CBSE Questions for Class 12 Commerce Maths Determinants Quiz 7 - MCQExams.com

If $$A = \begin{vmatrix} a_{1} & b_{1} & c_{1}\\ a_{2} & b_{2} & c_{2}\\ a_{3} & b_{3} & c_{3}\end{vmatrix}$$ and $$B = \begin{vmatrix} c_{1}& c_{2} & c_{3}\\ a_{1} & a_{2} & a_{3}\\ b_{1} & b_{2} & b_{3}\end{vmatrix}$$ then.
  • $$A = -B$$
  • $$A = B$$
  • $$B = 0$$
  • $$B = A^{2}$$
If $$\begin{vmatrix}1 & sin \theta &1 \\ -sin \theta & 1 & sin \theta\\ -1 & -sin \theta & 1\end{vmatrix}$$ then,
  • $$\Delta =0$$
  • $$\Delta \in (0, \infty )$$
  • $$\Delta \in [-1, 2]$$
  • $$\Delta \in [2, 4]$$
If $$A=\begin{bmatrix} x & 1 & -x \\ 0 & 1 & -1 \\ x & 0 & 7 \end{bmatrix}$$ and $$det(A)=\begin{vmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \\ 0 & 6 & 7 \end{vmatrix}$$ then the value of $$x$$ is
  • $$-3$$
  • $$3$$
  • $$2$$
  • $$-8$$
  • $$-2$$
If $$A=\begin{vmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{vmatrix}$$, then the value of $$\left| A \right| \left| adj\left( A \right)  \right| $$ is
  • $${ a }^{ 3 }$$
  • $${ a }^{ 6 }$$
  • $${ a }^{ 9 }$$
  • $${ a }^{ 27 }$$
If $$A=\begin{bmatrix} 1 & 2 & -1 \\ -1& 1 & 2 \\ 2 & -1 & 1\end{bmatrix}$$, then $$\text{det} (\text{adj}(\text{adj} A))$$ is equal to.
  • $$14^4$$
  • $$14^3$$
  • $$14^2$$
  • $$14$$
If $$\begin{vmatrix} x & 2 & 8 \\ 2 & 8 & x \\ 8 & x & 2 \end{vmatrix}=\begin{vmatrix} 3 & x & 7 \\ x & 7 & 3 \\ 7 & 3 & x \end{vmatrix}=\begin{vmatrix} 5 & 5 & x \\ 5 & x & 5 \\ x & 5 & 5 \end{vmatrix}=0$$ then $$x$$ is equal to
  • $$0$$
  • $$-10$$
  • $$3$$
  • None of these
If $$A = \begin{bmatrix} \dfrac {-1 + i\sqrt {3}}{2i}& \dfrac {-1 - i\sqrt {3}}{2i}\\ \dfrac {1 + i\sqrt {3}}{2i} & \dfrac {1 - i\sqrt {3}}{2i}\end{bmatrix}, i = \sqrt {-i}$$ and $$f(x) = x^{2} + 2$$, then $$f(A)$$ is equal to
  • $$\left (\dfrac {5 - i\sqrt {3}}{2}\right ) \begin{bmatrix}

