CBSE Questions for Class 12 Commerce Maths Continuity And Differentiability Quiz 9 - MCQExams.com

If $$f(x)$$ is a differentiable function $$\forall \ x\ \epsilon \ R$$ so that, $$f(2)=4,\ f'(x)\ge 5\ \forall \ x\ \epsilon \ [2,6]$$, then, $$f(6)$$ is :
  • $$\ge 24$$
  • $$\le 24$$
  • $$\ge 9$$
  • $$\le 9$$
If $$x=\sin^ {-1}\left( \dfrac { 2\theta  }{ 1+{ \theta  }^{ 2 } }  \right),y=\sec^ {-1}\sqrt {1+\theta^ {2}}$$, then $$\dfrac {dy}{dx}=$$
  • $$\dfrac {-1}{2}$$
  • $$\dfrac {1}{2}$$
  • $$-2$$
  • $$2$$
If $$f(x)=0$$ for $$x < 0$$ and $$f(x)$$ is differential at $$x=0$$ then for $$x\ge 0, f(x)$$ may be  
  • $$x^{2}$$
  • $$x$$
  • $$-x$$
  • $$-x^{3/2}$$
If $$f(x)=\begin{cases} mx-1,\quad x\le 5 \\ 3x-5,\quad x>5 \end{cases} $$ is continuous then value of m is:
  • $$\dfrac{11}{5}$$
  • $$\dfrac{5}{11}$$
  • $$\dfrac{5}{3}$$
  • $$\dfrac{3}{5}$$
If $$y={ tan }^{ -1 }\left( \frac { ax-b }{ bx+a }  \right)$$, the value of $$\frac { dy }{ dx } $$ is
  • $$\frac{ a}{1+x^{2}}$$
  • $$\frac{1}{1+x^{2}}$$
  • $$\frac{-b}{1+x^{2}}$$
  • $$\frac{b}{1+x^{2}}$$
Let $$f:[0,2]\rightarrow R$$ be a twice differentiable function such that $$f"(x)>0$$, for all $$x\in (0,2)$$ If $$\phi (x)=f(x)+f(2-x)$$, then $$\phi$$is:
  • decreasing on $$(0,2)$$
  • decreasing on $$(0,1)$$ and increasing on $$(1,2)$$
  • increasing on $$(0,2)$$
  • increasing on $$(0,1)$$ and decreasing on $$(1,2)$$
If $$f(x)=|\cos x-\sin x|$$, then $$f'\left(\dfrac{\pi}{6}\right)$$ equal to?
  • $$-\dfrac{1}{2}(1+\sqrt{3})$$
  • $$\dfrac{1}{2}(1+\sqrt{3})$$
  • $$-\dfrac{1}{2}(1-\sqrt{3})$$
  • $$\dfrac{1}{2}(1-\sqrt{3})$$
If $$f(x)=\left\{\begin{matrix} \dfrac{log_ex}{x-1} & x\neq 1\\ k & x=1\end{matrix}\right.$$ continuous at $$x=1$$, then the value of k is?
  • $$e$$
  • $$1$$
  • $$-1$$
  • $$0$$
Let $$f(x)=15-|x-10|; x\in R$$. Then the set of all values of x, at which the function, $$g(x)=f(f(x))$$ is not differentiable, is?
  • $$\{5, 10, 15, 20\}$$
  • $$\{10, 15\}$$
  • $$\{5, 10, 15\}$$
  • $$\{10\}$$
If $$f(x)=\begin{vmatrix} \sqrt{1+kx}-\sqrt{1-kx} & if & -1\leq x < 0\\ \begin{matrix} 2x+1\\ x-1\end{matrix} & if & 0\leq x\leq 1\end{vmatrix}$$ is continuous at $$x=0$$, then the value of k is?
  • $$k=1$$
  • $$k=-1$$
  • $$k=0$$
  • $$k=2$$
If $$f(x) = \begin{cases} \dfrac{\sin(p+1)x + \sin x}{x}& , &x < 0\\ \quad \quad \quad q&,& x = 0\\ \dfrac{\sqrt{x^2 + x}- \sqrt{x}}{x^{3/2}}&,& x > 0 \end{cases}$$ is continuous at $$x = 0$$ the $$(p, q)$$ is 
  • $$\left(-\dfrac{1}{2}, - \dfrac{3}{2}\right)$$
  • $$\left(\dfrac{3}{2}, \dfrac{1}{2}\right)$$
  • $$\left(\dfrac{1}{2}, \dfrac{3}{2}\right)$$
  • $$\left(-\dfrac{3}{2}, \dfrac{1}{2}\right)$$
If $$x=3\sin {t} ,\ y=3\cos {t} ,$$ find $$\dfrac {dy}{dx}$$ at $$t=\dfrac { \pi  }{ 3 } $$
  • $$3$$
  • $$0$$
  • $$-\sqrt{3}$$
  • $$1$$
Let $$f(x)=(x+|x|)|x|$$. Then, for all x.
  • $$f$$ is continuous
  • $$f$$ is differentiable for some x
  • $$f'$$ is continuous
  • $$f''$$ is continuous
The set of points where the function $$f(x)=x|x|$$ is differentiable is?
  • $$(-\infty, \infty)$$
  • $$(-\infty, 0)\cup (0, \infty)$$
  • $$(0, \infty)$$
  • $$[0, \infty]$$
Differentiate the following function with respect to x.
If for $$f(x)=\lambda x^2+\mu x+12$$, $$f'(14)=15$$ and $$f'(2)=11$$, then find $$\lambda$$ and $$\mu$$.
  • $$\lambda =1, \mu =6$$.
  • $$\lambda =1, \mu =7$$.
  • $$\lambda =6, \mu =7$$.
  • $$\lambda =6, \mu =1$$.
If $$f(9) = 9, f'(9) = 0$$, then $$\underset{x\to 9}{\lim} \dfrac{\sqrt{f(x)}-3}{\sqrt{x}-3}$$ is equal to 
  • $$0$$
  • $$f(0)$$
  • $$f'(3)$$
  • $$f(9)$$
  • $$1$$
Let $$f : R \rightarrow R$$ be a continuous function such that $$f(x^2) = f(x^3)$$ for all $$ x \in R$$. Consider the following statements.
I. f is an odd function.
II. f is an even function.
III. f is differentiable everywhere
  • I is true and III is false
  • II is true and III is false
  • both I and III are true
  • both II and III are true
Let $$f(x + y) = f(x) f(y)$$ for all $$x$$ and $$y$$. If $$f(0) = 1, f(3) = 3$$ and $$f'(0) = 11$$, then $$f'(3)$$ is equal to
  • $$11$$
  • $$22$$
  • $$33$$
  • $$44$$
Let $$f(x+y) = f(x) f(y) $$ and $$f(x) = 1+\sin(3x)g(x)$$, where $$g$$ is differentiable. The $$f'(x)$$ is equal to
  • $$3f(x)$$
  • $$g(0)$$
  • $$3f(x) g(0)$$
  • $$3g(x)$$
If $$y=\tan^{-1}\left(\dfrac{a\cos x-b\sin x}{b\cos x+a\sin x}\right)$$ then $$\dfrac{dy}{dx}=?$$
  • $$\dfrac{a}{b}$$
  • $$\dfrac{-b}{a}$$
  • $$1$$
  • $$-1$$
If $$y=\tan^{-1}\left\{\dfrac{\cos x+\sin x}{\cos x-\sin x}\right\}$$ then $$\dfrac{dy}{dx}=?$$
  • $$1$$
  • $$-1$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{-1}{2}$$
If $$y=\sin^{-1}(3x-4x^3)$$ then $$\dfrac{dy}{dx}=?$$
  • $$\dfrac{3}{\sqrt {1-x^2}}$$
  • $$\dfrac{-4}{\sqrt {1-x^2}}$$
  • $$\dfrac{3}{\sqrt {1+x^2}}$$
  • $$none\ of\ these$$
If $$\displaystyle f(x) = sin^{1}\left (\dfrac{2x}{1 + x^{2}} \right ) $$ , then 
  • $$ f $$ is derivative for all $$ x $$ with ,$$ \left |x \right | < 1 $$
  • $$ f $$ is not derivative at $$ x = 1 $$
  • $$ f $$ is not derivable at $$ x = -1 $$
  • $$ f $$ is derivative for all $$ x $$ with ,$$ \left |x \right | > 1 $$
If $$f(x) = \left\{\begin{matrix} x^2 (sgn [x]) + \{x\}), & 0 \le x < 2 \\ \sin x + | x - 3|, & 2 \le x < 4\end{matrix}\right.$$
were [ ] and { } represent the greatest integer and the fractional part function, respectively.
  • f (x) is differentiable at x=1.
  • f(x) is continuous but non-differentiable at x=1.
  • f(x) is non-differentiable at x=2.
  • f(x) is non-differentiable at x=2.
If $$y=\cos^{-1}x^{3}$$ then $$\dfrac{dy}{dx}=?$$
  • $$\dfrac{-1}{\sqrt{1-x^{6}}}$$
  • $$\dfrac{-3x^{2}}{\sqrt{1-x^{6}}}$$
  • $$\dfrac{-3}{x^{2}\sqrt{1-x^{6}}}$$
  • $$none\ of\ these$$
If $$y=\cos^{-1}(4x^{3}-3x)$$ then $$\dfrac{dy}{dx}=?$$
  • $$\dfrac{3}{\sqrt{1-x^{2}}}$$
  • $$\dfrac{-3}{\sqrt{1-x^{2}}}$$
  • $$\dfrac{4}{\sqrt{1-x^{2}}}$$
  • $$\dfrac{-4}{(3x^{2}-1)}$$
Which of the following statement is always true ([ .] represents the greatest integer function)
  • If f(x) is discontinuous, then $$ \left | f(x) \right | $$ is discontinuous
  • If f(x) is discontinuous , then f $$ \left ( \left | x \right | \right ) $$ is discontinuous
  • f(x) = $$ \left [g \left (x \right ) \right ] $$ is discontinuous when g(x) is an integer
  • None of these
 The largest value of c such that there exists a differential function $$ h(x) for  -c < x < c $$ that is a solution of $$ y_1 = 1 +y^2 $$ with h(0) = 0 is 
  • $$ 2\pi $$
  • $$ \pi $$
  • $$ \frac { \pi }{2} $$
  • $$ \frac { \pi }{4} $$
Which of the following function is thrice differentiable at x=0?
  • $$f\left ( x \right )=\left | x^{3} \right |$$
  • $$f\left ( x \right )=x^{3}\left | x \right |$$
  • $$f\left ( x \right )=\left | x \right |\sin ^{3}x$$
  • $$f\left ( x \right )=x\left | \tan ^{3}x \right |$$
If $$y=\tan^{-1}(\sec x+6\tan x)$$ then $$\dfrac{dy}{dx}=?$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{-1}{2}$$
  • $$1$$
  • $$none\ of\ these$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers