{3h} \underset{h\to 0}{\lim} g(h)
=3 f(x) \times 1 \times g(0) = 3f(x) g(0)
If
y=\tan^{-1}\left(\dfrac{a\cos x-b\sin x}{b\cos x+a\sin x}\right)
then
\dfrac{dy}{dx}=?
Report Question
0%
\dfrac{a}{b}
0%
\dfrac{-b}{a}
0%
1
0%
-1
Explanation
Let,
\dfrac{a}{b}=\tan\theta
y=\tan^{-1}\left(\dfrac{a\cos x-b\sin x}{b\cos x+a\sin x}\right)\\\,\,=\tan^{-1}\left(\dfrac{\dfrac{a}{b}-\tan x}{1+\dfrac{a}{b}\tan x}\right)\\\,\,=\tan^{-1}\left(\dfrac{\tan \theta-\tan x}{1+\tan \theta \tan x}\right)
=\tan^{-1}\tan (\theta-x)\\=\theta-x\\=\left(\tan^{-1}\dfrac{a}{b}-x\right)
.
\therefore \dfrac{dy}{dx}=-1
.
If
y=\tan^{-1}\left\{\dfrac{\cos x+\sin x}{\cos x-\sin x}\right\}
then
\dfrac{dy}{dx}=?
Report Question
0%
1
0%
-1
0%
\dfrac{1}{2}
0%
\dfrac{-1}{2}
If
y=\sin^{-1}(3x-4x^3)
then
\dfrac{dy}{dx}=?
Report Question
0%
\dfrac{3}{\sqrt {1-x^2}}
0%
\dfrac{-4}{\sqrt {1-x^2}}
0%
\dfrac{3}{\sqrt {1+x^2}}
0%
none\ of\ these
If
\displaystyle f(x) = sin^{1}\left (\dfrac{2x}{1 + x^{2}} \right )
, then
Report Question
0%
f
is derivative for all
x
with ,
\left |x \right | < 1
0%
f
is not derivative at
x = 1
0%
f
is not derivable at
x = -1
0%
f
is derivative for all
x
with ,
\left |x \right | > 1
If
f(x) = \left\{\begin{matrix} x^2 (sgn [x]) + \{x\}), & 0 \le x < 2 \\ \sin x + | x - 3|, & 2 \le x < 4\end{matrix}\right.
were [ ] and { } represent the greatest integer and the fractional part function, respectively.
Report Question
0%
f (x) is differentiable at x=1.
0%
f(x) is continuous but non-differentiable at x=1.
0%
f(x) is non-differentiable at x=2.
0%
f(x) is non-differentiable at x=2.
If
y=\cos^{-1}x^{3}
then
\dfrac{dy}{dx}=?
Report Question
0%
\dfrac{-1}{\sqrt{1-x^{6}}}
0%
\dfrac{-3x^{2}}{\sqrt{1-x^{6}}}
0%
\dfrac{-3}{x^{2}\sqrt{1-x^{6}}}
0%
none\ of\ these
If
y=\cos^{-1}(4x^{3}-3x)
then
\dfrac{dy}{dx}=?
Report Question
0%
\dfrac{3}{\sqrt{1-x^{2}}}
0%
\dfrac{-3}{\sqrt{1-x^{2}}}
0%
\dfrac{4}{\sqrt{1-x^{2}}}
0%
\dfrac{-4}{(3x^{2}-1)}
Which of the following statement is always true ([ .] represents the greatest integer function)
Report Question
0%
If f(x) is discontinuous, then
\left | f(x) \right |
is discontinuous
0%
If f(x) is discontinuous , then f
\left ( \left | x \right | \right )
is discontinuous
0%
f(x) =
\left [g \left (x \right ) \right ]
is discontinuous when g(x) is an integer
0%
None of these
The largest value of c such that there exists a differential function
h(x) for -c < x < c
that is a solution of
y_1 = 1 +y^2
with h(0) = 0 is
Report Question
0%
2\pi
0%
\pi
0%
\frac { \pi }{2}
0%
\frac { \pi }{4}
Which of the following function is thrice differentiable at x=0?
Report Question
0%
f\left ( x \right )=\left | x^{3} \right |
0%
f\left ( x \right )=x^{3}\left | x \right |
0%
f\left ( x \right )=\left | x \right |\sin ^{3}x
0%
f\left ( x \right )=x\left | \tan ^{3}x \right |
If
y=\tan^{-1}(\sec x+6\tan x)
then
\dfrac{dy}{dx}=?
Report Question
0%
\dfrac{1}{2}
0%
\dfrac{-1}{2}
0%
1
0%
none\ of\ these
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page