    1 & 0\\

    0 & 1

    \end{bmatrix}$$
  • $$\left (\dfrac {3 - i\sqrt {3}}{2}\right ) \begin{bmatrix}

    1 & 0\\

    0 & 1

    \end{bmatrix}$$
  • $$\begin{bmatrix}

    1 & 0\\

    0 & 1

    \end{bmatrix}$$
  • $$(2 + i\sqrt {3})\begin{bmatrix}

    1 & 0\\

    0 & 1

    \end{bmatrix}$$
If $$3x+2y=I$$ and $$2x-y=O$$, where $$I$$ and $$O$$ are unit and null matrices of order $$3$$ respectively, then
  • $$x=\dfrac { 1 }{ 7 } , y=\dfrac { 2 }{ 7 } $$
  • $$x=\dfrac { 2 }{ 7 } , y=\dfrac { 1 }{ 7 } $$
  • $$x=\left( \dfrac { 1 }{ 7 } \right) I, y=\left( \dfrac { 2 }{ 7 } \right) I$$
  • $$x=\left( \dfrac { 2 }{ 7 } \right) I, y=\left( \dfrac { 1 }{ 7 } \right) I$$
$$\begin{vmatrix} { \left( { a }^{ x }+{ a }^{ -x } \right)  }^{ 2 } & { \left( { a }^{ x }-{ a }^{ -x } \right)  }^{ 2 } & 1 \\ { \left( b^{ x }+{ b }^{ -x } \right)  }^{ 2 } & { \left( { b }^{ x }-{ b }^{ -x } \right)  }^{ 2 } & 1 \\ { \left( { c }^{ x }+{ c }^{ -x } \right)  }^{ 2 } & { \left( { c }^{ x }-{ c }^{ -x } \right)  }^{ 2 } & 1 \end{vmatrix}$$ is equal to
  • $$0$$
  • $$2abc$$
  • $${ a }^{ 2 }{ b }^{ 2 }{ c }^{ 2 }$$
  • None of these
If the determinant $$\Delta =\begin{vmatrix} 3 & -2 & \sin { 3\theta  }  \\ -7 & 8 & \cos { 2\theta  }  \\ -11 & 14 & 2 \end{vmatrix}=0$$, then the value of $$\sin { \theta  } $$ is
  • $$\dfrac { 1 }{ 3 }$$ or $$ 1$$
  • $$\dfrac { 1 }{ \sqrt { 2 } } $$ or $$\dfrac { \sqrt { 3 } }{ 2 } $$
  • $$0$$ or $$\dfrac { 1 }{ 2 } $$
  • None of these
If $$A, B, C$$ are collinear points such that $$A(3, 4), C(11, 10)$$ and $$AB = 2.5$$ then point $$B$$ is
  • $$\left(5,\dfrac{11}{2}\right)$$
  • $$\left(\dfrac{5}{2},11\right)$$
  • $$(5, 5)$$
  • $$(5, 6)$$
If $$A = \begin{bmatrix} 2& -3\\ 4 & 1\end{bmatrix}$$, then adjoint of matrix $$A$$ is _______.
  • $$ \begin{bmatrix} 1& 3\\ -4 & 2\end{bmatrix}$$
  • $$ \begin{bmatrix} 1& -3\\ -4 & 2\end{bmatrix}$$
  • $$ \begin{bmatrix} 1& 3\\ 4 & -2\end{bmatrix}$$
  • $$ \begin{bmatrix} -1& -3\\ -4 & 2\end{bmatrix}$$
If maximum and minimum values of $$D = \begin{vmatrix}1 & -\cos \theta & 1\\ \cos \theta & 1 & -\cos \theta\\ 1 & \cos \theta & 1\end{vmatrix}$$ are $$p$$ and $$q$$ respectively, then the value of $$2p + 3q$$ is _________.
  • $$16$$
  • $$6$$
  • $$14$$
  • $$8$$
The value of the determinant $$\begin{vmatrix}b^2-ab & b-c & bc-ac\\ ab-a^2 & a-b & b^2-ab\\ bc-ac & c-a & ab-a^2\end{vmatrix}$$$$=$$ ____________.
  • $$abc$$
  • $$a+b+c$$
  • $$0$$
  • $$ab+bc+ca$$
If the vectors $$\vec {a}, \vec {b}, \vec {c}$$ are coplanar, then the value of $$\begin{vmatrix}\vec {a}& \vec {b} & \vec {c}\\ \vec {a}.\vec {a} & \vec {a}.\vec {b} & \vec {a}.\vec {c}\\ \vec {b}.\vec {a} & \vec {b}.\vec {b} & \vec {b} . \vec {c}\end{vmatrix} =$$
  • $$1$$
  • $$0$$
  • $$-1$$
  • $$\vec {a} + \vec {b} + \vec {c}$$
Let $$A^{-1}\begin{bmatrix} 1 & 2017 & 2\\ 1 & 2017 & 4 \\ 1 & 2018 & 8\end {bmatrix}$$. Then $$|2A|-|2A^{-1}|$$ is equal to.
  • $$3$$
  • $$-3$$
  • $$12$$
  • $$-12$$
The value of the determinant 
$$\begin{vmatrix} \cos^2 \dfrac{\theta}{2}&\sin^2\dfrac{\theta}{2}\\ \sin^2\dfrac{\theta}{2} &\cos^2\dfrac{\theta}{2}  \end{vmatrix}$$ 
for all values of $$\theta $$, is
  • $$1$$
  • $$\cos\theta $$
  • $$\sin\theta $$
  • $$\cos2\theta $$
Let $$z = \begin{vmatrix} 1& 1 + 2i & -5i\\ 1 - 2i & -3 & 5 + 3i\\ 5i & 5 - 3i & 7\end{vmatrix}$$, then
  • $$z$$ is purely real
  • $$z$$ is purely imaginary
  • $$(z - \overline {z})i = 0$$
  • $$(z + \overline {z})i = 0$$
The adjoint of the matric $$A = \begin{bmatrix}1 & 0 & 2\\ 2 & 1 & 0\\ 0 & 3 & 1\end{bmatrix}$$ is
  • $$\begin{bmatrix}-1 & 6 & 2\\ -2 & 1 & -4\\ 6 & 3 & 1\end{bmatrix}$$
  • $$\begin{bmatrix}1 & 6 & -2\\ -2 & 1 & 4\\ 6 & -3 & 1\end{bmatrix}$$
  • $$\begin{bmatrix}6 & 1 & 2\\ 4 & -1 & 2\\ 6 & 3 & -1\end{bmatrix}$$
  • $$\begin{bmatrix}-6 & 2 & 1\\ 4 & -2 & 1\\ 3 & 1 & -6\end{bmatrix}$$
Three distinct points A, B and C are given in the 2-dimensional coordinate plane such that the ratio of the distance of any one of them from the point $$(1, 0)$$ to the distance from the point $$(-1, 0)$$ is equal to $$\displaystyle \frac{1}{3}$$. Then the circumcentre of the triangle ABC is at the point:
  • $$\displaystyle \left( \frac{5}{2}, 0 \right)$$
  • $$\displaystyle \left( \frac{5}{3}, 0 \right)$$
  • $$\displaystyle \left( 0, 0 \right)$$
  • $$\displaystyle \left( \frac{5}{8}, 0 \right)$$
If $$A + B + C = \pi$$, then $$\begin{vmatrix} \sin (A + B + C)& \sin B & \cos C\\ -\sin B & 0 & \tan A\\ \cos (A + B) & -\tan A & 0\end{vmatrix}$$ is equal to
  • $$0$$
  • $$2\sin B \tan A \cos C$$
  • $$1$$
  • None of these
If $$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ satisfies the equation $$x^2 - (a + d) x + k = 0$$, then ?
  • $$k = bc$$
  • $$k = ad$$
  • $$k = a^2 + b^2 + c^2 + d^2$$
  • $$ad - bc$$
For a positive numbers $$x, y$$ and $$z$$ the numerical value of the determinant $$\begin{bmatrix}1 & \log_{x} y & \log_{x} z \\ \log_{y} x & 1 & \log_{y} z\\ \log_{z} x & \log_{z} y & 1\end{bmatrix}$$ is:
  • $$0$$
  • $$1$$
  • $$\log_{e} xyz$$
  • $$-\log_{e} xyz$$

The value of the determinant $$\begin{vmatrix}b^{2}-ab\,\,  b-c\,\, bc-ac &  & \\ ab-a^{2}\,\, a-b\,\, b^{2}-ab&  & \\  bc-ac\,\, c-a\,\, ab-a^{2}&  & \end{vmatrix}$$ =
  • $$abc$$
  • $$a+b+c$$
  • $$0$$
  • $$ab+bc+ca$$
If the points $$A(-2,1),B(a,b)$$ and $$C(4,-1)$$ are collinear and $$a-b=1$$, find the values of $$a$$ and $$b$$.
  • $$a=1,b=5$$
  • $$a=1,b=0$$
  • $$a=2,b=0$$
  • None of these
State true or false.
The determinants $$
\left |
\begin{array}{111}
1 & a & bc \\
1 & b & cd \\
1 & c & ab \\
\end {array}
\right |
$$ and $$
\left |
\begin{array}{111}
1 & a & a^2 \\
1 & b & b^2 \\
1 & c & c^2 \\
\end {array}
\right |
$$ are not identically equal.
  • True
  • False
If $$\triangle$$ =$$
\left |
\begin{array}{111}
x_1+y_1\omega  & x_1\omega^2+y_1 & x_1+y_1\omega+z_1\omega^2 \\
x_2+y_2\omega & x_2\omega^2+y_2 & x_2+y_2\omega+z_2\omega^2 \\
x_3+y_3\omega & x_3\omega^2+y_3 & x_3+y_3\omega+z_3\omega^2 \\
\end {array}
\right |
$$
where $$1,\omega,\omega^2$$ are cube roots of unity then $$\triangle$$ is equal to
  • $$0$$
  • $$1$$
  • $$-1$$
  • None of these
$$\left| \begin{matrix} 1+a & 1 & 1 & 1 \\ 1 & 1+b & 1 & 1 \\ 1 & 1 & 1+c & 1 \\ 1 & 1 & 1 & 1+d \end{matrix} \right|$$
$$=abcd\left( 1+\dfrac { 1 }{ a } +\dfrac { 1 }{ b } +\dfrac { 1 }{ c } +\dfrac { 1 }{ d }  \right)\\ =s-r$$
if $$a,b,c,d$$ are the roots of $${ x }^{ 4 }+p{ x }^{ 3 }+q{ x }^{ 2 }+rx+s=0.$$
  • True
  • False
If $$\left |\begin{array}{111}6i & -3i & 1 \\4 & 3i & -1 \\20 & 3 & i \\\end {array}\right | =x+iy$$, then
  • $$x=3, y=1$$
  • $$x = 1, y=3$$
  • $$x=0, y=3$$
  • $$x=0, y=0$$
The value of determinant $$\begin{vmatrix} x+1 & x+2 & x+4\\ x+3 & x+5 & x+8\\ x+7 & x+10 & x+14\end{vmatrix}$$ is?
  • $$-2$$
  • $$x^2+2$$
  • $$2$$
  • None of these
If $$\Delta_1=\begin{vmatrix} x & b & b\\ a & x & b\\ a & a & x\end{vmatrix}$$ and $$\Delta_2=\begin{vmatrix} x & b\\ a & x\end{vmatrix}$$ are the given determinants, then.
  • $$\Delta_1=3(\Delta_2)^2$$
  • $$(d/dx)\Delta_1=3\Delta_2$$
  • $$(d/dx)\Delta_1=3(\Delta_2)^2$$
  • $$\Delta_1=3\Delta_2^{3/2}$$
If A = $$\begin{bmatrix}
              a & 0 & 0 \\[0.3em]
              0 & a & 0 \\[0.3em]
              0 & 0 & a
              \end{bmatrix}$$, then the value of |A| |Adj. A|
  • $$a^3$$
  • $$a^6$$
  • $$a^9$$
  • $$a^{27}$$
If $$f(x) =$$ $$
\left |
\begin{array}{111}
1 & x & x+1 \\
2x & x(x-1) & (x+1)x \\
3x(x-1) & x(x-1)(x-2) & (x+1)x(x-1) \\
\end {array}
\right |
$$
then f(100) is equal to
  • 0
  • 1
  • 100
  • -100
If A = $$ \begin{bmatrix} \alpha & 2 \\ 2 & \alpha\end{bmatrix}$$ and | A$$^3$$ | = 125 then $$\alpha$$ is 
  • $$\pm1$$
  • =2
  • $$\pm3$$
  • $$\pm5$$
If a, b, c are three non-zero distinct numbers in A.P., then 
$$\triangle = $$ $$
\left |
\begin{array}{111}
(b-c)(c-a) & (a-b)(c-a) & (a-b)(b-c) \\
(c-a)(a-b) & (b-c)(a-b) & (b-c)(c-a) \\
(a-b)(b-c) & (c-a)(b-c) & (c-a)(a-b) \\
\end {array}
\right |
$$ is always +ve.
  • True
  • False
If the points $$(-2, -5), (2, -2), (8, a)$$ are collinear, then the value of $$a$$ is ________.
  • $$\dfrac 52$$
  • $$\dfrac 32$$
  • $$\dfrac 72$$
  • None of these
State true or false
Following points are collinear. 
$$(-2, 1) , (0, 5) , (-1, 2)$$.
  • True
  • False
