Explanation
When three points A, B and C are collinear, slope of linejoining any two points (say AB) $$ = $$ slope of line joining any other twopoints (say BC). Slope of the line passing through points $$\left( { x }_{ 1 },{ y }_{ 1 }\right) $$ and $$\left( { x }_{ 2 },{ y }_{ 2 } \right)$$ $$ = $$ $$\dfrac { { y}_{ 2 }-{ y }_{ 1 } }{ { x }_{ 2 }-x_{ 1 } } $$Slope of the line passing through $$( \dfrac {2}{5}, \dfrac {1}{3})$$ and $$( \dfrac {1}{2}, k) =$$ Slope of line passing through $$(\dfrac {1}{2}, k)$$ and $$( \dfrac {4}{5},0) $$
$$ \dfrac { k- \dfrac{1}{3} }{ \dfrac {1}{2} - \dfrac {2}{5} } = \dfrac { 0 - k}{ \dfrac {4}{5} - \dfrac{1}{2} } $$On solving, $$ k = \dfrac {1}{4} $$
$${\textbf{Step1: Proving the three points are collinear }}$$
$${\text{Given points are A(a,b + c),B(b,c + a),C(c,a + b)}}$$
$${\text{ Lets the points of the triangle be }}\mathbf{{({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})}}$$
$${\text{[}}{{\text{x}}_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})] = 0$$
$$\text{Comparing these with the given points}$$
$$[a(c + a - a - b) + b(a + b - b - c) + c(b + c - c - a)] $$
$$=ac - ab + ab - bc + bc - ac$$
$$ = 0$$
$${\textbf{Hence,The given points are collinear.}}$$
$$\textbf{Step -1: Area of triangle in co-ordinate geometry.}$$
Distance between the points A$$(-a,-b) $$ and B $$ (0,0) = \sqrt { \left( 0 + a \right) ^{ 2 }+\left( 0 + b\right) ^{ 2 } } = \sqrt { {a}^{2} + {b}^{2} } $$
Distance between the points B$$(0,0) $$ and C $$ (a,b) = \sqrt { \left( a-0 \right) ^{ 2 }+\left( b-0\right) ^{ 2 } } = \sqrt { {a}^{2} + {b}^{2} } $$
Distance between the points C$$(a,b) $$ and D $$ ({a}^{2}, ab) = \sqrt { \left( {a}^{2} - a \right) ^{ 2 }+\left(ab - b\right) ^{ 2 } } = (a-1)\sqrt { {a}^{2} + {b}^{2} } $$
Distance between the points A$$(-a,-b) $$ and D $$ ({a}^{2}, ab) = \sqrt { \left( {a}^{2} + a \right) ^{ 2 }+\left(ab + b\right) ^{ 2 } } = (a +1)\sqrt { {a}^{2} + {b}^{2} } $$
Now. $$ AB+BC+CD = \sqrt { {a}^{2} + {b}^{2} } + \sqrt { {a}^{2} + {b}^{2} }+ (a-1)\sqrt { {a}^{2} + {b}^{2} } = (a +1)\sqrt { {a}^{2} + {b}^{2} } = AD $$
Hence, the points are collinear.
Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1})$$ ; $$({ x }_{ 2 },{ y }_{ 2 })$$ and $$({ x }_{ 3 },{ y }_{ 3})$$ is $$ \left| \dfrac { { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2}({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 } \right| $$
Since the given points are collinear, they do not form a triangle, which means area of the triangle is Zero.
Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (5,1) $$ ; $$({ x}_{ 2 },{ y }_{ 2 }) = (1,P) $$ and $$({ x }_{ 3 },{ y }_{ 3 }) = (4,2)$$ in the area formula, we get $$ \left| \dfrac { 5(P-2)+1(2-1)+4(1-P) }{ 2 } \right| =0 $$
$$ => 5P-10+1+4-4P = 0 $$
$$ => P = 5 $$
Please disable the adBlock and continue. Thank you.