Processing math: 4%

CBSE Questions for Class 12 Commerce Maths Determinants Quiz 4 - MCQExams.com

If the points (a,0),(0,b) and (1,1) are collinear, then 1a+1b equal to -
  • 1
  • 2
  • 3
  • 4
If A is a square matrix so that AadjA=diag(k,k,k) then |adjA|= 
  • k
  • k2
  • k3
  • k4
If A is a square matrix such that  \displaystyle \left | \begin{matrix}4 &0  &0 \\0 &4  &0 \\0 &0  &4\end{matrix} \right |=
  • 4
  • 16
  • 64
  • 256
If  \displaystyle A=\:\left [ \begin{matrix}1 &x \\x^{2}  &4y \end{matrix} \right ], B = \left [ \begin{matrix}-3 &1 \\1  &0 \end{matrix} \right ] and adj \: \left( A \right) +B=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] ,  then the values of x and y are respectively
  • \displaystyle \:\left ( 1,1 \right )
  • \displaystyle \:\left ( -1,1 \right )
  • \displaystyle \:\left ( 1,0 \right )
  • none of these
If A is a non-singular matrix of order \displaystyle 3\times 3, then adj \displaystyle \left ( adj\:A \right ) is equal to
  • \displaystyle \left | A \right |A
  • \displaystyle \left | A \right |^{2}A
  • \displaystyle \left | A \right |^{-1}A
  • none of these
A=\left[\begin{matrix}1&0&0\\2&1&0\\3&2&1\end{matrix}\right], U_1, U_2 and U_3 are columns matrices satisfying AU_1=\left[\begin{matrix}1\\0\\0\end{matrix}\right], AU_2 = \left[\begin{matrix}2\\3\\0\end{matrix}\right], AU_3 = \left[\begin{matrix}2\\3\\1\end{matrix}\right] and U is 3\times3 matrix whose columns are U_1, U_2, U_3 then answer the following question
The value of |U| is
  • 3
  • -3
  • \dfrac32
  • 2
If \displaystyle \omega is an imaginary cube root of unity,then the value of
\left | \begin{matrix} a  &b\omega ^{2}  & a\omega \\  b\omega & c &b\omega ^{2} \\  c\omega ^{2}&a\omega   &c \end{matrix} \right |,is ?
  • \displaystyle a^{3}+b^{3}+c^{3}
  • \displaystyle a^{2}b-b^{2}c
  • 0
  • \displaystyle a^{3}b+b^{3}+3abc

If A\displaystyle= \left | \begin{matrix}a &b  &c \\ x &y  &z \\ p &q  &r \end{matrix} \right | and B=\left | \begin{matrix}q &-b  &y \\  -p&a  &-x \\  r&-c  &z \end{matrix} \right |, then 
  • A= 2B
  • A= B
  • A= -B
  • none of these
The value of the determinant \displaystyle \left | \begin{matrix} 1 &\omega ^{3}  &\omega ^{5} \\  \omega ^{3}&1  &\omega ^{4} \\  \omega ^{5}&\omega ^{4}  &1 \end{matrix} \right | , where \omega is an imaginary cube root of unity,is
  • \displaystyle (1-\omega )^{2}
  • 3
  • -3
  • none of these
Let \displaystyle \omega =-\frac{1}{2}+i\frac{\sqrt{3}}{2},then the value of the determinant
\left | \begin{matrix} 1 & 1 &1 \\  1& -1-\omega ^{2} &\omega ^{2} \\  1& \omega ^{2} & \omega ^{4} \end{matrix} \right |,is
  • \displaystyle 3\omega
  • \displaystyle 3\omega(\omega -1)
  • \displaystyle 3\omega ^{2}
  • \displaystyle 3 (-2\omega-1 )
Let \displaystyle A=\left [ \begin{matrix}1 &0  &0 \\ 2 &1  &0 \\ 3 &2  &1 \end{matrix} \right ] and \displaystyle U_{1}, U_{2}, U_{3} be column
matrices satisfying \displaystyle AU_{1}=\left [ \begin{matrix}1\\ 0\\ 0\end{matrix} \right ], AU_{2}=\left [ \begin{matrix}2\\ 3\\ 0\end{matrix} \right ], AU_{3}=\left [ \begin{matrix}2\\ 3\\ 1\end{matrix} \right ]. If U is
\displaystyle 3\times 3 matrix whose columns are  \displaystyle U_{1}, U_{2}, U_{3}, then \displaystyle \left | U \right |=
  • \displaystyle 3
  • \displaystyle -3
  • \displaystyle\dfrac{3}{2}
  • \displaystyle 2
The value of \displaystyle \left | \begin{matrix} 11 & 12 &13 \\  12&13  &14 \\  13&14  &15 \end{matrix} \right |,is
  • 1
  • 0
  • -1
  • 67
If the lines L_{1}:\lambda ^{2}x-y-1=0 L_{2}:x-\lambda ^{2}y+1=0 L_{3}:x+y-\lambda ^{2}=0 pass through the same point the value(s) of \lambda equals
  • 1
  • \sqrt{2}
  • 2
  • 0
When the determinant \begin{vmatrix} \cos { 2x }  & \sin ^{ 2 }{ x }  & \cos { 4x }  \\ \sin ^{ 2 }{ x }  & \cos { 2x }  & \cos ^{ 2 }{ x }  \\ \cos { 4x }  & \cos ^{ 2 }{ x }  & \cos { 2x }  \end{vmatrix} is expanded in powers of \sin { x }, then the constant term in that expression is
  • 1
  • 0
  • -1
  • 2
If p+q+r=0=a+b+c, then the value of the determinant \begin{vmatrix} pa & qb & rc \\ qc & ra & pb \\ rb & pc & qa \end{vmatrix} is

  • 0
  • pq+qb+ra
  • 1
  • none of these
If \displaystyle a\neq b\neq c, are value of x which satisfies the equation \displaystyle \left | \begin{matrix}0 &x-a  &x-b \\ x+a &0  &x-c \\ x+b &x+c  &0 \end{matrix} \right |=0 is given by
  • x=0
  • x=c
  • x=b
  • x=a
The value of \begin{vmatrix} -1 & 2 & 1 \\ 3+2\sqrt { 2 }  & 2+2\sqrt { 2 }  & 1 \\ 3-2\sqrt { 2 }  & 2-2\sqrt { 2 }  & 1 \end{vmatrix} is equal to
  • zero
  • -16\sqrt { 2 }
  • -8\sqrt { 2 }
  • one of these
Number of values of a for which the lines 2x+y-1=0, ax+3y-3=0, 3x+2y-2=0 are concurrent is

  • 0
  • 1
  • 2
  • \infty
Let \begin{vmatrix} x & 2 & x \\ { x }^{ 2 } & x & 6 \\ x & x & 6 \end{vmatrix}=A{ x }^{ 4 }+B{ x }^{ 3 }+C{ x }^{ 2 }+Dx+E. Then the value of 5A+4B+3C+2D+E is equal to
  • zero
  • -16
  • 16
  • -11
In triangle ABC, if \begin{vmatrix} 1 & 1 & 1 \\ \cot { \cfrac { A }{ 2 }  }  & \cot { \cfrac { B }{ 2 }  }  & \cot { \cfrac { C }{ 2 }  }  \\ \tan { \cfrac { B }{ 2 }  } +\tan { \cfrac { C }{ 2 }  }  & \tan { \cfrac { C }{ 2 }  } +\tan { \cfrac { A }{ 2 }  }  & \tan { \cfrac { A }{ 2 }  } +\tan { \cfrac { B }{ 2 }  }  \end{vmatrix}=0, then the triangle must be

  • equilateral
  • isosceles
  • obtuse angled
  • none of these
The value of the determinant \begin{vmatrix} 1 & 1 & 1 \\ { _{  }^{ m }{ C } }_{ 1 } & { _{  }^{ m+1 }{ C } }_{ 1 } & { _{  }^{ m+2 }{ C } }_{ 1 } \\ { _{  }^{ m }{ C } }_{ 2 } & { _{  }^{ m+1 }{ C } }_{ 2 } & { _{  }^{ m+2 }{ C } }_{ 2 } \end{vmatrix} is equal to
  • 1
  • -1
  • 0
  • none of these
If a,b,c are different, then the value of x satisfying \begin{vmatrix} 0 & { x }^{ 2 }-a & { x }^{ 3 }-b \\ { x }^{ 2 }+a & 0 & { x }^{ 2 }+c \\ { x }^{ 4 }+b & x-c & 0 \end{vmatrix}=0 is
  • a
  • c
  • b
  • 0
\Delta =\begin{vmatrix} a & { a }^{ 2 } & 0 \\ 1 & 2a+b & (a+b) \\ 0 & 1 & 2a+3b \end{vmatrix} is divisible by
  • a+b
  • a+2b
  • 2a+3b
  • { a }^{ 2 }
If \Delta =\begin{vmatrix} \sin { \theta  } \cos { \phi  }  & \sin { \theta  } \sin { \phi  }  & \cos { \theta  }  \\ \cos { \theta  } \cos { \phi  }  & \cos { \theta  } \sin { \phi  }  & -\sin { \theta  }  \\ -\sin { \theta  } \sin { \phi  }  & \sin { \theta  } \cos { \phi  }  & 0 \end{vmatrix}, then
  • \Delta is independent of \theta
  • \Delta is independent of \phi
  • \Delta is a constant
  • \displaystyle \cfrac { d\Delta }{ d\theta }| {_{ \theta =\pi / 2 }{ =0 }_{ } }
If \alpha is a characteristic root of a nonsingular matrix, then the corresponding characteristic root of adj A is
  • \displaystyle \frac{|A|}{\alpha}
  • \displaystyle |\frac{A}{\alpha}|
  • \displaystyle \frac{|adj A|}{\alpha}
  • \displaystyle |\frac{adj A}{\alpha}|
If A is a square matrix of order m\times n, then adj(adj\space A) is equal to
  • |A|^n A
  • |A|^{n-1} A
  • |A|^{n-2} A
  • |A|^{n-3} A
If A = \begin{bmatrix}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{bmatrix}, Then adj(A) equals
  • A
  • A^T
  • 3A
  • 3A^T
Find the determinants of minors and cofactors of the determinant \begin{vmatrix}2 & 3 & 4\\ 7 & 2 & -5\\ 8 & -1 & 3\end{vmatrix}
  • \begin{vmatrix}1 & 61 & -23\\ 13 & -26 & -26\\ -23 & -38 & -17\end{vmatrix} and \begin{vmatrix}1 & 61 & -23\\ -13 & -26 & 26\\ -23 & 38 & -17\end{vmatrix}
  • \begin{vmatrix}1 & 61 & -23\\ 13 & -26 & -26\\ -23 & -38 & -17\end{vmatrix} and \begin{vmatrix}1 & -61 & 23\\ -13 & -26 & 26\\ -23 & 38 & -17\end{vmatrix}
  • \begin{vmatrix}1 & 61 & -23\\ 13 & -26 & -26\\ -23 & -38 & -17\end{vmatrix} and \begin{vmatrix}1 & 61 & 23\\ -13 & -26 & 26\\ -23 & 38 & -17\end{vmatrix}
  • None of these.
The adjoint of the matrix A = \begin{bmatrix}1 & 1 & 1\\ 2 & 1 & -3\\ -1 & 2 & 3\end{bmatrix} is
  • \frac{1}{11} \begin{bmatrix}9 & -1 & -4\\ -3 & 4 & 5\\ 5 & -3 & -1\end{bmatrix}
  • \begin{bmatrix}9 & 1 & -4\\ 3 & 4 & -5\\ 5 & 3 & -1\end{bmatrix}
  • \begin{bmatrix}9 & -3 & 5\\ -1 & 4 & -3\\ -4 & 5 & -1\end{bmatrix}
  • \begin{bmatrix}9 & -1 & -4\\ -3 & 4 & 5\\ 5 & -3 & -1\end{bmatrix}
If A^2 = I, then the value of det(A - I) is (where A has order 3)
  • 1
  • -1
  • 0
  • cannot say anything
If A=\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix}and f(x) = \displaystyle \frac{1 + x}{1- x}, then f(|A|) is
  • \dfrac{-1}{2}
  • \dfrac{1}{2}
  • \dfrac{-1}{3}
  • none of these
If A is a square matrix of order n\times n and k is a scalar, then adj(kA) is equal to _____________.
  • k^{n-1}adj\space A
  • k^{n}adj\space A
  • k^{n+1}adj\space A
  • kadj\space A
Find the adjoint of the matrix A = \begin{bmatrix}1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12\end{bmatrix}.
If \mbox{Adjoint A: } \begin{bmatrix}a & -9 & 1 \\ b & 9 & -2 \\ 2 & c & 1\end{bmatrix} \\, find the value of abc.
  • 231
  • 213
  • 321
  • 312
If matrix A is given by A = \begin{bmatrix}6 & 11\\ 2 & 4\end{bmatrix}, then the determinant of A^{2005} - 6A^{2004} is
  • 2^{2006}
  • (-11) 2^{2005}
  • -2^{2005}
  • (-9)2^{2004}
\displaystyle \left | \begin{matrix}0 &p-q  &p-r \\ q-p &0  &q-r \\ r-p &r-q  &0 \end{matrix} \right | is equal to
  • \displaystyle p+q+r
  • 0
  • \displaystyle p-q-r
  • \displaystyle -p+q+r
If \displaystyle \left | \begin{matrix}6i &-3i  &1 \\ 4 &3i  &-1 \\ 20 &3  &i \end{matrix} \right |=x+iy then
  • \displaystyle x=3, y=1
  • \displaystyle x=1, y=3
  • \displaystyle x=0, y=3
  • \displaystyle x=0, y=0
If A = \begin{bmatrix}3& -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{bmatrix} then find Adj(Adj\space A).
  • \quad \begin{bmatrix}3& -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{bmatrix}
  • \quad \begin{bmatrix}3& 3 & 4 \\ 2 & -3 & -4 \\ 0 & -1 & 1\end{bmatrix}
  • \quad \begin{bmatrix}3& 3 & 4 \\ 2 & -3 & 4 \\ 0 & 1 & 1\end{bmatrix}
  • \quad \begin{bmatrix}3& -3 & 4 \\ 2 & -3 & -4 \\ 0 & 1 & 1\end{bmatrix}
The matrix \begin{bmatrix}1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix} is
  • non-singular
  • singular
  • skew-symmetric
  • symmetric
The value of the \displaystyle m^{th} order determinant of a matrix \displaystyle A is \displaystyle 15 then the value of determinant formed by the cofactors of \displaystyle A will be
  • \displaystyle \left ( 15 \right )^{m}
  • \displaystyle 15^{2m}
  • \displaystyle \left ( 15 \right )^{m-1}
  • \displaystyle \left ( 15 \right )^{2m-1}
The points \displaystyle(a, b+c),(b, c+a),(c, a+b) are 
  • vertices of an equilateral triangle
  • collinear
  • concyclic
  • none of these
In a third order determinant a_{ij} denotes the element in the ith row and the jth column If a_{ij} = \left\{\begin{matrix}0, & i = j\\ 1, & i > j\\ -1,  & i < j\end{matrix}\right. then the value of the determinant
  • 0
  • 1
  • -1
  • none of these
The value of the determinant \begin{vmatrix} \sqrt { 6 }  & 2i & 3+\sqrt { 6 }  \\ \sqrt { 12 }  & \sqrt { 3 } +\sqrt { 8 } i & 3\sqrt { 2 } +\sqrt { 6 } i \\ \sqrt { 18 }  & \sqrt { 2 } +\sqrt { 12 } i & \sqrt { 27 } +2i \end{vmatrix} is
  • complex
  • real
  • irrational
  • rational
If \displaystyle \left | \begin{matrix}a+x &a  &x \\ a-x &a  &x \\ a-x &a  &-x \end{matrix} \right |=0 then \displaystyle x is
  • 0
  • \displaystyle a
  • 3
  • \displaystyle 2a
If \Delta =\begin{vmatrix} \cos \theta /2 & 1 & 1\\ 1 & \cos \theta /2 & -\cos \theta /2\\ -\cos \theta /2 & 1 & -1 \end{vmatrix}, If the minimun of \Delta is m_{1} and maximum of \Delta is m_{2}, then \left [ m_{1}, m_{2} \right ] are related
  • [-4, -2]
  • [2, 4]
  • [-4, 0]
  • [0, 2]
If \displaystyle A= \begin{bmatrix}2 &14  &17 \\0  &\sin 2x  &\cos 2x \\0  &\cos 2x  &\sin 2x \end{bmatrix} then \displaystyle \left | A \right | equals
  • \displaystyle \cos 2x
  • -2
  • \displaystyle -2 \cos 4x
  • \displaystyle \sin 4x
If x is a non-real cube root of -2, then the value of
\begin{vmatrix} 1 & 2x & 1\\ x^{2} & 1 & 3x^{2}\\ 2 & 2x & 1 \end{vmatrix} equals to
  • -7
  • -13
  • 0
  • -12
If \begin{vmatrix}x^{2}+3x &x+1  &x-2 \\ x-1 &1-2x  &x+4 \\ x+3 &x-4  &3x \end{vmatrix}= Ax^{4}+Bx^{3}+Cx^{2}+Dx+\varrho  
Then value of \varrho equals to,
  • -10
  • 10
  • 0
  • None of these
If A=\begin{pmatrix} 1 & 2 & 1\\ -1 & 0 & 3\\ 2 & -1 & 1 \end{pmatrix} then characteristic equation is given by
  • -\lambda ^{3}+2\lambda ^{2}-4\lambda +18=0
  • \lambda ^{3}+2\lambda ^{2}+4\lambda +18=0
  • 2\lambda ^{3}-\lambda ^{2}+6\lambda -2=0
  • None of these
If the determinant \begin{vmatrix}a & b & at-b\\ b & c & bt-c\\ 2 & 1 & 0\end{vmatrix}=0, if a, b, c are in
  • A.P.
  • G.P.
  • H.P.
  • k=1/2
If A=\begin{bmatrix} -1 & -3 & -3\\ 3 & 1 & -3\\ 3 & -3 & 1 \end{bmatrix} then adj (A) is
  • =4\begin{bmatrix} -2 & 3 & 3 \\ -3 & 2 & -3 \\ -3 & 3 & 2 \end{bmatrix}
  • =4\begin{bmatrix} -2 & 3 & 3 \\ 3 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}
  • =4\begin{bmatrix} -2 & -3 & 3 \\ -3 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}
  • =4\begin{bmatrix} -2 & 3 & 3 \\ -3 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers