Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 12 Commerce Maths Continuity And Differentiability Quiz 9 - MCQExams.com

If f(x) is a differentiable function  x ϵ R so that, f(2)=4, f(x)5  x ϵ [2,6], then, f(6) is :
  • 24
  • 24
  • 9
  • 9
If x=sin1(2θ1+θ2),y=sec11+θ2, then dydx=
  • 12
  • 12
  • 2
  • 2
If f(x)=0 for x<0 and f(x) is differential at x=0 then for x0,f(x) may be  
  • x2
  • x
  • x
  • x3/2
If f(x)={mx1,x53x5,x>5 is continuous then value of m is:
  • 115
  • 511
  • 53
  • 35
If y=tan1(axbbx+a), the value of dydx is
  • a1+x2
  • 11+x2
  • b1+x2
  • b1+x2
Let f:[0,2]R be a twice differentiable function such that f"(x)>0, for all x(0,2) If ϕ(x)=f(x)+f(2x), then ϕis:
  • decreasing on (0,2)
  • decreasing on (0,1) and increasing on (1,2)
  • increasing on (0,2)
  • increasing on (0,1) and decreasing on (1,2)
If f(x)=|\cos x-\sin x|, then f'\left(\dfrac{\pi}{6}\right) equal to?
  • -\dfrac{1}{2}(1+\sqrt{3})
  • \dfrac{1}{2}(1+\sqrt{3})
  • -\dfrac{1}{2}(1-\sqrt{3})
  • \dfrac{1}{2}(1-\sqrt{3})
If f(x)=\left\{\begin{matrix} \dfrac{log_ex}{x-1} & x\neq 1\\ k & x=1\end{matrix}\right. continuous at x=1, then the value of k is?
  • e
  • 1
  • -1
  • 0
Let f(x)=15-|x-10|; x\in R. Then the set of all values of x, at which the function, g(x)=f(f(x)) is not differentiable, is?
  • \{5, 10, 15, 20\}
  • \{10, 15\}
  • \{5, 10, 15\}
  • \{10\}
If f(x)=\begin{vmatrix} \sqrt{1+kx}-\sqrt{1-kx} & if & -1\leq x < 0\\ \begin{matrix} 2x+1\\ x-1\end{matrix} & if & 0\leq x\leq 1\end{vmatrix} is continuous at x=0, then the value of k is?
  • k=1
  • k=-1
  • k=0
  • k=2
If f(x) = \begin{cases} \dfrac{\sin(p+1)x + \sin x}{x}& , &x < 0\\ \quad \quad \quad q&,& x = 0\\ \dfrac{\sqrt{x^2 + x}- \sqrt{x}}{x^{3/2}}&,& x > 0 \end{cases} is continuous at x = 0 the (p, q) is 
  • \left(-\dfrac{1}{2}, - \dfrac{3}{2}\right)
  • \left(\dfrac{3}{2}, \dfrac{1}{2}\right)
  • \left(\dfrac{1}{2}, \dfrac{3}{2}\right)
  • \left(-\dfrac{3}{2}, \dfrac{1}{2}\right)
If x=3\sin {t} ,\ y=3\cos {t} , find \dfrac {dy}{dx} at t=\dfrac { \pi  }{ 3 } 
  • 3
  • 0
  • -\sqrt{3}
  • 1
Let f(x)=(x+|x|)|x|. Then, for all x.
  • f is continuous
  • f is differentiable for some x
  • f' is continuous
  • f'' is continuous
The set of points where the function f(x)=x|x| is differentiable is?
  • (-\infty, \infty)
  • (-\infty, 0)\cup (0, \infty)
  • (0, \infty)
  • [0, \infty]
Differentiate the following function with respect to x.
If for f(x)=\lambda x^2+\mu x+12, f'(14)=15 and f'(2)=11, then find \lambda and \mu.
  • \lambda =1, \mu =6.
  • \lambda =1, \mu =7.
  • \lambda =6, \mu =7.
  • \lambda =6, \mu =1.
If f(9) = 9, f'(9) = 0, then \underset{x\to 9}{\lim} \dfrac{\sqrt{f(x)}-3}{\sqrt{x}-3} is equal to 
  • 0
  • f(0)
  • f'(3)
  • f(9)
  • 1
Let f : R \rightarrow R be a continuous function such that f(x^2) = f(x^3) for all x \in R. Consider the following statements.
I. f is an odd function.
II. f is an even function.
III. f is differentiable everywhere
  • I is true and III is false
  • II is true and III is false
  • both I and III are true
  • both II and III are true
Let f(x + y) = f(x) f(y) for all x and y. If f(0) = 1, f(3) = 3 and f'(0) = 11, then f'(3) is equal to
  • 11
  • 22
  • 33
  • 44
Let f(x+y) = f(x) f(y) and f(x) = 1+\sin(3x)g(x), where g is differentiable. The f'(x) is equal to
  • 3f(x)
  • g(0)
  • 3f(x) g(0)
  • 3g(x)
If y=\tan^{-1}\left(\dfrac{a\cos x-b\sin x}{b\cos x+a\sin x}\right) then \dfrac{dy}{dx}=?
  • \dfrac{a}{b}
  • \dfrac{-b}{a}
  • 1
  • -1
If y=\tan^{-1}\left\{\dfrac{\cos x+\sin x}{\cos x-\sin x}\right\} then \dfrac{dy}{dx}=?
  • 1
  • -1
  • \dfrac{1}{2}
  • \dfrac{-1}{2}
If y=\sin^{-1}(3x-4x^3) then \dfrac{dy}{dx}=?
  • \dfrac{3}{\sqrt {1-x^2}}
  • \dfrac{-4}{\sqrt {1-x^2}}
  • \dfrac{3}{\sqrt {1+x^2}}
  • none\ of\ these
If \displaystyle f(x) = sin^{1}\left (\dfrac{2x}{1 + x^{2}} \right ) , then 
  • f is derivative for all x with , \left |x \right | < 1
  • f is not derivative at x = 1
  • f is not derivable at x = -1
  • f is derivative for all x with , \left |x \right | > 1
If f(x) = \left\{\begin{matrix} x^2 (sgn [x]) + \{x\}), & 0 \le x < 2 \\ \sin x + | x - 3|, & 2 \le x < 4\end{matrix}\right.
were [ ] and { } represent the greatest integer and the fractional part function, respectively.
  • f (x) is differentiable at x=1.
  • f(x) is continuous but non-differentiable at x=1.
  • f(x) is non-differentiable at x=2.
  • f(x) is non-differentiable at x=2.
If y=\cos^{-1}x^{3} then \dfrac{dy}{dx}=?
  • \dfrac{-1}{\sqrt{1-x^{6}}}
  • \dfrac{-3x^{2}}{\sqrt{1-x^{6}}}
  • \dfrac{-3}{x^{2}\sqrt{1-x^{6}}}
  • none\ of\ these
If y=\cos^{-1}(4x^{3}-3x) then \dfrac{dy}{dx}=?
  • \dfrac{3}{\sqrt{1-x^{2}}}
  • \dfrac{-3}{\sqrt{1-x^{2}}}
  • \dfrac{4}{\sqrt{1-x^{2}}}
  • \dfrac{-4}{(3x^{2}-1)}
Which of the following statement is always true ([ .] represents the greatest integer function)
  • If f(x) is discontinuous, then \left | f(x) \right | is discontinuous
  • If f(x) is discontinuous , then f \left ( \left | x \right | \right ) is discontinuous
  • f(x) = \left [g \left (x \right ) \right ] is discontinuous when g(x) is an integer
  • None of these
 The largest value of c such that there exists a differential function h(x) for  -c < x < c that is a solution of y_1 = 1 +y^2 with h(0) = 0 is 
  • 2\pi
  • \pi
  • \frac { \pi }{2}
  • \frac { \pi }{4}
Which of the following function is thrice differentiable at x=0?
  • f\left ( x \right )=\left | x^{3} \right |
  • f\left ( x \right )=x^{3}\left | x \right |
  • f\left ( x \right )=\left | x \right |\sin ^{3}x
  • f\left ( x \right )=x\left | \tan ^{3}x \right |
If y=\tan^{-1}(\sec x+6\tan x) then \dfrac{dy}{dx}=?
  • \dfrac{1}{2}
  • \dfrac{-1}{2}
  • 1
  • none\ of\ these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers