Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Determinants Quiz 5 - MCQExams.com

If A is any square matrix of order 2, then  adj(adjA) =
  • A
  • detA
  • A1
  • None of these
If A=[0isinxicosxsinxi0sinxicosxisinx+i0] then |A| equals
  • 0
  • sinx
  • cosx
  • 1
If Δ=|a5i7+i5+ib3+i7i3ic|, then Δ is always
  • real
  • imaginary
  • 0
  • None of these
  • Both (A) & (R) are individually true & (R) is correct explanation of (A),
  • Both (A)& (R) are individually true but (R) is not the correct (proper) explanation of (A).
  • (A)is true but (R) is false,
  • (A)is false but (R ) is true.
A=[111213111] and B=[42250α123] If B is the adjoint of A then α equals
  • 2
  • 1
  • 2
  • 5
 If (3,11),(6,2) and (k,4) are  collinear points, then k is equal to
  • 8
  • -8
  • 4
  • -4
The points X(1,3),Y(8,3) and Z(2,1)
  • are collinear
  • not decided
  • cannot be plotted
  • are not collinear
If the points (25,13),(12,k) and (45,0) are collinear then find the value of k
  • k=12
  • k=14
  • k=15
  • k=12
The points A(7,8),B(5,2) and C(3,6) 
  • are not collinear
  • cannot be plotted
  • are not defined
  • are collinear
If every element of third order determinant of Δ is multiplied by 5 then value of new determinant equals to,
  • Δ
  • 5Δ
  • 25Δ
  • 125Δ
If ω1 is a complex cube root of unity, and
x+iy=|1iωi1ω2ωω21|
then
  • x=1,y=0
  • x=1,y=1
  • x=1,y=1
  • none of these
The points (a,b+c),(b,c+a) and (c,a+b) are
  • vertices of an equilateral triangle
  • concyclic
  • vertices of a right angled triangle
  • collinear
The points (k,22k), (k+1,2k) and (4k,62k) are collinear for
  • all values of k
  • k=1
  • k=1/2
  • no value of k.
If ABC is not a right triangle, then value of
Δ=|tanA111tanB111tanC|
is
  • 1
  • 2
  • 3
  • 0
If Δ=|0bacaab0cbacbc0| then Δ is equal to
  • a+b+c
  • (a+b+c)
  • abc
  • 0
If points (x,0), (0,y) and (1,1) are collinear then the relation is-
  • x+y=1
  • x+y=xy
  • x+y+1=0
  • x+y+xy=0
If a,b,c>1, Δ=|loga(abc)logablogaclogb(abc)1logbclogc(abc)logcb1| is
  • 0
  • logab+logbc+logca
  • logabc(a+b+c)
  • none of these
For which value of 'k' the points (7,2),(5,1),(3,k) are collinear?
  • 4
  • 4
  • 8
  • 8
If (3,2), (4,k) and (5,3) are collinear, then k is equal to:
  • 32
  • 25
  • 52
  • 35
Let A be a non-singular matrix. Then |adjA| is equal to
  • |A|n
  • |A|n1
  • |A|n2
  • None of these
The value of the determinant |abcabcabc| is equal to
  • 0
  • (ab)(bc)(ca)
  • (a+b)(b+c)(c+a)4abc
  • 4abc
If A=[0sinαsinαsinβsinα0cosαsinβsinαsinβcosαcosβ0], then which of the following is true?
  • |A| is independent of α and β.
  • A1 depends only on α.
  • A1 depends only on β.
  • None of these
If Dp=|p158p2359p32510|, then D1+D2+D3+D4+D5 is equal to
  • 0
  • 25
  • 625
  • none of these
a0 equals

  • 0
  • 1
  • 2
  • 3
The minors and cofactors of -4 and 9 in determinant |123456789| are respectively
  • 42,42;3,3
  • 42,42;3,3
  • 42,42;3,3
  • 42,3;42,3
If A=[4233], then adj (adj A) is equal to
  • [3234]
  • [4233]
  • 6[4233]
  • None of these
A set of points which lie on same line are called as
  • collinear
  • non-collinear
  • concurrent
  • none of these
If A=[001010100], then
  • AdjA is zero matrix
  • AdjA=[001010100]
  • A1=A
  • A2=I
The point with the co-ordinates (2a, 3a), (3b, 2b) & (c, c) are collinear _____________ .
  • for no value of a, b, c
  • for all values of a, b, c
  • if a, c5, b are in H.P.
  • if a, 25c, b are in H.P.
If lines AB, AC, AD and AE are parallel to a line then_______
  • A, B, C, D, E are collinear points
  • A, B, C, D, E are noncolinear points
  • AB & AC are parallel and AD & AE are perpendicular
  • None of these
Three lines px+qy+r=0,qx+ry+p=0 and rx+py+q=0 are concurrent if
  • p+q+r=0
  • p2+q2+r2=pr+qr+pq
  • p3+q3+r3=3pqr
  • none of these
The adjoint of the matrix [123021452] is:
  • [91944141832]
  • [94819143412]
  • [91944141832]
  • none of these
If A and B are square matrices of same orders then adj. (AB) equals
  • adj A. adj B
  • adj B/adj A
  • adj A+ adj B
  • adj Aadj B
If cofactor of 2x in the determinant |x1212xx1x1x0| is zero, then x equals to
  • 0
  • 2
  • 1
  • -1
If A=(aij) is a 4×4 matrix and Cij is the co-factor of the element aij in Det (A), then the expression a11C11+a12C12+a13C13+a14C14 equals
  • 0
  • 1
  • 1
  • Det.(A)
Consider the determinant Δ=|a1a2a3b1b2b3c1c2c3|
Mij= Minor of the element of ith row & jth column.
Cij= Cofactor of element of ith row & jth column.
a3M13b3M23+c3M33 is equal to
  • 0
  • 4Δ
  • 2Δ
  • Δ
Let A=[aij]n×n be a square matirx and let cij be cofactor of aij in A. If C=[cij], then
  • |C|=|A|
  • |C|=|A|n1
  • |C|=|A|n2
  • none of these
If in the determinant Δ=|a1b1c1a2b2c2a3b3c3|,Ai,Bi,Ci etc. be the co-factors of ai,bi,ci etc., then which of the following relations is incorrect?
  • a1A1+b1B1+c1C1=Δ
  • a2A2+b2B2+c2C2=Δ
  • a3A3+b3B3+c3C3=Δ
  • a1A2+b1B2+c1C2=Δ
Consider the determinant Δ=|a1a2a3b1b2b3c1c2c3|
Mij= Minor of the element of ith row & jth column.
Cij= Cofactor of element of ith row & jth column.
Value of b1.C31+b2.C32+b3.C33 is
  • 0
  • Δ
  • 2Δ
  • Δ2
If A+B+C=π, then |sin(A+B+C)sinBcosCsinB0tanAcos(A+B)tanA0| equals
  • 0
  • 2 sin B tan A cos C
  • 1
  • none of these
If f(x)=|cosx101cosx101cosx| the f(π3) equals
  • 1138
  • 538
  • 538
  • none of these
If x,y,z are positive numbers, then value of the determinant |1logxylogxzlogyx1logyzlogzxlogzy1| is equal to
  • 0
  • 3
  • logxyz
  • none
If Δ=|a1b1c1a2b2c2a3b3c3| and A2,B2,C2 are respectively cofactors of a2,b2,c2 then a1A2+b1B2+c1C2 is equal to
  • Δ
  • 0
  • Δ
  • none of these
If [a] denotes the greatest integer less than or equal to a and 1x<0,0y<1,1z<2, then |[x]+1[y][z][x][y]+1[z][x][y][z]+1| is equal to
  • [x]
  • [y]
  • [z]
  • None of these
If A=[α22α] and |A|3=125 then the value of α is
  • ±1
  • ±2
  • ±3
  • ±5
If the points A(1,2), O(0,0) and C(a,b) are collinear then 
  • a=b
  • a=2b
  • 2a=b
  • a=b
The points (-a ,-b), (0, 0) (a, b) and (a2,ab) are
  • Collnear
  • Vertices of parallelogram
  • Vertices of a rectangle
  • None of these
If A=[3214], then A(Adj.A) equals-
  • [100010]
  • [010100]
  • [101110]
  • none of these
If A=[123401315], then (adj.A)23 is equal to
  • 13
  • 13
  • 5
  • 5
If the points (5,1), (1,p) & (4,2) are collinear then the value of p will be 
  • 1
  • 5
  • 2
  • 2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers