Processing math: 36%

CBSE Questions for Class 12 Commerce Maths Determinants Quiz 10 - MCQExams.com

Let A be a square matrix of order 3×3 then |KA| is equal to
  • K|A|
  • K2|A|
  • K3|A|
  • 3|KA|
Find the equation of line joining (1,2) and (3,6) using determinants. Let p(x,y) be any point on the line joining (1,2)(3,6)
  • y=x
  • 2y=x
  • y=2x
  • y=2x
Find the equation of the line joining (3,1) and (9,3) using determinants.
  • x=3y
  • y=3x
  • y=3x
  • 3y=x
Value of determinant |cos50sin10sin50cos10| is:
  • 0
  • 1
  • 1/2
  • 1/2
Value of determinant |cos80cos10sin80sin10| is:
  • 0
  • 1
  • 1
  • None of these
Co-factors of the first column of determinant
|52031|
  • 1,3
  • 1,3
  • 1,20
  • 1,20
If a,b,c are the pth,qth and rth terms of an H.P, then the lines bcx+py+1=0, cax+qy+1=0 and abx+ry+1=0,
  • are concurrent
  • form a triangle
  • are parallel
  • mutually perpendicular lines
If x1,y1 are the roots of x2+8x20=0 and  x2,y2 are the roots of 4x2+32x57=0 and x3,y3 are the roots of 9x2+72x112=0 such that yi<0, then the points (x1,y1),(x2,y2) and (x3,y3)
  • are collinear
  • form an equilateral triangle
  • form a right angled isosceles triangle
  • are concyclic
If the lines x+py+p=0, qx+y+q=0 and rx+ry+1=0(p,q,r being distinct and 1) are concurrent, then the value of
pp1+qq1+rr1=
  • 1
  • 1
  • 2
  • 2
The lines px+qy+r=0,qx+ry+p=0andrx+py+q=0 are concurrent then 
  • p+q+r=0
  • p3+q3+r3=3pqr
  • p2+q2+r2pqqrrp=0
  • p2+q2+r2=2(pq+qr+rp)
The coordinates of the point P on the line 2x+3y+1=0 such that |PAPB| is maximum, where A(2,0) and B(0,2) is
  • (4,3)
  • (7,5)
  • (10,7)
  • (8,5)
If the lines p1x+q1y=1,p2x+q2y=1 and p3x+q3y=1 be concurrent, then the points (p1,q1),(p2,q2) and (p3,q3) ,
  • are collinear
  • form an equilateral triangle
  • form a scalene triangle
  • form a right angled triangle
If the lines x+ay+a=0, bx+y+b=0, cx+cy+1=0(abc1)  are concurrent, then the value of aa1+bb1+cc1, is
  • 1
  • 0
  • 1
  • 3
If x1,x2,x3 as well as y1,y2,y3 are in G.P. with same common ratio, then the points P(x1,y1),Q(x2,y2) and R(x3,y3)
  • lies on a straight line
  • lie on an ellipse
  • lie on a circle
  • are vertices of a triangle
The values of |A50| equals
  • 0
  • 1
  • -1
  • 25
The value of |\cup| equals
  • 0
  • 1
  • 2
  • -1
If A =\begin{bmatrix}2 & -1 & 3\\ -5 & 3 & 1\\ -3 & 2 & 3\end{bmatrix}, then A.(Adj A)=
  • \left( Adj{ .A }^{ T } \right)
  • (Adj. A) . A
  • |A| . A.
  • None of these
If A is a square matrix of order 3, then |(A - A^T)^{105}| is equal to
  • 105|A|
  • 105|A|^2
  • 105
  • none of these
Let \begin{vmatrix}  1+x         &                 x        &                x^{2}\\    x           &               1+x   &                       x^{2} \\   x^{2}        &                x       &                1+x \end{vmatrix} =   ax^{5} + bx^{4} + cx^{3} + dx^{2} + \lambda x + \mu be an identity in x, where a,b,c,d, \lambda, \mu are independent of x. Then the value of \lambda is
  • 3
  • 2
  • 4
  • 1
The value of |B| is equal to
  • |A|
  • |A|/2
  • 2|A|
  • none of these
Let f (n)= \displaystyle \left | \begin{matrix}n &n+1  &n+2 \\^{n}P_{n}  &^{n+1}P_{n+1}  &^{n+2}P_{n+2} \\^{n}C_{n}  &^{n+1}C_{n+1}  &^{n+2}C_{n+2} \end{matrix} \right |, where the symbols have their usual meanings. The f(n) is divisible by
  • n^{2}+n+1
  • (n+1)!
  • n!
  • none of these
Consider the points P=(-\sin (\beta -\alpha ), -\cos \beta ), Q=(\cos (\beta -\alpha ), \sin \beta ) and R=(\cos (\beta -\alpha +\theta ), \sin (\beta -\theta )), where 0< \alpha , \beta < \dfrac{\pi }{4} then 
  • P lies on the line segment RQ
  • Q lies on the line segment PR
  • R lies on the line segment QP
  • P, Q, R are non-collinear.
If the points (a, 1), (1, b) and (a -1, b -1) are collinear, \alpha ,\beta are respectively the arithmetic and geometric means of a and b , then 4\alpha -\beta^{2} is equal to
  • -1
  • 0
  • 3
  • 2
If the points \displaystyle(-2,0),(-1,\dfrac{1}{\sqrt{3}}) and \displaystyle(\cos\theta,\sin \theta) are collinear, then the number of values of \displaystyle \theta \in [0,2\pi] :
  • 0
  • 1
  • 2
  • infinite
If A=\begin{bmatrix}a&b  &c \\x &y  &z \\p &q  &r \end{bmatrix}, B=\begin{bmatrix}q&-b  &y \\-p &a  &-x \\r &-c  &z \end{bmatrix} then
  • |A| = |B|
  • |A| = -|B|
  • |A| =2|B|
  • A is invertible if and only if B is invertible.
Let \begin{vmatrix} x& 2 & x\\ x^2 & x & 6\\ x & x & 6\end{vmatrix}  = \alpha x^4 + \beta x^3 + \gamma x^2 + \delta x + \lambda then the value of 5 \alpha + 4 \beta + 3\gamma + 2 \delta + \lambda =
  • -11
  • 0
  • -16
  • 16
If [x] stands greatest integer \leq x then the value of
\begin{vmatrix} \left [ e \right ] & \left [ \pi  \right ] & \left [ \pi ^{2}-6 \right ]\\ \left [ \pi  \right ] & \left [ \pi ^{2}-6 \right ] & \left [ e \right ]\\ \left [ \pi ^{2}-6 \right ] & \left [ e \right ] & \left [ \pi  \right ] \end{vmatrix} equals to=?
  • -8
  • 8
  • -1
  • 1
If \Delta =\begin{vmatrix} x+1 & x+2 & x+a\\ x+2 & x+3 & x+b\\ x+3 & x+4 & x+c \end{vmatrix}=0, then
the family of lines ax+by+c=0 passes through
  • (1, -1)
  • (1, -2)
  • (2, -3)
  • (0, 0)
Two n \times n square matrices A and B are said to be similar if there exists a non-singular matrix P such that  P^{-1}A\: P=B
If A and B are two similar matrices, then

  • det \: (A) = det \: (B)
  • det \: (A) + det \: (B)=0
  • det (AB)\neq 0
  • none of these
Let 0< \theta < \pi /2 and
\Delta \left ( x, \theta  \right )=\begin{vmatrix} x & \tan \theta  & \cot \theta \\ -\tan \theta  & -x & 1\\ \cot \theta  & 1 & x \end{vmatrix}
then
  • \Delta \left ( 0, \theta \right )=0
  • \Delta \left ( x, \dfrac {\pi }{4} \right )=x-x^3
  • Min_{0< \theta < \pi /2}\Delta \left ( 1, \theta \right )=0
  • \Delta \left ( x, \theta \right ) is independent of x
If \Delta =\begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} and c_{ij}=\left ( -1 \right )^{i+j} (determinant obtained by deleting ith row and jth column), then \begin{vmatrix} c_{11} & c_{12} & c_{13}\\ c_{21} & c_{22} & c_{23}\\ c_{31} & c_{32} & c_{33} \end{vmatrix}=\Delta ^{2}


If \begin{vmatrix} 1 & x & x^{ 2 } \\ x & x^{ 2 } & 1 \\ x^{ 2 } & 1 & x \end{vmatrix}=7 and \Delta =\begin{vmatrix} x^{3}-1 & 0 & x-x^{4}\\ 0 & x-x^{4} & x^{3}-1\\ x-x^{4} & x^{3}-1 & 0 \end{vmatrix}, then
  • \Delta =7
  • \Delta =343
  • \Delta =-49
  • \Delta =49
The determinant \begin{vmatrix} \sin \alpha  & \cos \alpha  & 1\\ \sin \beta  & \cos \beta  & 1\\ \sin \gamma  & \cos \gamma  & 1 \end{vmatrix} is equal to
  • \displaystyle -4\sin \frac{\alpha -\beta }{2}\sin \frac{\alpha -\gamma }{2}\sin \frac{\gamma -\alpha }{2}
  • \sin \alpha +\sin \beta +\sin \gamma
  • \sin \left ( \alpha -\beta \right )+\sin \left ( \beta -\gamma \right )+\sin \left ( \gamma -\alpha \right )
  • none of these
The number of distinct real roots of \begin{vmatrix} \sin\, x&\cos\, x&\cos \,x \\ \cos\, x &\sin\, x&\cos\, x \\ \cos\, x&\cos\, x&\sin \, x\end{vmatrix}=0 in the interval -\dfrac{\pi}{4} < x \le \dfrac{\pi}{4} is
  • 0
  • 2
  • 1
  • > 2
Say true or false:
Points P(10,\,-6),\,Q(6,\,-4) and C(-8,\,3) are collinear. 
  • True
  • False
If the points (-1,3), (2,p) and (5,-1) are collinear, the value of p is
  • 1
  • -1
  • 0
  • \displaystyle \sqrt{2}
(1,6), (3.-2) and (-2,K) are collinear points. What is K?
  • -6
  • 2
  • 8
  • 10
  • 18
If a_{1}, a_{2}, ...., a_{n}, ..... are in G.P. then \begin{vmatrix}\log a_{n} & \log a_{n + 1} & \log a_{n + 2}\\ \log a_{n + 3} & \log a_{n + 4} & \log a_{n + 5}\\ \log a_{n + 6} & \log a_{n + 7} & \log a_{n + 8}\end{vmatrix} is
  • 0
  • 1
  • -1
  • None of these
If the determinant \begin{vmatrix} a+p & 1+x & u+f \\ b+q & m+y & v+g \\ c+r & n+z & w+h \end{vmatrix} splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is
  • 9
  • 8
  • 24
  • 12
The coefficient of {x}^{2} in the expansion of the determinant
\begin{vmatrix} { x }^{ 2 } & { x }^{ 3 }+1 & { x }^{ 5 }+2 \\ { x }^{ 3 }+3 & { x }^{ 2 }+x & { x }^{ 3 }+{ x }^{ 4 } \\ x+4 & { x }^{ 3 }+{ x }^{ 4 } & { 2 }^{ 3 } \end{vmatrix} is
  • -10
  • -8
  • -2
  • -6
  • 8
The Value of the determinant \begin{vmatrix} { b }^{ 2 }-ab & \quad b-c & \quad bc-ac \\ ab-{ a }^{ 2 } & \quad a-b & { \quad b }^{ 2 }-ab \\ bc-ac & \quad c-a & \quad ab-{ a }^{ 2 } \end{vmatrix} =
  • abc
  • a + b + c
  • 0
  • ab + bc + ca
 Points (a, 0), (0, b) and (1, 1)are collinear, if:
  • \displaystyle \frac{1}{a} + \frac{1}{b} = 1
  • \displaystyle \frac{1}{a} - \frac{1}{b} = 1
  • \displaystyle a+b = 1
  • \displaystyle a-b = ab
The value of x satisfying the equation \begin{vmatrix}\cos 2x & \sin 2x & \sin 2x\\ \sin 2x & \cos 2x & \sin 2x\\ \sin 2x & \sin 2x & \cos 2x\end{vmatrix} = 0 and x\epsilon \left [0, \dfrac {\pi}{4}\right ] is
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{2}
  • \dfrac {\pi}{16}
  • \dfrac {\pi}{3}
  • \dfrac {\pi}{8}
Consider the following statements:
1. Determinant is a square matrix.
2. Determinant is a number associated with a square matrix.
Which of the above statements is/are correct?
  • 1 only
  • 2 only
  • Both 1 and 2
  • Neither 1 nor 2
If A is 3*3 show symmetric matrix then |A| = ?: -
  • 0
  • 1
  • -1
  • N.O.T.
The value of the determinant \begin{vmatrix} b^2-ab & b-c & bc-ac \\ ab -a^2 & a-b & b^2-ab \\ bc-ac & c-a & ab -a^2 \end{vmatrix} =
  • abc
  • a+b+c
  • 0
  • ab+bc+ca
If  B is a square matrix of order 4 such that |B|= 24 ,then the value of |adj B| is equal to
  • 24
  • {24}^{2}
  • {24}^{3}
  • {24}^{4}
if a^{2},b^{2}+c^{2}+ab+bc+ca \le 0 \forall a,b,c \epsilon R, then value of the determinant \left| \begin{matrix} \left( a^{ 2 }+b^{ 2 }+c^{ 2 } \right) ^{ 2 } & a^{ 2 }+b^{ 2 } & 1 \\ 1 & (b+c+2) & b^{ 2 }+c^{ 2 } \\ c^{ 2 }+a^{ 2 } & 1 & (c+a+2)^{ 2 } \end{matrix} \right|  equals
  • 65
  • a^{2}+b^{2}+c^{2}+31
  • 4(a^{2}+b^{2}+c^{2})
  • 0
If A is a square matrix of order 3 such that A(adjA) = 
\left [ \begin {array}{111} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \\ \end {array} \right ] then |adj A|=
  • 2
  • 4
  • 8
  • 16
Adj \begin{bmatrix} 1 & 0 & 2 \\ -1 & 5 & -2 \\ 0 & 2 & 1 \end{bmatrix}=\begin{bmatrix} 9 & a & -2 \\ -1 & 1 & 0 \\ -2 & 2 & b \end{bmatrix}\Rightarrow \left[ \begin{matrix} a & b \end{matrix} \right] =
  • \left[ \begin{matrix} -4 & 5 \end{matrix} \right]
  • \left[ \begin{matrix} -4 & -1 \end{matrix} \right]
  • \left[ \begin{matrix} 4 & 1 \end{matrix} \right]
  • \left[ \begin{matrix} 4 & -1 \end{matrix} \right]
x - 4 is factor of \begin{vmatrix}x - 2& 2x -3& 3x -4\\ x -4 &2x-9& 3x -16\\ x-8&2x-27&3x-64\end{vmatrix}
  • True
  • False
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers