MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Continuity And Differentiability Quiz 9 - MCQExams.com
CBSE
Class 12 Commerce Maths
Continuity And Differentiability
Quiz 9
If $$f(x)$$ is a differentiable function $$\forall \ x\ \epsilon \ R$$ so that, $$f(2)=4,\ f'(x)\ge 5\ \forall \ x\ \epsilon \ [2,6]$$, then, $$f(6)$$ is :
Report Question
0%
$$\ge 24$$
0%
$$\le 24$$
0%
$$\ge 9$$
0%
$$\le 9$$
If $$x=\sin^ {-1}\left( \dfrac { 2\theta }{ 1+{ \theta }^{ 2 } } \right),y=\sec^ {-1}\sqrt {1+\theta^ {2}}$$, then $$\dfrac {dy}{dx}=$$
Report Question
0%
$$\dfrac {-1}{2}$$
0%
$$\dfrac {1}{2}$$
0%
$$-2$$
0%
$$2$$
If $$f(x)=0$$ for $$x < 0$$ and $$f(x)$$ is differential at $$x=0$$ then for $$x\ge 0, f(x)$$ may be
Report Question
0%
$$x^{2}$$
0%
$$x$$
0%
$$-x$$
0%
$$-x^{3/2}$$
If $$f(x)=\begin{cases} mx-1,\quad x\le 5 \\ 3x-5,\quad x>5 \end{cases} $$ is continuous then value of m is:
Report Question
0%
$$\dfrac{11}{5}$$
0%
$$\dfrac{5}{11}$$
0%
$$\dfrac{5}{3}$$
0%
$$\dfrac{3}{5}$$
Explanation
$$f{\left( x \right)} \begin{cases} mx-1 & \text{ if } x \le 5 \\ 3x - 5 & \text{ if } x > 5 \end{cases}$$
Since the function is continuous at $$x = 5$$.
Therefore,
$$\lim_{x \rightarrow {5}^{-}}{f{\left( x \right)}} = \lim_{x \rightarrow {5}^{+}}{f{\left( x \right)}} = f{\left( 5 \right)}$$
$$\lim_{x \rightarrow {5}^{-}}{\left( mx - 1 \right)} = \lim_{x \rightarrow {5}^{+}}{\left( 3x - 5 \right)}$$
$$5m - 1 = 15- 5$$
$$5m = 10 + 1$$
$$\Rightarrow m = \cfrac{11}{5}$$
Hence the value of $$m$$ is $$\cfrac{11}{5}$$.
If $$y={ tan }^{ -1 }\left( \frac { ax-b }{ bx+a } \right)$$, the value of $$\frac { dy }{ dx } $$ is
Report Question
0%
$$\frac{ a}{1+x^{2}}$$
0%
$$\frac{1}{1+x^{2}}$$
0%
$$\frac{-b}{1+x^{2}}$$
0%
$$\frac{b}{1+x^{2}}$$
Let $$f:[0,2]\rightarrow R$$ be a twice differentiable function such that $$f"(x)>0$$, for all $$x\in (0,2)$$ If $$\phi (x)=f(x)+f(2-x)$$, then $$\phi$$is:
Report Question
0%
decreasing on $$(0,2)$$
0%
decreasing on $$(0,1)$$ and increasing on $$(1,2)$$
0%
increasing on $$(0,2)$$
0%
increasing on $$(0,1)$$ and decreasing on $$(1,2)$$
Explanation
$$\phi(x)=f(x)+f(2-x)$$
$$\phi '(x)=f'(x)-f'(2-x)$$...(1)
Since $$f"(x)>0$$
$$\Rightarrow f'(x) is increasing \forall x\in (0,2)$$
case I when $$x>2-x \Rightarrow x>1$$
$$\Rightarrow \phi'(x) >0\forall x \in (1,2)$$
$$\therefore \phi (x) is increasing on (1,2)$$
case II: when $$x<2-x \Rightarrow x<1$$
$$\Rightarrow \phi '(x) <0\forall x\in (0,1)$$
$$\therefore \phi (x) $$ is decreasing on $$(0,1)$$
If $$f(x)=|\cos x-\sin x|$$, then $$f'\left(\dfrac{\pi}{6}\right)$$ equal to?
Report Question
0%
$$-\dfrac{1}{2}(1+\sqrt{3})$$
0%
$$\dfrac{1}{2}(1+\sqrt{3})$$
0%
$$-\dfrac{1}{2}(1-\sqrt{3})$$
0%
$$\dfrac{1}{2}(1-\sqrt{3})$$
If $$f(x)=\left\{\begin{matrix} \dfrac{log_ex}{x-1} & x\neq 1\\ k & x=1\end{matrix}\right.$$ continuous at $$x=1$$, then the value of k is?
Report Question
0%
$$e$$
0%
$$1$$
0%
$$-1$$
0%
$$0$$
Explanation
Given
$$f(x)=\left\{\begin{matrix} \dfrac{log_ex}{x-1} & x\neq 1\\ k & x=1\end{matrix}\right.$$
we know that at $$x=1$$ is continuous so
$$k=\displaystyle\lim_{x\rightarrow 1}\dfrac{log_ex}{x-1}$$
It is $$\dfrac 00$$ form so by applying L-hospital rule
$$=\displaystyle\lim_{x\rightarrow 1}\dfrac{1/x}{1}=1$$.
Let $$f(x)=15-|x-10|; x\in R$$. Then the set of all values of x, at which the function, $$g(x)=f(f(x))$$ is not differentiable, is?
Report Question
0%
$$\{5, 10, 15, 20\}$$
0%
$$\{10, 15\}$$
0%
$$\{5, 10, 15\}$$
0%
$$\{10\}$$
Explanation
$$f(x)=15-|x-10|, x\in R$$
$$f(f(x))=15-|f(x)-10|$$
$$=15-|15-|x-10|-10|$$
$$=15-|5-|x-10||$$
$$x=5, 10, 15$$ are points of non differentiability
Aliter:
At $$x=10$$ $$f(x)$$ is no differentiable
also, when $$15-|x-10|=10$$
$$\Rightarrow x=5, 15$$
$$\therefore$$ non differentiability points are $$\{5, 10, 15\}$$.
If $$f(x)=\begin{vmatrix} \sqrt{1+kx}-\sqrt{1-kx} & if & -1\leq x < 0\\ \begin{matrix} 2x+1\\ x-1\end{matrix} & if & 0\leq x\leq 1\end{vmatrix}$$ is continuous at $$x=0$$, then the value of k is?
Report Question
0%
$$k=1$$
0%
$$k=-1$$
0%
$$k=0$$
0%
$$k=2$$
Explanation
$$\displaystyle\lim_{x\rightarrow 0^-}\dfrac{\sqrt{1+Kx}-\sqrt{1-Kx}}{x}=\displaystyle\lim_{x\rightarrow 0^+}\dfrac{mKx}{x(\sqrt{1-Kx}+\sqrt{x})}$$
$$\displaystyle\lim_{x\rightarrow 0^+}\dfrac{2x+1}{x-1}=-1=K$$ (after rationlation)
$$\therefore K=-1$$.
If $$f(x) = \begin{cases} \dfrac{\sin(p+1)x + \sin x}{x}& , &x < 0\\ \quad \quad \quad q&,& x = 0\\ \dfrac{\sqrt{x^2 + x}- \sqrt{x}}{x^{3/2}}&,& x > 0 \end{cases}$$ is continuous at $$x = 0$$ the $$(p, q)$$ is
Report Question
0%
$$\left(-\dfrac{1}{2}, - \dfrac{3}{2}\right)$$
0%
$$\left(\dfrac{3}{2}, \dfrac{1}{2}\right)$$
0%
$$\left(\dfrac{1}{2}, \dfrac{3}{2}\right)$$
0%
$$\left(-\dfrac{3}{2}, \dfrac{1}{2}\right)$$
If $$x=3\sin {t} ,\ y=3\cos {t} ,$$ find $$\dfrac {dy}{dx}$$ at $$t=\dfrac { \pi }{ 3 } $$
Report Question
0%
$$3$$
0%
$$0$$
0%
$$-\sqrt{3}$$
0%
$$1$$
Explanation
$$x=3\sin t$$
$$\dfrac{dx}{dt}=3\cos t$$
$$y=3\cos t$$
$$\dfrac{dy}{dt}=-3\sin t$$
Thus, $$\dfrac{dy}{dx}=-\tan t$$
At $$t=\dfrac{\pi}{3}$$,
$$\dfrac{dy}{dx}=-\sqrt3$$
Let $$f(x)=(x+|x|)|x|$$. Then, for all x.
Report Question
0%
$$f$$ is continuous
0%
$$f$$ is differentiable for some x
0%
$$f'$$ is continuous
0%
$$f''$$ is continuous
Explanation
Consider the given function.
$$f(x)=(x+|x|)|x|$$
$$f(x)=\left\{\begin{matrix} (x+x)x, & x>0\\ (x-x)x, & x<0 \end{matrix}\right.$$
$$f(x)=\left\{\begin{matrix} 2x^2, & x>0\\ 0, & x<0 \end{matrix}\right.$$
$$f'(x)=\left\{\begin{matrix} 4x, & x>0\\ 0, & x<0 \end{matrix}\right.$$
Now,
$$\lim_{x\to\ 0^{+}}\ 2x^2=\lim_{x\to 0^{-}}0=0$$
Since, it is polynomial function.
Hence, it is continuous and differentiable at $$0$$.
The set of points where the function $$f(x)=x|x|$$ is differentiable is?
Report Question
0%
$$(-\infty, \infty)$$
0%
$$(-\infty, 0)\cup (0, \infty)$$
0%
$$(0, \infty)$$
0%
$$[0, \infty]$$
Explanation
Consider the given function.
$$f(x)=x|x|$$
$$f(x)=\left\{\begin{matrix} x^2, & x>0\\ -x^2, & x<0 \\ 0 & x =0\end{matrix}\right.$$
Since, it is polynomial function.
Hence, it is differentiable at $$(-\infty, \infty)$$.
Differentiate the following function with respect to x.
If for $$f(x)=\lambda x^2+\mu x+12$$, $$f'(14)=15$$ and $$f'(2)=11$$, then find $$\lambda$$ and $$\mu$$.
Report Question
0%
$$\lambda =1, \mu =6$$.
0%
$$\lambda =1, \mu =7$$.
0%
$$\lambda =6, \mu =7$$.
0%
$$\lambda =6, \mu =1$$.
Explanation
Given function
$$f(x)=\lambda x^2 +\mu x +12$$
$$\implies f^{\prime}(x)=\dfrac d{dx}(\lambda x^2+\mu x+12)$$
$$f^{\prime}(x)=2\lambda x+\mu$$
$$f^{\prime}(2)=2\lambda (2)+\mu$$
$$\implies 4\lambda +\mu=11\cdots (1)$$
$$f^{\prime}(4)=2\lambda (4)+\mu $$
$$\implies 8\lambda+\mu=15 \cdots (2)$$
$$(2)-(1)$$
$$8\lambda-4\lambda+\mu-\mu=15-11$$
$$4\lambda =4$$
$$\implies \lambda=1$$
Put it in $$(1)$$
$$\implies 4(4)+\mu =11$$
$$\mu=11-4$$
$$\mu =7$$
If $$f(9) = 9, f'(9) = 0$$, then $$\underset{x\to 9}{\lim} \dfrac{\sqrt{f(x)}-3}{\sqrt{x}-3}$$ is equal to
Report Question
0%
$$0$$
0%
$$f(0)$$
0%
$$f'(3)$$
0%
$$f(9)$$
0%
$$1$$
Explanation
$$\underset{x\to 9}{\lim} \dfrac{\sqrt{f(x)} -3}{\sqrt{x} -3} $$ $$\left[\dfrac{0}{0}from\right]$$
$$= \underset{x\to 9}{\lim} \dfrac{\dfrac{f'(x)}{2\sqrt{f(x)}}}{\dfrac{1}{2\sqrt{x}}}$$
$$= \dfrac{\sqrt{x}f'(x)}{\sqrt{f(x)}}$$
$$= \dfrac{\sqrt{9}f'(9)}{\sqrt{f(9)}}$$
$$= \dfrac{3\times 0}{3} = 0$$
Let $$f : R \rightarrow R$$ be a continuous function such that $$f(x^2) = f(x^3)$$ for all $$ x \in R$$. Consider the following statements.
I. f is an odd function.
II. f is an even function.
III. f is differentiable everywhere
Report Question
0%
I is true and III is false
0%
II is true and III is false
0%
both I and III are true
0%
both II and III are true
Explanation
$$f:R\rightarrow\,R$$ be a continuous function such that
$$f\left({x}^{2}\right)=f\left({x}^{3}\right)$$ ..........$$(1)$$ for all $$x\in R$$
Put $$x=-x$$
$$f\left({x}^{2}\right)=f\left(-{x}^{3}\right)$$
From $$(1)$$ we have $$f\left({x}^{3}\right)=f\left(-{x}^{3}\right)$$
Put $${x}^{3}=t$$ we have $$f\left(t\right)=f\left(-t\right)$$
$$\Rightarrow\,f\left(x\right)$$ is an even function.
$$(ii)$$Now take $${x}^{3}=t$$
$$\Rightarrow\,f\left({t}^{\frac{2}{3}}\right)=f\left(t\right)$$
Put $$t={t}^{\frac{2}{3}}\Rightarrow\,f\left({\left({t}^{\frac{2}{3}}\right)}^{2}\right)=f\left(t\right)$$
$$\Rightarrow\,f\left(t\right)=f\left({t}^{\frac{2}{3}}\right)=f\left({\left({t}^{\frac{2}{3}}\right)}^{2}\right)=f\left({\left({t}^{\frac{2}{3}}\right)}^{3}\right)=....=f\left({\left({t}^{\frac{2}{3}}\right)}^{n}\right)$$
This is true for all $$t\in R$$ and any $$n\in I$$
Hence if we take $$n\rightarrow\,\infty,\,{\left(\dfrac{2}{3}\right)}^{n}\rightarrow\,0$$
Then $$f\left(t\right)=f\left({t}^{\circ}\right)=1$$
$$\Rightarrow\,f\left(x\right)$$ is a constant function, hence it is differentiable everywhere.
Let $$f(x + y) = f(x) f(y)$$ for all $$x$$ and $$y$$. If $$f(0) = 1, f(3) = 3$$ and $$f'(0) = 11$$, then $$f'(3)$$ is equal to
Report Question
0%
$$11$$
0%
$$22$$
0%
$$33$$
0%
$$44$$
Explanation
We have,
$$f'(x) = \underset{h\to 0}{\lim} \dfrac{f(x+h)-f(x)}{h}$$
$$\Rightarrow f'(3) = \underset{h\to 0}{\lim} \dfrac{f(3+h)-f(3)}{h}$$
$$=\underset{h\to 0}{\lim} \dfrac{f(3)f(h) - f(3+0)}{h}$$
$$=\underset{h\to 0}{\lim} \dfrac{f(3)f(h) - f(3)f(0)}{h}$$
$$=f(3) \underset{h\to 0}{\lim} \dfrac{f(h)-f(0)}{h}$$
$$=f(3) \underset{h\to 0}{\lim} \dfrac{f(0+h)-f(0)}{h}$$
$$= f(3)f'(0)$$
$$=3\times 11$$
$$=33$$
Let $$f(x+y) = f(x) f(y) $$ and $$f(x) = 1+\sin(3x)g(x)$$, where $$g$$ is differentiable. The $$f'(x)$$ is equal to
Report Question
0%
$$3f(x)$$
0%
$$g(0)$$
0%
$$3f(x) g(0)$$
0%
$$3g(x)$$
Explanation
$$f'(x) = \underset{h\to 0}{\lim} \dfrac{f(x+h) - f(x)}{h}$$
$$=\underset{h\to 0}{\lim} \dfrac{f(x)f(h) - f(x)}{h}$$
$$= f(x) \underset{h \to 0}{\lim} \left(\dfrac{1+\sin 3h(g(h))-1}{h}\right)$$
$$3f(x) \underset{h\to 0}{\lim} \dfrac{\sin 3h}{3h} \underset{h\to 0}{\lim} g(h)$$
$$=3 f(x) \times 1 \times g(0) = 3f(x) g(0)$$
If $$y=\tan^{-1}\left(\dfrac{a\cos x-b\sin x}{b\cos x+a\sin x}\right)$$ then $$\dfrac{dy}{dx}=?$$
Report Question
0%
$$\dfrac{a}{b}$$
0%
$$\dfrac{-b}{a}$$
0%
$$1$$
0%
$$-1$$
Explanation
Let, $$\dfrac{a}{b}=\tan\theta$$
$$y=\tan^{-1}\left(\dfrac{a\cos x-b\sin x}{b\cos x+a\sin x}\right)\\\,\,=\tan^{-1}\left(\dfrac{\dfrac{a}{b}-\tan x}{1+\dfrac{a}{b}\tan x}\right)\\\,\,=\tan^{-1}\left(\dfrac{\tan \theta-\tan x}{1+\tan \theta \tan x}\right)$$
$$=\tan^{-1}\tan (\theta-x)\\=\theta-x\\=\left(\tan^{-1}\dfrac{a}{b}-x\right)$$.
$$\therefore \dfrac{dy}{dx}=-1$$.
If $$y=\tan^{-1}\left\{\dfrac{\cos x+\sin x}{\cos x-\sin x}\right\}$$ then $$\dfrac{dy}{dx}=?$$
Report Question
0%
$$1$$
0%
$$-1$$
0%
$$\dfrac{1}{2}$$
0%
$$\dfrac{-1}{2}$$
If $$y=\sin^{-1}(3x-4x^3)$$ then $$\dfrac{dy}{dx}=?$$
Report Question
0%
$$\dfrac{3}{\sqrt {1-x^2}}$$
0%
$$\dfrac{-4}{\sqrt {1-x^2}}$$
0%
$$\dfrac{3}{\sqrt {1+x^2}}$$
0%
$$none\ of\ these$$
If $$\displaystyle f(x) = sin^{1}\left (\dfrac{2x}{1 + x^{2}} \right ) $$ , then
Report Question
0%
$$ f $$ is derivative for all $$ x $$ with ,$$ \left |x \right | < 1 $$
0%
$$ f $$ is not derivative at $$ x = 1 $$
0%
$$ f $$ is not derivable at $$ x = -1 $$
0%
$$ f $$ is derivative for all $$ x $$ with ,$$ \left |x \right | > 1 $$
If $$f(x) = \left\{\begin{matrix} x^2 (sgn [x]) + \{x\}), & 0 \le x < 2 \\ \sin x + | x - 3|, & 2 \le x < 4\end{matrix}\right.$$
were [ ] and { } represent the greatest integer and the fractional part function, respectively.
Report Question
0%
f (x) is differentiable at x=1.
0%
f(x) is continuous but non-differentiable at x=1.
0%
f(x) is non-differentiable at x=2.
0%
f(x) is non-differentiable at x=2.
If $$y=\cos^{-1}x^{3}$$ then $$\dfrac{dy}{dx}=?$$
Report Question
0%
$$\dfrac{-1}{\sqrt{1-x^{6}}}$$
0%
$$\dfrac{-3x^{2}}{\sqrt{1-x^{6}}}$$
0%
$$\dfrac{-3}{x^{2}\sqrt{1-x^{6}}}$$
0%
$$none\ of\ these$$
If $$y=\cos^{-1}(4x^{3}-3x)$$ then $$\dfrac{dy}{dx}=?$$
Report Question
0%
$$\dfrac{3}{\sqrt{1-x^{2}}}$$
0%
$$\dfrac{-3}{\sqrt{1-x^{2}}}$$
0%
$$\dfrac{4}{\sqrt{1-x^{2}}}$$
0%
$$\dfrac{-4}{(3x^{2}-1)}$$
Which of the following statement is always true ([ .] represents the greatest integer function)
Report Question
0%
If f(x) is discontinuous, then $$ \left | f(x) \right | $$ is discontinuous
0%
If f(x) is discontinuous , then f $$ \left ( \left | x \right | \right ) $$ is discontinuous
0%
f(x) = $$ \left [g \left (x \right ) \right ] $$ is discontinuous when g(x) is an integer
0%
None of these
The largest value of c such that there exists a differential function $$ h(x) for -c < x < c $$ that is a solution of $$ y_1 = 1 +y^2 $$ with h(0) = 0 is
Report Question
0%
$$ 2\pi $$
0%
$$ \pi $$
0%
$$ \frac { \pi }{2} $$
0%
$$ \frac { \pi }{4} $$
Which of the following function is thrice differentiable at x=0?
Report Question
0%
$$f\left ( x \right )=\left | x^{3} \right |$$
0%
$$f\left ( x \right )=x^{3}\left | x \right |$$
0%
$$f\left ( x \right )=\left | x \right |\sin ^{3}x$$
0%
$$f\left ( x \right )=x\left | \tan ^{3}x \right |$$
If $$y=\tan^{-1}(\sec x+6\tan x)$$ then $$\dfrac{dy}{dx}=?$$
Report Question
0%
$$\dfrac{1}{2}$$
0%
$$\dfrac{-1}{2}$$
0%
$$1$$
0%
$$none\ of\ these$$
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page