Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Maths Determinants Quiz 6 - MCQExams.com

Value of p for which the points (-5, 1), (1, p) and (4, -2) are collinear is
  • 0
  • 2
  • -1
  • None of these
If the points (-2, -5), (2, -2) and (8, a) are collinear then value of a will be:
  • 12
  • 32
  • 52
  • 52
The value of |abc2a2a2bbca2b2c2ccab| will be
  • (a+b+c)2
  • (a+b+c)3
  • (abc)2
  • (a+bc)2
The points (-a, -b), (0, 0), (a, b) and (a2, ab) are
  • Collinear
  • Vertices of a parallelogram
  • Vertices of a rectangle
  • None of these
The points (0, 8/3), (1, 3) and (82, 30) are the vertices of :
  • obtuse angled triangle
  • right angled triangle
  • isosceles triangle
  • None of these
Find the value of K if A(8, 1), B(K, -4), C(2, -5) are collinear :
  • 2
  • 3
  • 4
  • 5
If the points (k,2k), (3k,3k) and (3,1) are collinear then the value of k is 
  • 79
  • 23
  • 23
  • 13
The points (-a, -b), (0, 0), (a, b) and (a2, ab) are
  • collinear
  • vertices of a rectangle
  • vertices of a parallelogram
  • None of these
Find the value of P for which the points A(-1, 3), B(2, P) and C(5, -1) are collinear :
  • 3
  • 1
  • 2
  • 4
Find the value of K if (2, 3), (4, K) and (6, -3) are collinear :
  • 0
  • 1
  • 2
  • 3
If |249d3|=4 then d=
  • 10
  • 11
  • 12
  • 13
If the coordinates of the vertices of a triangle are (0,0) , (0,2) and(3,1) , then area of the triangle is 
  • 3 sq.units
  • -3 sq. units
  • 2 sq. units
  • 1 sq.units
What is the value of y if (y,3),(5,6) and (8,8) are collinear?
  • 1
  • 2
  • 12
  • 12
Which of the following points are collinear?
  • (2a,0), (3a,0), (a,2a)
  • (3a,0), (0,3b), (a,2b)
  • (3a,b), (a,2b), (-a,b)
  • (a,-6), (-a,3b), (-2a,-2b)
If [cosθsinθ0sinθcosθ0001] then the value of a11A11+a12A12+a13A13= where A11,A12A13 are cofactors of a11,a12,a13 respectively
  • 1
  • 1
  • 0
  • 12
If z=|11+2i5i12i35+3i5i53i7|, then i=(1)
  • z is purely real
  • z is purely imaginary
  • z+¯z=0
  • (z¯z)i is purely imaginery
If Δ=|a2b00a2b2b0a|=0, then
  • 1b is a cube root of unity
  • a is one of the cube roots of unity
  • b is one of the cube roots of 8
  • ab is a cube root of 8
Find the correct option regarding given points (1,2),(2,4) and (3,6) 
  • Non-colllinear
  • Exists on parallel lines
  • Collinear
  • Exists on perpendicular lines
Find the value of k for which the points (2,3),(3,k) and (3,7) are collinear.
  • 5
  • 6
  • 8
  • 7
If the points (a,b),(3,5) and (5,2) are collinear. Then find the value of 3a+8b
  • 20
  • 31
  • 10
  • None
If P=[121131],Q=PPT, then the value of the determinant of Q is
  • 2
  • 2
  • 1
  • 0
Find the correct option regarding the given points (2,1),(0,2) and (3,2).
  • Collinear
  • Non-collinear
  • Exists on parallel lines
  • Exists on perpendicular lines
Find the correct option regarding given points (2,2),(1,2) and (3,1).
  • Collinear
  • Non-collinear
  • Exists on parallel lines
  • Exists on perpendicular lines
Consider the three collinear points (3,p),(4,4) and (5,6). Find the value of p.
  • 1
  • 2
  • 3
  • 4
The graph of f(x) is shown above in the xy-plane. The points (0,3),(5b,b) and (10b,b) are on the line described by f(x). If b is a positive constant, find the coordinates of point C.
479301_205f8c81dc934e7da45b65c8b3ea8304.png
  • (5,1)
  • (10,1)
  • (15,0.5)
  • (20,2)
If C = 2cosθ, then the value of the determinant to Δ=|c101c161c| is
  • 2sin22θsinθ
  • 8cos3θ4cosθ+6
  • 2sin2θsinθ
  • 8cos3θ+4cosθ+6
If A = [8524] satisfies the equation x2+4xp=0, then p = 
  • 64
  • 42
  • 36
  • 24
Evaluate |cos15osin15osin75ocos75o|
  • 1
  • 0
  • 2
  • 3
Let A be a 3×3 matrix and B be its adjoint matrix. If |B|=64, then |A|=
  • ±2
  • ±4
  • ±8
  • ±12
The points (a,b),(a,b),(0,0) and (a2,ab),a0,b0 are 
  • Collinear
  • Vertices of a parallelogram
  • Vertices of rectangle
  • Lie on a circle
If A(x)=|x+12x+13x+12x+13x+1x+13x+1x+12x+1| 
then 10A(x)dx=
  • 15
  • 152
  • 30
  • 5
If a, b and c are in A, P., then the value of |x+2x+3x+ax+4x+5x+bx+6x+7x+c| is.
  • x(a+b+c)
  • 9x2+a+b+c
  • 0
  • a+b+c
If the points (2,5),(4,6) and (a,a) are collinear, then the value of a is equal to
  • 8
  • 4
  • 4
  • 8
If Δr=|2r1mCr1m212mm+1sin2(m2)sin2(m)sin2(m+1)|, then the value of mr=0Δr, is
  • 1
  • 0
  • 2
  • None of these
The centre of a circle is (6,4). If one end of the diameter of the circle is at (12,8), then the other end is at
  • (18,12)
  • (9,6)
  • (3,2)
  • (0,0)
If a,b and c are in AP, then determinant |x+2x+3x+2ax+3x+4x+2bx+4x+5x+2c| is
  • 0
  • 1
  • x
  • 2x
The value of the determinant |1cos(αβ)cosαcos(αβ)1cosβcosαcosβ1| is
  • α2+β2
  • α2β2
  • 1
  • 0
The value of the determinant |cosαsinα1sinαcosα1cos(α+β)sin(α+β)1| is
  • Independent of α
  • Independent of β
  • Independent of α and β
  • None of the above
If (r)=|rr31n(n+1)|, then nr=1(r) is equal to
  • nr=1r2
  • nr=1r3
  • nr=1r
  • nr=1r4
If |ab00abb0a|=0, then which one of the following is correct?
  • ab is one of the cube roots of unity
  • ab is one of the cube roots of 1.
  • a is one of the cube roots of unity
  • b is one of the cube roots of unity.
If A is an invertible matrix, then what is det (A1) equal to?
  • detA
  • 1detA
  • 1
  • None of the above
|111abca2bcb2cac2ab|=
  • 0
  • 1
  • abc
  • (ab),(bc),(ca)
If A=[1223] and B=[1100] then what is determinant of AB ?
  • 0
  • 1
  • 10
  • 20
If |8515x3631|=2 then what is the value of x ?
  • 44
  • 55
  • 61
  • 84
The cofactor of the element 4 in the determinant
                    |123456589|
is
  • 2
  • 4
  • 6
  • 6
Consider the following statements in respect of the determinant |cos2α2sin2α2sin2β2cos2β2| where α,β are complementary angles
The value of the determinant is 12cos(αβ2).
The maximum value of the determinant is 12.
Which of the above statements is/are correct?
  • 1 only
  • 2 only
  • Both 1 and 2
  • Neither 1 nor 2
Let A=(x+23x3x+2),B=(x05x+2). Then all solutions of the equation det(AB)=0 is
  • 1,1,0,2
  • 1,4,0,2
  • 1,1,4,3
  • 1,4,0,3
If C=2cosθ , then the value of the determinant =|C101C161C| is :
  • sin4θsinθ
  • 2sin2θsinθ
  • 4cos2θ(2cosθ1)
  • None of these above
If A=[1234], then A1=
  • 12[4231]
  • 12[4231]
  • [2413]
  • [2413]
If α,β,γ are the roots of the equation x3+px+q=0 then the value of the determinant |αβγβγαγαβ| is
  • q
  • 0
  • p
  • p22q
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers