Processing math: 4%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Determinants Quiz 4 - MCQExams.com
CBSE
Class 12 Commerce Maths
Determinants
Quiz 4
If the points
(
a
,
0
)
,
(
0
,
b
)
and
(
1
,
1
)
are collinear, then
1
a
+
1
b
equal to -
Report Question
0%
1
0%
2
0%
3
0%
4
Explanation
Given points are
(
a
,
0
)
,
(
0
,
b
)
and
(
1
,
1
)
x
1
=
a
,
y
1
=
0
,
x
2
=
0
,
y
2
=
b
and
x
−
3
=
1
,
y
3
=
1
Condition for collinearity
x
1
y
2
+
x
2
y
3
+
x
3
y
1
=
x
2
y
1
+
x
3
y
2
+
x
1
y
3
gives
a
b
+
0
+
0
=
0
+
1.
b
+
a
.1
⇒
a
b
=
a
+
b
⇒
1
=
1
b
+
1
a
⇒
1
a
+
1
b
=
1
If A is a square matrix so that
A
a
d
j
A
=
d
i
a
g
(
k
,
k
,
k
)
then
|
a
d
j
A
|
=
Report Question
0%
k
0%
k
2
0%
k
3
0%
k
4
Explanation
Given ,
A
a
d
j
A
=
d
i
a
g
(
k
,
k
,
k
)
⇒
|
A
|
I
3
=
[
k
0
0
0
k
0
0
0
k
]
⇒
|
A
|
=
k
Now,
|
a
d
j
A
|
=
|
A
|
2
(
∵
\Rightarrow |adj A|=k^{2}
If A is a square matrix such that
\displaystyle \left | \begin{matrix}4 &0 &0 \\0 &4 &0 \\0 &0 &4\end{matrix} \right |
=
Report Question
0%
4
0%
16
0%
64
0%
256
Explanation
We know that the determinant of a matrix
A=\left[ \begin{matrix} a & b & c \\ d & e & f \\ g & h & i \end{matrix} \right]
is:
\left| { A } \right| =a(ei-fh)-b(di-fg)+c(dh-eg)
Here, the given matrix is
A=\left[ \begin{matrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{matrix} \right]
, so, let us find the
determinant
of matrix
A
as shown below:
\left| { A } \right| =4[(4\times 4)-(0\times 0)]-0[(0\times 4)-(0\times 0)]+0[(0\times 0)-(0\times 4)]=4(16-0)-0(0-0)+0(0-0)
=4\times 16=64
Hence, the
determinant
of the matrix
\left[ \begin{matrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{matrix} \right]
is
64
.
If
\displaystyle A=\:\left [ \begin{matrix}1 &x \\x^{2} &4y \end{matrix} \right ], B = \left [ \begin{matrix}-3 &1 \\1 &0 \end{matrix} \right ]
and
adj \: \left( A \right) +B=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] ,
then the values of
x
and
y
are respectively
Report Question
0%
\displaystyle \:\left ( 1,1 \right )
0%
\displaystyle \:\left ( -1,1 \right )
0%
\displaystyle \:\left ( 1,0 \right )
0%
none of these
Explanation
Given,
\displaystyle A= \:\left [ \begin{matrix}1 &x \\x^{2} &4y \end{matrix} \right ], B = \left [ \begin{matrix}-3 &1 \\1 &0 \end{matrix} \right ]
adj(A)=\left[ \begin{matrix} 4y & -x^{ 2 } \\ -x & 1 \end{matrix} \right] ^{ T }=\left[ \begin{matrix} 4y & -x \\ -x^{ 2 } & 1 \end{matrix} \right]
But given,
adj \: \left( A \right) +B=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right]
\Rightarrow\left[ \begin{matrix} 4y-3 & -x+1 \\ -x^{ 2 }+1 & 1 \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right]
\Rightarrow -x+1=0 ,-x^2+1=0,4y-3=1
\Rightarrow x=1,y=1
If
A
is a non-singular matrix of order
\displaystyle 3\times 3
, then adj
\displaystyle \left ( adj\:A \right )
is equal to
Report Question
0%
\displaystyle \left | A \right |A
0%
\displaystyle \left | A \right |^{2}A
0%
\displaystyle \left | A \right |^{-1}A
0%
none of these
Explanation
Given A is a matrix of order 3.
Now,
adj (adj A)=|A|^{n-2}A
So,
adj(adj A)=|A|^{3-2}A =|A|A
A=\left[\begin{matrix}1&0&0\\2&1&0\\3&2&1\end{matrix}\right], U_1, U_2
and
U_3
are columns matrices satisfying
AU_1=\left[\begin{matrix}1\\0\\0\end{matrix}\right], AU_2 = \left[\begin{matrix}2\\3\\0\end{matrix}\right], AU_3 = \left[\begin{matrix}2\\3\\1\end{matrix}\right]
and
U
is
3\times3
matrix whose columns are
U_1, U_2, U_3
then answer the following question
The value of
|U|
is
Report Question
0%
3
0%
-3
0%
\dfrac32
0%
2
Explanation
Given,
AU_1=\left[\begin{matrix}1\\0\\0\end{matrix}\right]
\Rightarrow U_{1}=A^{-1}\left[\begin{matrix}1\\0\\0\end{matrix}\right]
...(1)
AU_2 = \left[\begin{matrix}2\\3\\0\end{matrix}\right]
\Rightarrow U_{2}=A^{-1} \left[\begin{matrix}2\\3\\0\end{matrix}\right]
...(2)
AU_3 = \left[\begin{matrix}2\\3\\1\end{matrix}\right]
\Rightarrow U_{3}=A^{-1} \left[\begin{matrix}2\\3\\1\end{matrix}\right]
...(3)
Also, given
A=\left[\begin{matrix}1&0&0\\2&1&0\\3&2&1\end{matrix}\right]
|A|=1
Now,
adj\ A=C^{T}=\begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}^{T}
\Rightarrow adj A=\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}
\Rightarrow A^{-1}= \dfrac{adj\ A}{|A|} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}
Put the value of
A^{-1}
in (1), (2) and (3)
U_{1}=\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}\left[\begin{matrix}1\\0\\0\end{matrix}\right]
\Rightarrow U_{1}=\begin{bmatrix}1\\-2\\1\end{bmatrix}
U_{2}=\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix} \left[\begin{matrix}2\\3\\0\end{matrix}\right]
\Rightarrow U_{2}=\begin{bmatrix}2\\-1\\-4\end{bmatrix}
U_{3}=A^{-1} \left[\begin{matrix}2\\3\\1\end{matrix}\right]
\Rightarrow U_{3}=\begin{bmatrix}2\\-1\\-3\end{bmatrix}
\therefore U=\begin{bmatrix}1&2&2\\-2&-1&-1\\1&-4&-3\end{bmatrix}
\Rightarrow |U|= -1-14+18=3
Hence, option A.
If
\displaystyle \omega
is an imaginary cube root of unity,then the value of
\left | \begin{matrix} a &b\omega ^{2} & a\omega \\ b\omega & c &b\omega ^{2} \\ c\omega ^{2}&a\omega &c \end{matrix} \right |
,is ?
Report Question
0%
\displaystyle a^{3}+b^{3}+c^{3}
0%
\displaystyle a^{2}b-b^{2}c
0%
0
0%
\displaystyle a^{3}b+b^{3}+3abc
Explanation
\triangle =\begin{vmatrix} a & b{ \omega }^{ 2 } & a\omega \\ b\omega & c & b{ \omega }^{ 2 } \\ c{ \omega }^{ 2 } & a{ \omega } & c \end{vmatrix}\quad \quad 1+\omega +{ \omega }^{ 2 }=0;{ \omega }^{ 3 }=1;{ \omega }^{ 4 }=\omega
\Rightarrow a\left( { c }^{ 2 }-ab{ \omega }^{ 3 } \right) -b{ \omega }^{ 2 }\left( bc{ \omega }-bc\omega^4 \right) +a\omega \left( ab{ \omega }^{ 2 }-{ c }^{ 2 }{ \omega }^{ 2 } \right)
\Rightarrow a\left( { c }^{ 2 }-ab{ \omega }^{ 3 } \right) -b{ \omega }^{ 2 }\left( bc{ \omega }-bc\omega \right) +a\left( ab-{ c }^{ 2 } \right)
=a\left( { c }^{ 2 }-ab \right) -a\left( c^2-ab \right) =0
\therefore \triangle =0
Option C
If
A\displaystyle= \left | \begin{matrix}a &b &c \\ x &y &z \\ p &q &r \end{matrix} \right |
and
B=\left | \begin{matrix}q &-b &y \\ -p&a &-x \\ r&-c &z \end{matrix} \right |
, then
Report Question
0%
A= 2B
0%
A= B
0%
A= -B
0%
none of these
Explanation
B=\begin{vmatrix}q &-b &y \\ -p&a &-x \\ r&-c &z \end{vmatrix}
=-\begin{vmatrix}q &b &y \\ -p&-a &-x \\ r&c &z \end{vmatrix}
=\begin{vmatrix}q &b &y \\ p&a &x \\ r&c &z \end{vmatrix}
=-\begin{vmatrix}p &a &x \\ q&b &y \\ r&c &z \end{vmatrix}
=-\begin{vmatrix}a &x &p \\ b&y &q \\ c&z &r \end{vmatrix}
=-\begin{vmatrix}a &b &c \\ x &y &z \\ p &q &r \end{vmatrix}=-A
(
\because |A|=|A^{T}|
)
Hence, option C.
The value of the determinant
\displaystyle \left | \begin{matrix} 1 &\omega ^{3} &\omega ^{5} \\ \omega ^{3}&1 &\omega ^{4} \\ \omega ^{5}&\omega ^{4} &1 \end{matrix} \right |
, where
\omega
is an imaginary cube root of unity,is
Report Question
0%
\displaystyle (1-\omega )^{2}
0%
3
0%
-3
0%
none of these
Explanation
\left| \begin{matrix} 1 & \omega ^{ 3 } & \omega ^{ 5 } \\ \omega ^{ 3 } & 1 & \omega ^{ 4 } \\ \omega ^{ 5 } & \omega ^{ 4 } & 1 \end{matrix} \right| =\left| \begin{matrix} 1 & 1 & \omega ^{ 2 } \\ 1 & 1 & \omega \\ \omega ^{ 2 } & \omega & 1 \end{matrix} \right| \\ \Rightarrow \omega ^{ 2 }-2\omega +1
(\because \omega^{3}=1\quad and\quad 1+\omega+\omega^{2}=0)
\Rightarrow (\omega-1)^2
Let
\displaystyle \omega =-\frac{1}{2}+i\frac{\sqrt{3}}{2}
,then the value of the determinant
\left | \begin{matrix} 1 & 1 &1 \\ 1& -1-\omega ^{2} &\omega ^{2} \\ 1& \omega ^{2} & \omega ^{4} \end{matrix} \right |,
is
Report Question
0%
\displaystyle 3\omega
0%
\displaystyle 3\omega(\omega -1)
0%
\displaystyle 3\omega ^{2}
0%
\displaystyle 3 (-2\omega-1 )
Explanation
\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1-{ \omega }^{ 2 } & { \omega }^{ 2 } \\ 1 & { \omega }^{ 2 } & { \omega }^{ 4 } \end{vmatrix}
\omega =
cube root of unity
\Rightarrow { \omega }^{ 3 }=1
1+\omega +{ \omega }^{ 2 }=0
\Rightarrow -1-{ \omega }^{ 2 }=\omega
{ \omega }^{ 4 }=\left( { \omega }^{ 3 } \right) \omega =\omega
\triangle =\begin{vmatrix} 1 & 1 & 1 \\ 1 & \omega & { \omega }^{ 2 } \\ 1 & { \omega }^{ 2 } & \omega \end{vmatrix}
=1\left( { \omega }^{ 2 }-{ \omega }^{ 4 } \right) -1\left( \omega -{ \omega }^{ 2 } \right) +1\left( { \omega }^{ 2 }-\omega \right)
={ \omega }^{ 2 }-\omega -+{ \omega }^{ 2 }+{ \omega }^{ 2 }-\omega
=3({ \omega }^{ 2 }-\omega )
=3\omega \left( \omega -1 \right) =3\left( -2\omega -1 \right)
Option B and D
Let
\displaystyle A=\left [ \begin{matrix}1 &0 &0 \\ 2 &1 &0 \\ 3 &2 &1 \end{matrix} \right ]
and
\displaystyle U_{1}, U_{2}, U_{3}
be column
matrices satisfying
\displaystyle AU_{1}=\left [ \begin{matrix}1\\ 0\\ 0\end{matrix} \right ], AU_{2}=\left [ \begin{matrix}2\\ 3\\ 0\end{matrix} \right ], AU_{3}=\left [ \begin{matrix}2\\ 3\\ 1\end{matrix} \right ]
. If U is
\displaystyle 3\times 3
matrix whose columns are
\displaystyle U_{1}, U_{2}, U_{3}
, then
\displaystyle \left | U \right |=
Report Question
0%
\displaystyle 3
0%
\displaystyle -3
0%
\displaystyle\dfrac{3}{2}
0%
\displaystyle 2
Explanation
A=\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}
Let
U_1=\begin{bmatrix} a_{ 1 } \\ b_{ 1 } \\ c_{ 1 } \end{bmatrix}
,
U_2=\begin{bmatrix} a_{ 2 } \\ b_{ 2 } \\ c_{ 2 } \end{bmatrix}
and
U_3=\begin{bmatrix} a_{ 3 } \\ b_{ 3 } \\ c_{ 3 } \end{bmatrix}
Given
AU_1=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
\Rightarrow a_1=1; 2a_1+b_1=0; 3a_1+2b_1+c_1=0
simplifying gives
a_1=1; b_1=-2; c_1=1
AU_2=\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}
\Rightarrow a_2=2; 2a_2+b_2=3; 3a_2+2b_2+c_2=0
simplifying gives
a_2=2; b_2=-1; c_2=-4
AU_3=\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}
\Rightarrow a_3=2; 2a_3+b_3=3; 3a_3+2b_3+c_3=1
simplifying gives
a_3=2; b_3=-1; c_3=-3
\therefore U=\begin{bmatrix} 1 & 2 & 2 \\ -2 & -1 & -1 \\ 1 & -4 & -3 \end{bmatrix}
|U|=\begin{vmatrix} 1 & 2 & 2 \\ -2 & -1 & -1 \\ 1 & -4 & -3 \end{vmatrix}=3
Hence, option A.
The value of
\displaystyle \left | \begin{matrix} 11 & 12 &13 \\ 12&13 &14 \\ 13&14 &15 \end{matrix} \right |
,is
Report Question
0%
1
0%
0
0%
-1
0%
67
Explanation
\left| \begin{matrix} 11 & 12 & 13 \\ 12 & 13 & 14 \\ 13 & 14 & 15 \end{matrix} \right|
{ R }_{ 2 }\rightarrow { R }_{ 2 }-{ R }_{ 1 },{ R }_{ 3 }\rightarrow { R }_{ 3 }-{ R }_{ 1 }
=\left| \begin{matrix} 11 & 12 & 13 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{matrix} \right|
=2\left| \begin{matrix} 11 & 12 & 13 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{matrix} \right|
=0
If the lines
L_{1}:\lambda ^{2}x-y-1=0
L_{2}:x-\lambda ^{2}y+1=0
L_{3}:x+y-\lambda ^{2}=0
pass through the same point the value(s) of
\lambda
equals
Report Question
0%
1
0%
\sqrt{2}
0%
2
0%
0
Explanation
The given equations passes through same point.So, they are concurrent lines
\Rightarrow \left| \begin{matrix} { \lambda }^{ 2 } & -1 & -1 \\ 1 & -{ \lambda }^{ 2 } & 1 \\ 1 & 1 & -{ \lambda }^{ 2 } \end{matrix} \right| =0
\Rightarrow { \lambda }^{ 6 }-3{ \lambda }^{ 2 }-2=0
By doing synthetic division we get,
(\lambda^4-2\lambda^2+1)(\lambda^2-2)=0
(\lambda^2-1)^2(\lambda^2-2)=0
\lambda=\pm \sqrt 2 or \lambda=\pm1
But here
\lambda=\pm1\ does\ not\ satisfies\ ,hence\ \lambda=\sqrt2
Option B satisfies above equation
When the determinant
\begin{vmatrix} \cos { 2x } & \sin ^{ 2 }{ x } & \cos { 4x } \\ \sin ^{ 2 }{ x } & \cos { 2x } & \cos ^{ 2 }{ x } \\ \cos { 4x } & \cos ^{ 2 }{ x } & \cos { 2x } \end{vmatrix}
is expanded in powers of
\sin { x }
, then the constant term in that expression is
Report Question
0%
1
0%
0
0%
-1
0%
2
Explanation
\begin{vmatrix} \cos { 2x } & \sin ^{ 2 }{ x } & \cos { 4x } \\ \sin ^{ 2 }{ x } & \cos { 2x } & \cos ^{ 2 }{ x } \\ \cos { 4x } & \cos ^{ 2 }{ x } & \cos { 2x } \end{vmatrix}={ a }_{ 0 }+{ a }_{ 1 }\sin { x } +{ a }_{ 2 }\sin ^{ 2 }{ x } +.....
Put
x=0
\Rightarrow \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}={ a }_{ 0 }
\Rightarrow a_{0}=-1
If
p+q+r=0=a+b+c
, then the value of the determinant
\begin{vmatrix} pa & qb & rc \\ qc & ra & pb \\ rb & pc & qa \end{vmatrix}
is
Report Question
0%
0
0%
pq+qb+ra
0%
1
0%
none of these
Explanation
Given ,
p+q+r=0=a+b+c
\begin{vmatrix} pa & qb & rc \\ qc & ra & pb \\ rb & pc & qa \end{vmatrix}
=pa(qr{ a }^{ 2 }-{ p }^{ 2 }bc)-qb({ q }^{ 2 }ac-pr{ b }^{ 2 })+rc(pq{ c }^{ 2 }-{ r }^{ 2 }ab)
=pqr{ a }^{ 3 }-{ p }^{ 3 }abc-{ q }^{ 3 }abc+pqr{ b }^{ 3 }+pqr{ c }^{ 3 }-{ r }^{ 3 }abc
=pqr({ a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 })-abc({ p }^{ 3 }+{ q }^{ 3 }+{ r }^{ 3 })
=pqr[{ (a+b+c) }^{ 3 }+3abc(a+b+c)]-abc[{ (p+q+r) }^{ 3 }+3pqr(p+q+r)]
=0
If
\displaystyle a\neq b\neq c,
are value of x which satisfies the equation
\displaystyle \left | \begin{matrix}0 &x-a &x-b \\ x+a &0 &x-c \\ x+b &x+c &0 \end{matrix} \right |=0
is given by
Report Question
0%
x=0
0%
x=c
0%
x=b
0%
x=a
Explanation
\displaystyle \left | \begin{matrix}0 &x-a &x-b \\ x+a &0 &x-c \\ x+b &x+c &0 \end{matrix} \right |=0
\Rightarrow (x-a)(x+b)(x-c)+(x-b)(x+a)(x+c)=0
We can now check by options
for \,\,option\,\, A,
put
x=0
in above equation we get,
\Rightarrow (0-a)(0+b)(0-c)+(0-b)(0+a)(0+c)=0
\Rightarrow abc-abc=0
So,
x=0
satisfies the equation.
The value of
\begin{vmatrix} -1 & 2 & 1 \\ 3+2\sqrt { 2 } & 2+2\sqrt { 2 } & 1 \\ 3-2\sqrt { 2 } & 2-2\sqrt { 2 } & 1 \end{vmatrix}
is equal to
Report Question
0%
zero
0%
-16\sqrt { 2 }
0%
-8\sqrt { 2 }
0%
one of these
Explanation
\begin{vmatrix} -1 & 2 & 1 \\ 3+2\sqrt { 2 } & 2+2\sqrt { 2 } & 1 \\ 3-2\sqrt { 2 } & 2-2\sqrt { 2 } & 1 \end{vmatrix}
-1(2+2\sqrt2-2+2\sqrt2)-2(3+2\sqrt2-3+2\sqrt2)+1[(3+2\sqrt2)(2-2\sqrt2)-(2+2\sqrt2)(3-2\sqrt2)]
=-1(4\sqrt { 2 } )-2(4\sqrt { 2 } )+1(-4\sqrt { 2 } )=-16\sqrt { 2 }
Number of values of
a
for which the lines
2x+y-1=0, ax+3y-3=0, 3x+2y-2=0
are concurrent is
Report Question
0%
0
0%
1
0%
2
0%
\infty
Explanation
Here coefficient matrix,
\Delta = \begin{vmatrix} 2 & 1 & -1 \\ a & 3 & -3 \\ 3 & 2 & -2 \end{vmatrix}
Using
C_2 \to C_2+C_3
\Delta = \begin{vmatrix} 2 & 0 & -1 \\ a & 0 & 3 \\ 3 & 0 & -2 \end{vmatrix}=0
Clearly
\Delta=0
, Hence given lines are concurrent for all values of
a
Let
\begin{vmatrix} x & 2 & x \\ { x }^{ 2 } & x & 6 \\ x & x & 6 \end{vmatrix}=A{ x }^{ 4 }+B{ x }^{ 3 }+C{ x }^{ 2 }+Dx+E
. Then the value of
5A+4B+3C+2D+E
is equal to
Report Question
0%
zero
0%
-16
0%
16
0%
-11
Explanation
\begin{vmatrix} x & 2 & x \\ { x }^{ 2 } & x & 6 \\ x & x & 6 \end{vmatrix}=A{ x }^{ 4 }+B{ x }^{ 3 }+C{ x }^{ 2 }+Dx+E
Consider
LHS=\begin{vmatrix} x & 2 & x \\ { x }^{ 2 } & x & 6 \\ x & x & 6 \end{vmatrix}
=x(6x-6x)-2(6x^2-6x)+x(x^3-x^2)
={ x }^{ 4 }-{ x }^{ 3 }-12{ x }^{ 2 }+12x
Comparing with RHS, we get
A=1,B=-1, C=-12, D=12, E=0
So,
5A+4B+3C+2D+E=-11
In triangle
ABC
, if
\begin{vmatrix} 1 & 1 & 1 \\ \cot { \cfrac { A }{ 2 } } & \cot { \cfrac { B }{ 2 } } & \cot { \cfrac { C }{ 2 } } \\ \tan { \cfrac { B }{ 2 } } +\tan { \cfrac { C }{ 2 } } & \tan { \cfrac { C }{ 2 } } +\tan { \cfrac { A }{ 2 } } & \tan { \cfrac { A }{ 2 } } +\tan { \cfrac { B }{ 2 } } \end{vmatrix}=0
, then the triangle must be
Report Question
0%
equilateral
0%
isosceles
0%
obtuse angled
0%
none of these
Explanation
\begin{vmatrix} 1 & 1 & 1 \\ \cot { \cfrac { A }{ 2 } } & \cot { \cfrac { B }{ 2 } } & \cot { \cfrac { C }{ 2 } } \\ \tan { \cfrac { B }{ 2 } } +\tan { \cfrac { C }{ 2 } } & \tan { \cfrac { C }{ 2 } } +\tan { \cfrac { A }{ 2 } } & \tan { \cfrac { A }{ 2 } } +\tan { \cfrac { B }{ 2 } } \end{vmatrix}=0
\Rightarrow \tan { \cfrac { A }{ 2 } } \cot { \cfrac { B }{ 2 } } -\tan { \cfrac { A }{ 2 } } \cot { \cfrac { C }{ 2 } } +\tan { \cfrac { B }{ 2 } } \cot { \cfrac { C }{ 2 } } -\tan { \cfrac { B }{ 2 } } \cot { \cfrac { A }{ 2 } } +\tan { \cfrac { C }{ 2 } } \cot { \cfrac { A }{ 2 } } -\tan { \cfrac { C }{ 2 } } \cot { \cfrac { B }{ 2 } } =0
\tan { \cfrac { A }{ 2 } } (\cot { \cfrac { B }{ 2 } } -\cot { \cfrac { C }{ 2 } } )+\tan { \cfrac { B }{ 2 } } (\cot { \cfrac { C }{ 2 } } -\cot { \cfrac { A }{ 2 } } )+\tan { \cfrac { C }{ 2 } } (\cot { \cfrac { A }{ 2 } } -\cot { \cfrac { B }{ 2 } } )=0
(\cot { \cfrac { B }{ 2 } } -\cot { \cfrac { C }{ 2 } } )=0 , (\cot { \cfrac { C }{ 2 } } -\cot { \cfrac { A }{ 2 } } )=0, (\cot { \cfrac { A }{ 2 } } -\cot { \cfrac { B }{ 2 } } )=0
\Rightarrow A=B=C
The value of the determinant
\begin{vmatrix} 1 & 1 & 1 \\ { _{ }^{ m }{ C } }_{ 1 } & { _{ }^{ m+1 }{ C } }_{ 1 } & { _{ }^{ m+2 }{ C } }_{ 1 } \\ { _{ }^{ m }{ C } }_{ 2 } & { _{ }^{ m+1 }{ C } }_{ 2 } & { _{ }^{ m+2 }{ C } }_{ 2 } \end{vmatrix}
is equal to
Report Question
0%
1
0%
-1
0%
0
0%
none of these
Explanation
\begin{vmatrix} 1 & 1 & 1 \\ { ^{ m }{ C } }_{ 1 } & { ^{ m+1 }{ C } }_{ 1 } & { ^{ m+2 }{ C } }_{ 1 } \\ { ^{ m }{ C } }_{ 2 } & { ^{ m+1 }{ C } }_{ 2 } & { ^{ m+2 }{ C } }_{ 2 } \end{vmatrix}
=\begin{vmatrix} 1 & 1 & 1 \\ m & m+1 & m+2 \\ \dfrac { m(m-1) }{ 2 } & \dfrac { m(m+1) }{ 2 } & \dfrac { (m+2)(m+1) }{ 2 } \end{vmatrix}
{ C }_{ 1 }\rightarrow { C }_{ 1 }-{ C }_{ 2 },{ C }_{ 2 }\rightarrow { C }_{ 2 }-{ C }_{ 3 }\quad
\begin{vmatrix} 0 & 0 & 1 \\ -1 & -1 & m+2 \\ -m & -(m+1) & \dfrac { (m+2)(m+1) }{ 2 } \end{vmatrix}
1(-1(-(m+1))-(-1)(-m))
=1
If
a,b,c
are different, then the value of
x
satisfying
\begin{vmatrix} 0 & { x }^{ 2 }-a & { x }^{ 3 }-b \\ { x }^{ 2 }+a & 0 & { x }^{ 2 }+c \\ { x }^{ 4 }+b & x-c & 0 \end{vmatrix}=0
is
Report Question
0%
a
0%
c
0%
b
0%
0
\Delta =\begin{vmatrix} a & { a }^{ 2 } & 0 \\ 1 & 2a+b & (a+b) \\ 0 & 1 & 2a+3b \end{vmatrix}
is divisible by
Report Question
0%
a+b
0%
a+2b
0%
2a+3b
0%
{ a }^{ 2 }
Explanation
Expanding by
R_{3}
,
=-1(a(a+b))+(2a+3b)(2a^{2}+ab-a^{2})
=-1(a(a+b))+(2a+3b)a(a+b)
=a(a+b)(2a+3b-1)
If
\Delta =\begin{vmatrix} \sin { \theta } \cos { \phi } & \sin { \theta } \sin { \phi } & \cos { \theta } \\ \cos { \theta } \cos { \phi } & \cos { \theta } \sin { \phi } & -\sin { \theta } \\ -\sin { \theta } \sin { \phi } & \sin { \theta } \cos { \phi } & 0 \end{vmatrix}
, then
Report Question
0%
\Delta
is independent of
\theta
0%
\Delta
is independent of
\phi
0%
\Delta
is a constant
0%
\displaystyle \cfrac { d\Delta }{ d\theta }| {_{ \theta =\pi / 2 }{ =0 }_{ } }
Explanation
\Delta =\begin{vmatrix}sin\theta cos\phi & sin\theta sin\phi & cos\theta\\ cos\theta cos\phi & cos\theta sin\phi & -sin\theta\\ -sin\theta sin\phi & sin\theta cos\phi & 0 \end{vmatrix}
Expanding by
C_{3}
,
\Delta =cos\theta(cos\theta sin\theta (cos^{2}\phi+sin^{2}\phi))+sin\theta (sin^{2}\theta (cos^{2}\phi+sin^{2}\phi))
=cos\theta(cos\theta sin\theta )+sin\theta (sin^{2}\theta)=sin\theta
So,
\Delta
is independent of
\phi
\frac{\mathrm{d\Delta } }{\mathrm{d} \theta }=cos\theta |_{\frac{\pi }{2}}=0
If
\alpha
is a characteristic root of a nonsingular matrix, then the corresponding characteristic root of adj A is
Report Question
0%
\displaystyle \frac{|A|}{\alpha}
0%
\displaystyle |\frac{A}{\alpha}|
0%
\displaystyle \frac{|adj A|}{\alpha}
0%
\displaystyle |\frac{adj A}{\alpha}|
Explanation
Since
\alpha
is a characteristic root of a nonsingular matrix,
therefore
\alpha \neq 0
. Also
\alpha
is a characteristic root of
A implies that there exists a nonzero vector X such that
AX = \alpha X
(adj A) (AX) = (adj A) (\alpha X)
[(adj A)A] X = \alpha (adj A)X
|A| IX = \alpha (adj A)X
[\because (adj A) A = |A| I]
|A| X = \alpha (adj A) X
|A| X = \alpha (adj A) X
\displaystyle \frac{|A|}{\alpha} X = (adj A)X
(adj A) X = \displaystyle \frac{|A|}{\alpha} X
Since X is a nonzero vector,
|A / \alpha|
is a characteristic root of the matrix adj A.
If
A
is a square matrix of order
m\times n
, then
adj(adj\space A)
is equal to
Report Question
0%
|A|^n A
0%
|A|^{n-1} A
0%
|A|^{n-2} A
0%
|A|^{n-3} A
Explanation
(adj\: A)^{-1}=\displaystyle\frac{adj(adj\: A)}{|adj\: A|}
\Rightarrow (|A|A^{-})^{-1}=\displaystyle\frac{adj(adj\: A)}{|adj\: A|}
\Rightarrow \displaystyle\frac{A}{|A|}=\displaystyle\frac{adj(adj\: A)}{|adj\: A|}
\Rightarrow adj(adj\: A)= \displaystyle\frac{|adj\: A|A}{|A|}
\therefore adj(adj\: A)=|A|^{n-2}A
Hence, option C.
If
A = \begin{bmatrix}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{bmatrix}
, Then
adj(A)
equals
Report Question
0%
A
0%
A^T
0%
3A
0%
3A^T
Explanation
Given
A = \begin{bmatrix}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{bmatrix}
A^{T}=\begin{bmatrix} -1 & 2 & 2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}
Now,
adj A=C^{T}={\begin{bmatrix} -3 & -6 & -6 \\ 6 & 3 & -6 \\ 6 & -6 & 3 \end{bmatrix}}^{T}
\Rightarrow adj A=\begin{bmatrix} -3 & 6 & 6 \\ -6 & 3 & -6 \\ -6 & -6 & 3 \end{bmatrix}
\Rightarrow adj A=3\begin{bmatrix} -1 & 2 & 2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}
\Rightarrow adj A=3A^{T}
Find the determinants of minors and cofactors of the determinant
\begin{vmatrix}2 & 3 & 4\\ 7 & 2 & -5\\ 8 & -1 & 3\end{vmatrix}
Report Question
0%
\begin{vmatrix}1 & 61 & -23\\ 13 & -26 & -26\\ -23 & -38 & -17\end{vmatrix}
and
\begin{vmatrix}1 & 61 & -23\\ -13 & -26 & 26\\ -23 & 38 & -17\end{vmatrix}
0%
\begin{vmatrix}1 & 61 & -23\\ 13 & -26 & -26\\ -23 & -38 & -17\end{vmatrix}
and
\begin{vmatrix}1 & -61 & 23\\ -13 & -26 & 26\\ -23 & 38 & -17\end{vmatrix}
0%
\begin{vmatrix}1 & 61 & -23\\ 13 & -26 & -26\\ -23 & -38 & -17\end{vmatrix}
and
\begin{vmatrix}1 & 61 & 23\\ -13 & -26 & 26\\ -23 & 38 & -17\end{vmatrix}
0%
None of these.
Explanation
Here
M_{11} = \begin{vmatrix}2 & -5 \\ -1 & 3\end{vmatrix}
(Delete 1st row and first column)
= 6-5
M_{11} = 1
\therefore C_{11} = 1
(\because (-1)^{1 + 1} = 1)
M_2 = \begin{vmatrix}7 & -5\\ 8 & 3 \end{vmatrix}
(Delete 1st row and 2nd column)
= 21 - (-40)
M_2 = 61
\therefore C_{12} = - 61
,
(\because (-1)^{1+2} = - 1)
M_{13} = \begin{vmatrix}7 & 2 \\ 8 & -1\end{vmatrix}
(Delete 1st row and 3rd column)
= - 7 - 16
M_{13} = - 23
\therefore C_{13} = - 23, (\because (-1)^{1 + 3} = 1)
M_{21} = \begin{vmatrix}3 & 4 \\ -1 & 3\end{vmatrix}
(Delete 2nd row and 1st column)
= 9 - (-4)
M_{21} = 13
\therefore C_{21} = - 13, (\because (-1)^{2 + 1} = - 1)
M_{22} = \begin{vmatrix}2 & 4 \\ 8 & 3\end{vmatrix}
(Delete 2nd row and 2nd column)
= 6 - 32
M_{22} = - 26
\therefore C_{22} = - 26, (\because (-1)^{2 + 2} = 1)
M_{23} = \begin{vmatrix}2 & 3 \\ 8 & -1\end{vmatrix}
(Delete 2nd row and 3rd column)
= -2 - 24
M_{23} = - 26
\therefore C_{23} = 26, (\because (-1)^{2 + 3} = - 1)
M_{31} = \begin{vmatrix}3 & 4 \\ 2 & -5\end{vmatrix}
(Delete 3rd row and 1st column)
= -15 -8
M_{31} = - 23
\therefore C_{31} = - 23, (\because (-1)^{3 + 1} = 1)
M_{32} = \begin{vmatrix}2 & 4 \\ 7 & -5\end{vmatrix}
(Delete 3rd row and 2nd column)
= -10 - 28
M_{32} = - 38
\therefore C_{32} = 38, (\because (-1)^{3 + 2} = - 1)
M_{33} = \begin{vmatrix}2 & 3 \\ 7 & 2\end{vmatrix}
(Delete 3rd row and 3rd column)
= 4 - 21
M_{33} = - 17
\therefore C_{33} = - 17, (\because (-1)^{3 + 3} = 1)
Hence Determinants of Minors and Cofactors are
\begin{vmatrix}1 & 61 & -23\\ 13 & -26 & -26\\ -23 & -38 & -17\end{vmatrix}
and
\begin{vmatrix}1 & -61 & -23\\ -13 & -26 & 26\\ -23 & 38 & -17\end{vmatrix}
The adjoint of the matrix
A = \begin{bmatrix}1 & 1 & 1\\ 2 & 1 & -3\\ -1 & 2 & 3\end{bmatrix}
is
Report Question
0%
\frac{1}{11} \begin{bmatrix}9 & -1 & -4\\ -3 & 4 & 5\\ 5 & -3 & -1\end{bmatrix}
0%
\begin{bmatrix}9 & 1 & -4\\ 3 & 4 & -5\\ 5 & 3 & -1\end{bmatrix}
0%
\begin{bmatrix}9 & -3 & 5\\ -1 & 4 & -3\\ -4 & 5 & -1\end{bmatrix}
0%
\begin{bmatrix}9 & -1 & -4\\ -3 & 4 & 5\\ 5 & -3 & -1\end{bmatrix}
Explanation
Let
C_{ij}
be a cofactor of
a_{ij}
in A. Then, the cofactors of elements of A are given by
C_{11} = \begin{bmatrix} 1& -3\\ 2 & 3\end{bmatrix} = 9
C_{12} = - \begin{bmatrix} 2& -3\\ -1 & 3\end{bmatrix} = - 3
C_{13} = \begin{bmatrix}2 & 1\\ -1 & 2\end{bmatrix} = 5
C_{21} = - \begin{bmatrix}1 & 1\\ 2 & 3\end{bmatrix} = - 1
C_{22} = \begin{bmatrix}1 & 1\\ -1 & 3\end{bmatrix} = 4
C_{23} = - \begin{bmatrix} 1& 1\\ -1 & 2\end{bmatrix} = - 3
C_{31} = \begin{bmatrix}1 & 1\\ 1 & -3\end{bmatrix} = - 4
C_{32} = - \begin{bmatrix} 1& 1\\ 2 & -3\end{bmatrix} = 5
C_{33} = \begin{bmatrix} 1& 1\\ 2 &1 \end{bmatrix} = -1
\therefore adj A = \begin{bmatrix}9 & -3 & 5\\ -1 & 4 &-3 \\ -4 & 5 & -1\end{bmatrix} '= \begin{bmatrix}9 & -1 & -4\\ -3 & 4 & 5\\ 5 & -3 & -1\end{bmatrix}
If
A^2 = I
, then the value of
det(A - I)
is (where
A
has order
3
)
Report Question
0%
1
0%
-1
0%
0
0%
cannot say anything
Explanation
A^2=I
\Rightarrow A^2-I=O
\Rightarrow (A-I)(A+I)=O
\Rightarrow |A-I||A+I|=0
\therefore
Either
|A-I|=0
or
|A+I|=0
Hence, cannot say anything about
|A-I|
.
Hence, option D.
If
A=\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix}
and
f(x) = \displaystyle \frac{1 + x}{1- x}
, then
f(|A|)
is
Report Question
0%
\dfrac{-1}{2}
0%
\dfrac{1}{2}
0%
\dfrac{-1}{3}
0%
none of these
Explanation
Here
|A| =1\times 1-2\times 2 = -3
\therefore f(|A|)=\cfrac{1+(-3)}{1+3}=-\cfrac{1}{2}
If
A
is a square matrix of order
n\times n
and
k
is a scalar, then
adj(kA)
is equal to _____________.
Report Question
0%
k^{n-1}adj\space A
0%
k^{n}adj\space A
0%
k^{n+1}adj\space A
0%
kadj\space A
Explanation
(kA)^{-1}=\displaystyle\frac{adj(kA)}{|kA|}
\Rightarrow \displaystyle\frac{1}{k}A^{-1}=\frac{adj(kA)}{|kA|}
\Rightarrow \displaystyle\frac{adj A}{k|A|}=\frac{adj(kA)}{k^n|A|}
\therefore adj(kA)=k^{n-1}adj A
Hence, option A.
Find the adjoint of the matrix
A = \begin{bmatrix}1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12\end{bmatrix}
.
If
\mbox{Adjoint A: } \begin{bmatrix}a & -9 & 1 \\ b & 9 & -2 \\ 2 & c & 1\end{bmatrix} \\
, find the value of
abc
.
Report Question
0%
231
0%
213
0%
321
0%
312
If matrix A is given by
A = \begin{bmatrix}6 & 11\\ 2 & 4\end{bmatrix}
, then the determinant of
A^{2005} - 6A^{2004}
is
Report Question
0%
2^{2006}
0%
(-11) 2^{2005}
0%
-2^{2005}
0%
(-9)2^{2004}
Explanation
Given,
A = \begin{bmatrix}6 & 11\\ 2 & 4\end{bmatrix}
|A|=2
Now,
|A^{2005}-6A^{2004}|=|A|^{2004}|A-6I|
=2^{2004}\begin{vmatrix} 0 & 11 \\ 2 & -2 \end{vmatrix}
=2^{2004}(-22)
=2^{2005}(-11)
\displaystyle \left | \begin{matrix}0 &p-q &p-r \\ q-p &0 &q-r \\ r-p &r-q &0 \end{matrix} \right |
is equal to
Report Question
0%
\displaystyle p+q+r
0%
0
0%
\displaystyle p-q-r
0%
\displaystyle -p+q+r
Explanation
\left| \begin{matrix} 0 & p-q & p-r \\ q-p & 0 & q-r \\ r-p & r-q & 0 \end{matrix} \right| \\
=0\left( 0-\left( r-q \right) \left( q-r \right) \right) -\left( p-q \right) \left( 0-\left( r-p \right) \left( q-r \right) \right) +\left( p-r \right) \left( \left( q-p \right) \left( r-q \right) -0 \right) \\
=\left( p-q \right) \left( r-p \right) \left( q-r \right) +\left( p-r \right) \left( q-p \right) \left( r-q \right) =0
If
\displaystyle \left | \begin{matrix}6i &-3i &1 \\ 4 &3i &-1 \\ 20 &3 &i \end{matrix} \right |=x+iy
then
Report Question
0%
\displaystyle x=3, y=1
0%
\displaystyle x=1, y=3
0%
\displaystyle x=0, y=3
0%
\displaystyle x=0, y=0
Explanation
\Delta =\left| \begin{matrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{matrix} \right| \\
=6i\left( -3+3 \right) +3i\left( 4i+20 \right) +1\left( 12-60i \right) \\
=0-12+60i+12-60i
=0\\
\Rightarrow x=0,y=0
Hence, the option 'D' is correct.
If
A = \begin{bmatrix}3& -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{bmatrix}
then find
Adj(Adj\space A)
.
Report Question
0%
\quad \begin{bmatrix}3& -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{bmatrix}
0%
\quad \begin{bmatrix}3& 3 & 4 \\ 2 & -3 & -4 \\ 0 & -1 & 1\end{bmatrix}
0%
\quad \begin{bmatrix}3& 3 & 4 \\ 2 & -3 & 4 \\ 0 & 1 & 1\end{bmatrix}
0%
\quad \begin{bmatrix}3& -3 & 4 \\ 2 & -3 & -4 \\ 0 & 1 & 1\end{bmatrix}
Explanation
We know that
Adj(Adj\space A) = | A |^{n-2} A
Since
\quad A = \begin{bmatrix}3& -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{bmatrix}
Here
n = 3
(3 order matrix)
\therefore \quad |A| = \begin{vmatrix}3& -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{vmatrix}
\quad = 3(1) + 3(2-0) + 4(-2-0)
\quad = 1 \ne 0, \quad \therefore \quad A
is non-singular.
\therefore Adj(Adj A) = | A |^{3-2}.A = | A |.A = 1.A = A = \begin{bmatrix}3& -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{bmatrix}
The matrix
\begin{bmatrix}1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}
is
Report Question
0%
non-singular
0%
singular
0%
skew-symmetric
0%
symmetric
Explanation
Given
A=\begin{bmatrix}1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}
|A|=\begin{vmatrix}1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{vmatrix}
\Rightarrow |A|=1-1=0
Hence,
A
is singular.
The value of the
\displaystyle m^{th}
order determinant of a matrix
\displaystyle A
is
\displaystyle 15
then the value of determinant formed by the cofactors of
\displaystyle A
will be
Report Question
0%
\displaystyle \left ( 15 \right )^{m}
0%
\displaystyle 15^{2m}
0%
\displaystyle \left ( 15 \right )^{m-1}
0%
\displaystyle \left ( 15 \right )^{2m-1}
Explanation
If A be the matrix of order m and B is matrix of cofactors of a then determinant of B will be equal to
\displaystyle \left ( m-1 \right )^{th}
power of the determinant of A.
\displaystyle \left | B \right |= \left | A \right |^{m-1}
\displaystyle \therefore |B| = \left ( 15 \right )^{m-1}
The points
\displaystyle(a, b+c),(b, c+a),(c, a+b)
are
Report Question
0%
vertices of an equilateral triangle
0%
collinear
0%
concyclic
0%
none of these
Explanation
To check for collineauty, we can check the slope of the two points. Suppose the points be A, B and C then
(slope)_{AB} = \dfrac {(c+a)-(b+c)}{b-a} =-1
(slope)_{BC}= \dfrac{(a+b)-(c+a)}{c-b} =-1
m_{AB}= m_{BC} =
points are collinear
In a third order determinant
a_{ij}
denotes the element in the ith row and the jth column If
a_{ij} = \left\{\begin{matrix}0, & i = j\\ 1, & i > j\\ -1, & i < j\end{matrix}\right.
then the value of the determinant
Report Question
0%
0
0%
1
0%
-1
0%
none of these
Explanation
a_{ij} = \left\{\begin{matrix}0, & i = j\\ 1, & i > j\\ -1, & i < j\end{matrix}\right.
Let
A=\begin{bmatrix} 0&-1&-1\\1&0&-1\\1&1&0\end{bmatrix}
Now,
|A|=\begin{vmatrix} 0&-1&-1\\1&0&-1\\1&1&0\end{vmatrix}
=1-1=0
\Rightarrow |A|=0
The value of the determinant
\begin{vmatrix} \sqrt { 6 } & 2i & 3+\sqrt { 6 } \\ \sqrt { 12 } & \sqrt { 3 } +\sqrt { 8 } i & 3\sqrt { 2 } +\sqrt { 6 } i \\ \sqrt { 18 } & \sqrt { 2 } +\sqrt { 12 } i & \sqrt { 27 } +2i \end{vmatrix}
is
Report Question
0%
complex
0%
real
0%
irrational
0%
rational
Explanation
\begin{vmatrix} \sqrt { 6 } & 2i & 3+\sqrt { 6 } \\ \sqrt { 12 } & \sqrt { 3 } +\sqrt { 8 } i & 3\sqrt { 2 } +\sqrt { 6 } i \\ \sqrt { 18 } & \sqrt { 2 } +\sqrt { 12 } i & \sqrt { 27 } +2i \end{vmatrix}
{ R }_{ 2 }\rightarrow { R }_{ 2 }-\sqrt { 2 } { R }_{ 1 }
{ R }_{ 3 }\rightarrow { R }_{ 3 }-\sqrt { 3 } { R }_{ 1 }
\Rightarrow \triangle =\sqrt { 6 } \begin{vmatrix} 1 & 2i & 3+\sqrt { 6 } \\ 0 & \sqrt { 3 } & \sqrt { 6 } i-2\sqrt { 3 } \\ 0 & \sqrt { 2 } & 2i-3\sqrt { 2 } \end{vmatrix}
\Rightarrow \sqrt { 6 } \begin{vmatrix} \sqrt { 3 } & \sqrt { 6 } i-2\sqrt { 3 } \\ \sqrt { 2 } & 2i-3\sqrt { 2 } \end{vmatrix}
\Rightarrow \triangle
is real and complex.
A and B
If
\displaystyle \left | \begin{matrix}a+x &a &x \\ a-x &a &x \\ a-x &a &-x \end{matrix} \right |=0
then
\displaystyle x
is
Report Question
0%
0
0%
\displaystyle a
0%
3
0%
\displaystyle 2a
If
\Delta =\begin{vmatrix} \cos \theta /2 & 1 & 1\\ 1 & \cos \theta /2 & -\cos \theta /2\\ -\cos \theta /2 & 1 & -1 \end{vmatrix}
, If the minimun of
\Delta
is
m_{1}
and maximum of
\Delta
is
m_{2}
, then
\left [ m_{1}, m_{2} \right ]
are related
Report Question
0%
[-4, -2]
0%
[2, 4]
0%
[-4, 0]
0%
[0, 2]
Explanation
\Delta =\begin{vmatrix} \cos \theta /2 & 1 & 1 \\ 1 & \cos \theta /2 & -\cos \theta /2 \\ -\cos \theta /2 & 1 & -1 \end{vmatrix}
=-1(-1-\cos ^{ 2 }{ \theta /2 } )+1(1+\cos ^{ 2 }{ \theta /2 } )
=2+2\cos ^{ 2 }{ \theta /2 }
=3+\cos\theta
Now,
\because -1\le \cos\theta \le 1
\Rightarrow 2\le 3+\cos\theta \le 4
Hence,
m_{1}=2,m_{2}=4
If
\displaystyle A= \begin{bmatrix}2 &14 &17 \\0 &\sin 2x &\cos 2x \\0 &\cos 2x &\sin 2x \end{bmatrix}
then
\displaystyle \left | A \right |
equals
Report Question
0%
\displaystyle \cos 2x
0%
-2
0%
\displaystyle -2 \cos 4x
0%
\displaystyle \sin 4x
Explanation
\displaystyle A= \begin{bmatrix}2 &14 &17 \\0 &\sin 2x &\cos 2x \\0 &\cos 2x &\sin 2x \end{bmatrix}
\displaystyle \left | A \right |=2(\sin^{2}2x-\cos^{2}2x)=-2\cos 4x
If
x
is a non-real cube root of
-2
, then the value of
\begin{vmatrix} 1 & 2x & 1\\ x^{2} & 1 & 3x^{2}\\ 2 & 2x & 1 \end{vmatrix}
equals to
Report Question
0%
-7
0%
-13
0%
0
0%
-12
Explanation
Given,
x=\sqrt [ 3 ]{ -2 }
\Rightarrow x^{3}=-2
\begin{vmatrix} 1 & 2x & 1 \\ x^{ 2 } & 1 & 3x^{ 2 } \\ 2 & 2x & 1 \end{vmatrix}
=(1-6x^{3})-2x(-5x^{2})+1(2x^{3}-2)
=13-20-6
=-13
If
\begin{vmatrix}x^{2}+3x &x+1 &x-2 \\ x-1 &1-2x &x+4 \\ x+3 &x-4 &3x \end{vmatrix}= Ax^{4}+Bx^{3}+Cx^{2}+Dx+\varrho
Then value of
\varrho
equals to,
Report Question
0%
-10
0%
10
0%
0
0%
None of these
Explanation
\begin{vmatrix}x^{2}+3x &x+1 &x-2 \\ x-1 &1-2x &x+4 \\ x+3 &x-4 &3x \end{vmatrix}= Ax^{4}+Bx^{3}+Cx^{2}+Dx+\varrho
Substitute
x=0
\Rightarrow \begin{vmatrix} 0 & 1 & -2 \\ -1 & 1 & 4 \\ 3 & -4 & 0 \end{vmatrix}=\varrho
=12-2=10
If
A=\begin{pmatrix} 1 & 2 & 1\\ -1 & 0 & 3\\ 2 & -1 & 1 \end{pmatrix}
then characteristic equation is given by
Report Question
0%
-\lambda ^{3}+2\lambda ^{2}-4\lambda +18=0
0%
\lambda ^{3}+2\lambda ^{2}+4\lambda +18=0
0%
2\lambda ^{3}-\lambda ^{2}+6\lambda -2=0
0%
None of these
Explanation
The characteristic equation of A is given by
|A-\lambda I|=0
\begin{vmatrix} 1-\lambda & 2 & 1 \\ -1 & -\lambda & 3 \\ 2 & -1 & 1-\lambda \end{vmatrix}=0
(1-\lambda)[-\lambda(1-\lambda)+3]-2(-1(1-\lambda)-6))+1(1+2\lambda)=0
\Rightarrow -\lambda ^{3}+2\lambda ^{2}-4\lambda +18=0
If the determinant
\begin{vmatrix}a & b & at-b\\ b & c & bt-c\\ 2 & 1 & 0\end{vmatrix}=0
, if
a, b, c
are in
Report Question
0%
A.P.
0%
G.P.
0%
H.P.
0%
k=1/2
Explanation
\begin{vmatrix}a & b & at-b\\ b & c & bt-c\\ 2 & 1 & 0\end{vmatrix}=0
Expanding it along third row,
\Rightarrow 2[b(bt-c)-c(at-b)]-1[a(bt-c)-b(at-b)]=0
\Rightarrow 2t(b^2-ac)-(b^2-ac)=0
\Rightarrow (2t-1)(b^2-ac)=0
\Rightarrow t=\dfrac{1}{2}
or
b^2=ac
If
b^2 =ac
then
a,b,c\in
G.P.
If
A=\begin{bmatrix} -1 & -3 & -3\\ 3 & 1 & -3\\ 3 & -3 & 1 \end{bmatrix}
then adj (A) is
Report Question
0%
=4\begin{bmatrix} -2 & 3 & 3 \\ -3 & 2 & -3 \\ -3 & 3 & 2 \end{bmatrix}
0%
=4\begin{bmatrix} -2 & 3 & 3 \\ 3 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}
0%
=4\begin{bmatrix} -2 & -3 & 3 \\ -3 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}
0%
=4\begin{bmatrix} -2 & 3 & 3 \\ -3 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}
Explanation
Given
A=\begin{bmatrix} -1 & -3 & -3 \\ 3 & 1 & -3 \\ 3 & -3 & 1 \end{bmatrix}
C=\begin{bmatrix} -8 & -12 & -12 \\ 12 & 8 & -12 \\ 12 & -12 & 8 \end{bmatrix}
adj A=C^{T}=\begin{bmatrix} -8 & 12 & 12 \\ -12 & 8 & -12 \\ -12 & -12 & 8 \end{bmatrix}
=4\begin{bmatrix} -2 & 3 & 3 \\ -3 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page