The points $$(-a, -b), (0, 0), (a, b)$$ $$(a^2,ab)$$  are 
  • collinear
  • vertices of rectangle
  • vertices of parallelgram
  • none of these
$$2x - 3y + z = 0$$ 
$$x + 2y - 3z =0$$
$$4x - y - 2z = 0$$
The system of equations have a non trivial solution
  • True
  • False
If the lines $$p_{ 1 }x+q_{ 1 }y=1, p_{ 2 }x+q_{ 2 }y=1$$ and $$p_{3}x+q_{3}y=1$$ be concurrent, show that the points $$(p_{1},q_{1}), (p_{2}, q_{2})$$ and $$ (p_{3}, q_{3})$$ are collinear.
  • vertices of right angle triangle
  • vertices of an equilateral triangle
  • vertices of an isosceles triangle
  • Collinear
If A = $$\begin{bmatrix}
              a & 0 & 0 \\[0.3em]
              0 & a & 0 \\[0.3em]
              0 & 0 & a
              \end{bmatrix}$$, then the value of  |Adj. A| is equal to
  • $$a^3$$
  • $$a^6$$
  • $$a^9$$
  • $$a^{27}$$
If $$ \begin{vmatrix}a & a & x \\ m & m & m \\b & x & b\end{vmatrix}=0$$  then $$x$$ is:
  • $$a$$
  • $$b$$
  • $$a$$ or $$b$$
  • $$0$$
$$\begin{vmatrix} 2^{ 3 } & 3^{ 3 } & 3.2^{ 2 }+3.2+1 \\ 3^{ 3 } & 4^{ 3 } & 3.3^{ 2 }+3.3+1 \\ 4^{ 3 } & 5^{ 3 } & 3.4^{ 2 }+3.4+1 \end{vmatrix}$$ is equal to
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
Find $$ \begin{vmatrix}\log e & \log e^{2} & \log e^{3} \\ \log e^{2} & \log e^{3} & \log e^{4} \\ \log e^{3} & \log e^{4} & \log e^{5}\end{vmatrix}$$.
  • $$0$$
  • $$1$$
  • $$4 \log e$$
  • $$5 \log e$$
If $$\left| {\begin{array}{*{20}{c}}1&3&2\\1&{x - 1}&{2x + 2}\\2&5&9\end{array}} \right| = 0$$, then $$x$$ is equal to :-
  • $$2$$
  • $$1$$
  • $$4$$
  • $$0$$
If $$\Delta = \begin{vmatrix} x-3 & 2x+1 & 2 \\ 3x+2 & x+2 & 1 \\ 5x+1 & 5x+4 & 5 \end{vmatrix} $$, then $$ \Delta$$ is
  • multiple of $$x^2$$
  • $$15$$
  • a multiple of $$x$$
  • $$-15$$
Find the determinant of given matrix $$\left[ \begin{matrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{matrix} \right] $$
  • $$2(a+b+c)^{3}$$
  • $$(a-b-c)^{3}$$
  • $$2(a-b-c)^{3}$$
  • $$(a+b+c)^{3}$$
If $$\triangle =\begin{bmatrix} { a }_{ 1 } & { b }_{ 1 } & { c }_{ 1 } \\ { a }_{ 2 } & { b }_{ 2 } & { c }_{ 2 } \\ { a }_{ 3 } & { b }_{ 3 } & { c }_{ 3 } \end{bmatrix}$$ and $${A}_{2},{B}_{2},{C}_{2}$$ are respectively cofactors of $${a}_{2},{b}_{2},{c}_{2}$$ then $${a}_{1}{A}_{2}+{b}_{1}{B}_{2}+{c}_{1}{C}_{2}$$ is equal to ?
  • $$-\triangle$$
  • $$0$$
  • $$\triangle$$
  • $$none\ of\ these$$
the below matrix  relation is 
$$\begin{vmatrix} 1 & { a }^{ 2 } & { a }^{ 3 } \\ 1 & { b }^{ 2 } & { b }^{ 3 } \\ 1 & { c }^{ 2 } & { c }^{ 3 } \end{vmatrix}=\begin{vmatrix} 0 & { a }^{ 2 }-{ c }^{ 2 } & { a }^{ 3 }-{ c }^{ 3 } \\ 0 & { b }^{ 2 }-{ c }^{ 2 } & { b }^{ 3 }-{ c }^{ 3 } \\ 1 & { c }^{ 2 } & { c }^{ 3 } \end{vmatrix}$$$$=\left( a-b \right) \left( b-c \right) \begin{vmatrix} 0 & { a }-{ c } & { a }^{ 2 }+ac{ +c }^{ 2 } \\ 0 & { b }-{ c } & { b }^{ 2 }+bc+{ c }^{ 2 } \\ 1 & { c }^{ 2 } & { c }^{ 3 } \end{vmatrix}$$
  • True
  • False
Let the matrix A and B be defined as $$A = \left( {\matrix{
   3 & 2  \cr
   2 & 1  \cr

 } } \right)$$ and $$B = \left( {\matrix{
   3 & 1  \cr
   7 & 3  \cr

 } } \right)$$ then the value of $$Det.\left( {2{A^9}{b^{ - 1}}} \right),$$ is

  • 2
  • 1
  • -1
  • -2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers