Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 12 Commerce Maths Determinants Quiz 2 - MCQExams.com

If two rows of a determinant are identical, then what is the value of the determinant ?
  • 0
  • 1
  • -1
  • Can be any real value.
The value of k for which kx+3yk+3=0 and 12x+ky=k, have infinite solutions, is?
  • 0
  • 6
  • 6
  • 1
The number of line segments possible with three collinear points is ________.
  • 1
  • 2
  • 3
  • Infinite
For positive numbers x,y and z the numerical value of the determinant |1logxylogxzlogyx1logyzlogzxlogzy1| is
  • 0
  • 1
  • logexyz
  • logexyz
If any two adjacent rows or columns of a determinant are interchanged in position, the value of the determinant :
  • Becomes zero
  • Remains the same
  • Changes its sign
  • Is doubled
If a,b,c are non-zero and different from 1, then the value of |loga1logablogacloga(1b)logb1loga(1c)loga(1c)logaclogc1| is
  • 0
  • 1+loga(a+b+c)
  • loga(ab+bc+ca)
  • 1
  • loga(a+b+c)
The points (2, -3), (4,3) and (5, k/2) are on the same straight line. The value(s) of k is (are):
  • 12
  • 12
  • ±12
  • 12 or 6
 Let a be the  square  matrix  of  order  2 such  that A24A+4I=0 where  I is an  identify  matrix  of order .IfB=A54A4+6A3+4A2+A then  Det (B)  is equal to
  • 162
  • (162)2
  • 256
  • (256)2
If A is a skew symmetric matrix, then |A| is
  • 1
  • 1
  • 0
  • none
The point (a,b),(0,0),(a,b) and (a2,ab) are-
  • collinear
  • concyclic
  • vertices of a rectangle
  • vertices of a parallelogram
Let ω1 be a cube root of unity and S be the set of all non-singular matrices of the form [1abω1cω2ω1]Where each of a, b and c is either ω or ω2. Then the number of distinct matrices in the set S is 
  • 2
  • 6
  • 4
  • 8
A=[55aa0a5a005] If |A2|=25 then |a|=
  • 5
  • 52
  • 1
  • 15
If a6,b,c satisfy |a2b2c3bc4ab|=0, then abc= 
  • a+b+c
  • 0
  • b3
  • ab+bc
The value of (adj A) is equal to
  • 2A
  • 4A
  • 8A
  • 16A
Two points (a,0) and (0,b) are joined by a straight line. Another point on this line is
  • (3a,2b)
  • (a2,ab)
  • (3a,2b)
  • (a,b)
|xyzx2y2z2x3y3z3|=xyz(xy)(yz)(zx)
  • True
  • False
|23333.22+3.2+133433.32+3.3+143533.42+3.4+1| is equal to?
  • 0
  • 1
  • 92
  • None of these
The determinant |abaα+bbcbα+caα+bbα+c0| is equal to zero, if-

  • a,b,c are in AP
  • a,b,c are in GP
  • α is a root of the equation ax2+bx+c=0
  • (xα) is a factor of ax2+2bx+c
A=[1134] and A(adjA)=KI, then the value of K
  • 1
  • 2
  • 10
  • 10
D=|184089408919889198440|=
  • 1
  • 1
  • zero
  • 2
First row of the matrix A is [132]. If adj(A) =[24a1213a52] then a possible value of det(A) is
  • 1
  • 2
  • 1
  • 2
If P=[1α3133244] is a 3×3 matrix A and |A|=4, then α is equal to?
  • 4
  • 11
  • 5
  • 0
The value of determinant |19672131528116| is :
  • 150
  • 110
  • 0
  • None of these
|1+i1ii1+ii1+ii1+i1i| (where i=1) equals.
  • 5i2
  • 74i
  • 47i
  • 48i
If A=[0110] then determinant of [A] is
  • 1
  • 1
  • 0
  • 2
`If (8,1),(k,4),(2,5) are collinaer, then k=
  • 1
  • 2
  • 3
  • 4
If A=[5123], the determinant of matrix A is
  • 13
  • 12
  • 17
  • 13
Find the determinant:
|121222314|
  • 2
  • 0
  • 3
  • 1
\left| \begin{matrix} 1& a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{matrix} \right| =
  • (a-b)(b-c)(c-a)
  • (a+b)(c-a)
  • (a+b+c)^2
  • 2(a+b+c)^2
If the points (a, 1), (2, -1) and \left(\dfrac{1}{2}, 2\right) are collinear, then a is equal to:
  • 1
  • 0
  • 2
  • \dfrac{1}{4}
If \displaystyle A = \begin {vmatrix} \dfrac{1}{2}\left ( e^{\alpha} + e^{\alpha} \right ) & \dfrac{1}{2}\left ( e^{\alpha} e^{\alpha} \right ) \\ \dfrac{1}{2}\left ( e^{\alpha} e^{\alpha} \right ) & \dfrac{1}{2}\left ( e^{\alpha} + e^{\alpha} \right ) \end {vmatrix}   then A^{1} exists
  • For all real \alpha
  • For positive real \alpha only
  • For negative real \alpha only
  • None of these
What is the value of the determinant
\begin{vmatrix}  1!& 2! &  3!\\ 2! & 3! & 4! \\  3!&  4!&  5!\end{vmatrix}?
  • 0
  • 12
  • 24
  • 36
lf \mathrm{A}=\left[\begin{array}{lll} 1 & 5 & -6\\ -8 & 0 & 4\\ 3 & -7 & 2 \end{array}\right], then the cofactor of -7=...... 

  • 44
  • 43
  • 40
  • 39
The vectorial angle of a point P on the line joining the points (r_{1}, \theta _{1}) and (r_{2},\theta _{2}) is \dfrac{\theta_{1} +\theta _{2}}{2} then the length of radius vector of P is
  • \displaystyle \frac{r_{1} - r_{2}}{r_{1} + r_{2}} \cos (\frac{\theta _{1} - \theta _{2}}{2})
  • \displaystyle \frac{r_{1} + r_{2}}{r_{1} r_{2}} \cos (\frac{\theta _{1} - \theta _{2}}{2})
  • \displaystyle \frac{r_{1} r_{2}}{r_{1} + r_{2}} \cos (\frac{\theta _{1} - \theta _{2}}{2})
  • None of these
If the entries in a 3\times 3 determinant are either 0 or 1, then the greatest value of their determinats is:
  • 1
  • 2
  • 3
  • 9
If A+B+C= \pi, then  \displaystyle \left| \begin{matrix} \tan { \left( A+B+C \right)  }  & \tan { B }  & \tan { C }  \\ \tan { (A+C) }  & 0 & \tan { A }  \\ \tan { (A+B) }  & -\tan { A }  & 0 \end{matrix} \right| is equal to
  • 0
  • 1
  • \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{A}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{B}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{C}
  • -2
The value of \left|\begin{array}{ll} 2+i & 2-i\\ 1+i & 1-i \end{array}\right| is:
  • \mathrm{A} complex quantity
  • real quantity
  • 0
  • cannot be determined
I\mathrm{f}\mathrm{A}=\left[\begin{array}{ll} 1 & 3\\ 2 & 1 \end{array}\right], then the determinant \mathrm{A}^{2}-2\mathrm{A}:
  • 5
  • 25
  • -5
  • -25
\left|\begin{array}{llll} 1 & & \mathrm{l}\mathrm{o}\mathrm{g}_{b}a\\ \mathrm{l}\mathrm{o}\mathrm{g}_{a}b & 1 & \end{array}\right| =....
  • ab
  • \mathrm{b}\mathrm{a}
  • \mathrm{a}\mathrm{b}
  • 0
lf \left|\begin{array}{lll} a+x & a-x & a-x\\ a-x & a+x & a-x\\ a-x & a-x & a+x \end{array}\right|=0 then the non-zero value of x=............ 
  • a
  • 3a
  • 2a
  • 4a
lf \left|\begin{array}{lll} 1 & 2 & x\\ 4 & -1 & 7\\ 2 & 4 & -6 \end{array}\right| is a singular matrix, then x is equal to 
  • 0
  • 1
  • -3
  • 3
If A=\left[\begin{array}{lll} 1^{2} & 2^{2} & 3^{2}\\ 2^{2} & 3^{2} & 4^{2}\\ 3^{2} & 4^{2} & 5^{2} \end{array}\right], then the minor of \mathrm{a}_{22} is
  • -56
  • 51
  • -43
  • 41
\begin{vmatrix} 1 &4 &20 \\ 1 & -2& 5\\ 1 &2x & 5x^{2} \end{vmatrix}=0 find x
  • -1, 2
  • 0,1
  • 1, 3
  • 2, 0
If a, b, c are all positive and not all equal then the value of the determinant \begin{bmatrix} a & b & c\\ b & c &a \\ c & a & b \end{bmatrix} is 
  • 0
  • < 0
  • > 0
  • cannot be determined
\left|\begin{array}{lll} \mathrm{a}+\mathrm{b} & \mathrm{a} & \mathrm{b}\\ \mathrm{a} & \mathrm{a}+\mathrm{c} & \mathrm{c}\\ \mathrm{b} & \mathrm{c} & \mathrm{b}+\mathrm{c} \end{array}\right|=
  • 4 abc
  • abc
  • 2\mathrm{a}^{2}\mathrm{b}^{2}\mathrm{c}^{2}
  • 4\mathrm{a}^{2}\mathrm{b}^{2}\mathrm{c}^{2}
Adj \left ( Adj\begin{bmatrix} 2 &-3 \\ 4& 6 \end{bmatrix} \right )= 
  • \begin{bmatrix} 2 & -3\\ 4& 6 \end{bmatrix}
  • \begin{bmatrix} 6& 3\\ -4& 2 \end{bmatrix}
  • \begin{bmatrix} -6& 3\\ -4& -2 \end{bmatrix}
  • \begin{bmatrix} -6& -3\\ 4& -2 \end{bmatrix}
A= \begin{bmatrix} 3 & 0 & 0\\ 0& 3 & 0\\ 0& 0 & 3 \end{bmatrix} ,then Adj ( A)
  • 3A
  • 6A
  • 9A^{T}
  • 2A^{T}
\left[\begin{array}{llll} \mathrm{c}\mathrm{o}\mathrm{s}\alpha+\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{n}\alpha & \mathrm{c}\mathrm{o}\mathrm{s}\beta+\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{n}\beta\\ \mathrm{s}\mathrm{i}\mathrm{n}\beta+\mathrm{i}\mathrm{c}\mathrm{o}\mathrm{s}\beta\ & \mathrm{s}\mathrm{i}\mathrm{n}\alpha+\mathrm{i}\mathrm{c}\mathrm{o}\mathrm{s}\alpha & \end{array}\right] is
  • 2 \cos\alpha
  • 2 \sin\beta
  • 0
  • 1
If \mathrm{A} is an unitary matrix then |A| is equal to:
  • 1
  • -1
  • \pm 1
  • 2
If A =\begin{bmatrix} 0 &1 & 2\\ 1& 2 & 3\\ 3 & 1 & 1 \end{bmatrix} then Adj (A) = 
  • \begin{bmatrix}-1 &+8 & -5\\ 1& -6 & 3\\ -1 & 2 & -1\end{bmatrix}
  • \begin{bmatrix}-1 &+1 & -1\\ 8& -6 & 2\\ -5 & 3 & -1\end{bmatrix}
  • \begin{bmatrix}1 &-1 & 1\\ 8& -6 & 2\\ -5 & 3 & -1\end{bmatrix}
  • \begin{bmatrix}-1 &-8 & 5\\ -1& 6 & -3\\ 1 & -2 & 1\end{bmatrix}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers