Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Maths Determinants Quiz 12 - MCQExams.com

If A=A=[a000a000a],then |A||AdjA| is equal to
  • a9
  • a27
  • a61
  • none of these
The adjoining of the matrix [123021452], is 
  • [91944141832]
  • [94819143412]
  • [91944141832]
  • None of these
There are 12 points in a plane of which 5 are collinear. The maximum number of distinct quadrilaterals which can be formed with vertices at these points is 
  • 2.7p3
  • 7p3
  • 6.7C3
  • 420
If A is a square matrix (adjA)(adjA)
  • 2A
  • 2adjA
  • Unit matrix
  • Null matrix
If A is singular matrix, then A.(adjA) is 
  • singular
  • nonsingular
  • symmetric
  • notdefined
If A is 4×4 matrix and if ||A|adj(|A|A)|=|A|n, then n is 
  • 11
  • 13
  • 17
  • 19
A= [122212221] then Adj(A)=
  • AT
  • 3AT
  • A1
  • AT
If A=[4131] then the determinant of the matrix (A20162A2015A2014) is
  • 2016
  • 25
  • 2016
  • 175
If adj B = A, |P| = |Q| = 1, then adj (Q1BP1) is
  • PQ
  • QAP
  • PAQ
  • PA1Q
There are  12  points in a plane. The number of the straight lines joining any two of them when  3  of them are collinear is.
  • 60
  • 62
  • 64
  • 66
If A=[5ab32] and A(adjA)=AAT then 5a+3b is equal to 
  • 5
  • 4
  • 11
  • 1
If Δ1=|xsinθcosθsinθx1cosθ1x| and Δ2=|xsin2θcos2θsin2θx1cos2θ1x|,x0; then for all θ(0,π2):
  • Δ1Δ2=x(cos2θcos4θ)
  • Δ1+Δ2=2x3
  • Δ1Δ2=2x3
  • Δ1+Δ2=2(x3+x1)
Two straight lines intersects at a point O. Points A1,A2,....An are taken on one line and B1,B2,....Bn  on the other. If the point O is not to be used, the number of triangles that can be drawn using these points as vertices, is:
  • n(n1)
  • n(n1)2
  • n2(n1)
  • n2(n1)2
If f(x)=|mxmxpmx+pnn+pnpmx+2nmx+2n+pmx+2np|, then y=f(x) represents
  • a straight line parallel to x-axis
  • a straight line parallel to y-axis
  • parabola
  • a straight line with negative slope
If fr(x),gr(x),hr(x), r=1,2,3 are polynomials in x such that fr(a)=gr(a)=hr(a), r=1,2,3 and  F(x)=|f1(x)f2(x)f3(x)g1(x)g2(x)g3(x)h1(x)h2(x)h3(x)|
then F(x) at x=a is
  • 1
  • 2
  • 3
  • None of these
If A and B are square matrices of order 3 such that |A|= -1,|B|=3, then |3AB| equals
  • -9
  • -81
  • -27
  • 81
If A=[334234011] then 
  • adj(adjA)=A
  • |adj(adjA)|=1
  • |adjA|=1
  • none of these
Let A=[123205021] and B=[031] which of the following is true ?
  • AX=B has a unique solution
  • AX=B has exactly three solution
  • AX=B has infinitely many solutions
  • AX=B is inconsistent
Let f(x)=|x3sinxcosx610pp2p3| where p is a constant. Then d2dx3{f(x)} at x=0 is
  • p
  • p+p2
  • p+p3
  • Independent of p
Consider an arbitary 3×3 matrix A=[aij] , a matrix B=[bij] is formed such that bij i sthe sum of all the elements expect aij in the ith row of A . answer the following questions.
The value of to|B| is equal 
  • |A|
  • |A|/2
  • 2|A|
  • None of these
If A=[x522y311z],xyz=80,3x+2y+10z=20 then  AadjA=[810008100081]
  • True
  • False
The value of || equals 
  • 0
  • 1
  • 2
  • -1
The maximum value of |1111(1+sinθ)1111+cosθ| is 12
  • True
  • False
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers