Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Determinants Quiz 7 - MCQExams.com

If A=|a1b1c1a2b2c2a3b3c3| and B=|c1c2c3a1a2a3b1b2b3| then.
  • A=B
  • A=B
  • B=0
  • B=A2
If |1sinθ1sinθ1sinθ1sinθ1| then,
  • Δ=0
  • Δ(0,)
  • Δ[1,2]
  • Δ[2,4]
If A=[x1x011x07] and det(A)=|301210067| then the value of x is
  • 3
  • 3
  • 2
  • 8
  • 2
If A=|a000a000a|, then the value of |A||adj(A)| is
  • a3
  • a6
  • a9
  • a27
If A=[121112211], then det(adj(adjA)) is equal to.
  • 144
  • 143
  • 142
  • 14
If |x2828x8x2|=|3x7x7373x|=|55x5x5x55|=0 then x is equal to
  • 0
  • 10
  • 3
  • None of these
If A=[1+i32i1i32i1+i32i1i32i],i=i and f(x)=x2+2, then f(A) is equal to
  • (5i32)[1001]
  • (3i32)[1001]
  • [1001]
  • (2+i3)[1001]
If 3x+2y=I and 2xy=O, where I and O are unit and null matrices of order 3 respectively, then
  • x=17,y=27
  • x=27,y=17
  • x=(17)I,y=(27)I
  • x=(27)I,y=(17)I
|(ax+ax)2(axax)21(bx+bx)2(bxbx)21(cx+cx)2(cxcx)21| is equal to
  • 0
  • 2abc
  • a2b2c2
  • None of these
If the determinant Δ=|32sin3θ78cos2θ11142|=0, then the value of sinθ is
  • 13 or 1
  • 12 or 32
  • 0 or 12
  • None of these
If A,B,C are collinear points such that A(3,4),C(11,10) and AB=2.5 then point B is
  • (5,112)
  • (52,11)
  • (5,5)
  • (5,6)
If A=[2341], then adjoint of matrix A is _______.
  • [1342]
  • [1342]
  • [1342]
  • [1342]
If maximum and minimum values of D=|1cosθ1cosθ1cosθ1cosθ1| are p and q respectively, then the value of 2p+3q is _________.
  • 16
  • 6
  • 14
  • 8
The value of the determinant |b2abbcbcacaba2abb2abbcaccaaba2|= ____________.
  • abc
  • a+b+c
  • 0
  • ab+bc+ca
If the vectors a,b,c are coplanar, then the value of |abca.aa.ba.cb.ab.bb.c|=
  • 1
  • 0
  • 1
  • a+b+c
Let A1[120172120174120188]. Then |2A||2A1| is equal to.
  • 3
  • 3
  • 12
  • 12
The value of the determinant 
|cos2θ2sin2θ2sin2θ2cos2θ2| 
for all values of θ, is
  • 1
  • cosθ
  • sinθ
  • cos2θ
Let z=|11+2i5i12i35+3i5i53i7|, then
  • z is purely real
  • z is purely imaginary
  • (z¯z)i=0
  • (z+¯z)i=0
The adjoint of the matric A=[102210031] is
  • [162214631]
  • [162214631]
  • [612412631]
  • [621421316]
Three distinct points A, B and C are given in the 2-dimensional coordinate plane such that the ratio of the distance of any one of them from the point (1,0) to the distance from the point (1,0) is equal to 13. Then the circumcentre of the triangle ABC is at the point:
  • (52,0)
  • (53,0)
  • (0,0)
  • (58,0)
If A+B+C=π, then |sin(A+B+C)sinBcosCsinB0tanAcos(A+B)tanA0| is equal to
  • 0
  • 2sinBtanAcosC
  • 1
  • None of these
If A=(abcd) satisfies the equation x2(a+d)x+k=0, then ?
  • k=bc
  • k=ad
  • k=a2+b2+c2+d2
  • adbc
For a positive numbers x,y and z the numerical value of the determinant [1logxylogxzlogyx1logyzlogzxlogzy1] is:
  • 0
  • 1
  • logexyz
  • logexyz

The value of the determinant |b2abbcbcacaba2abb2abbcaccaaba2| =
  • abc
  • a+b+c
  • 0
  • ab+bc+ca
If the points A(2,1),B(a,b) and C(4,1) are collinear and ab=1, find the values of a and b.
  • a=1,b=5
  • a=1,b=0
  • a=2,b=0
  • None of these
State true or false.
The determinants |1abc1bcd1cab| and |1aa21bb21cc2| are not identically equal.
  • True
  • False
If =|x1+y1ωx1ω2+y1x1+y1ω+z1ω2x2+y2ωx2ω2+y2x2+y2ω+z2ω2x3+y3ωx3ω2+y3x3+y3ω+z3ω2|
where 1,ω,ω2 are cube roots of unity then is equal to
  • 0
  • 1
  • 1
  • None of these
|1+a11111+b11111+c11111+d|
=abcd(1+1a+1b+1c+1d)=sr
if a,b,c,d are the roots of x4+px3+qx2+rx+s=0.
  • True
  • False
If |6i3i143i1203i|=x+iy, then
  • x=3,y=1
  • x=1,y=3
  • x=0,y=3
  • x=0,y=0
The value of determinant |x+1x+2x+4x+3x+5x+8x+7x+10x+14| is?
  • 2
  • x2+2
  • 2
  • None of these
If Δ1=|xbbaxbaax| and Δ2=|xbax| are the given determinants, then.
  • Δ1=3(Δ2)2
  • (d/dx)Δ1=3Δ2
  • (d/dx)Δ1=3(Δ2)2
  • Δ1=3Δ3/22
If A = [a000a000a], then the value of |A| |Adj. A|
  • a3
  • a6
  • a9
  • a27
If f(x)= |1xx+12xx(x1)(x+1)x3x(x1)x(x1)(x2)(x+1)x(x1)|
then f(100) is equal to
  • 0
  • 1
  • 100
  • -100
If A = [α22α] and | A3 | = 125 then α is 
  • ±1
  • =2
  • ±3
  • ±5
If a, b, c are three non-zero distinct numbers in A.P., then 
= |(bc)(ca)(ab)(ca)(ab)(bc)(ca)(ab)(bc)(ab)(bc)(ca)(ab)(bc)(ca)(bc)(ca)(ab)| is always +ve.
  • True
  • False
If the points (2,5),(2,2),(8,a) are collinear, then the value of a is ________.
  • 52
  • 32
  • 72
  • None of these
State true or false
Following points are collinear. 
(2,1),(0,5),(1,2).
  • True
  • False
The points (a,b),(0,0),(a,b) (a2,ab)  are 
  • collinear
  • vertices of rectangle
  • vertices of parallelgram
  • none of these
2x3y+z=0 
x+2y3z=0
4xy2z=0
The system of equations have a non trivial solution
  • True
  • False
If the lines p1x+q1y=1,p2x+q2y=1 and p3x+q3y=1 be concurrent, show that the points (p1,q1),(p2,q2) and (p3,q3) are collinear.
  • vertices of right angle triangle
  • vertices of an equilateral triangle
  • vertices of an isosceles triangle
  • Collinear
If A = [a000a000a], then the value of  |Adj. A| is equal to
  • a3
  • a6
  • a9
  • a27
If |aaxmmmbxb|=0  then x is:
  • a
  • b
  • a or b
  • 0
|23333.22+3.2+133433.32+3.3+143533.42+3.4+1| is equal to
  • 0
  • 1
  • 2
  • 3
Find |logeloge2loge3loge2loge3loge4loge3loge4loge5|.
  • 0
  • 1
  • 4loge
  • 5loge
If |1321x12x+2259|=0, then x is equal to :-
  • 2
  • 1
  • 4
  • 0
If Δ=|x32x+123x+2x+215x+15x+45|, then Δ is
  • multiple of x2
  • 15
  • a multiple of x
  • 15
Find the determinant of given matrix [abc2a2a2bbca2b2c2ccab]
  • 2(a+b+c)3
  • (abc)3
  • 2(abc)3
  • (a+b+c)3
If =[a1b1c1a2b2c2a3b3c3] and A2,B2,C2 are respectively cofactors of a2,b2,c2 then a1A2+b1B2+c1C2 is equal to ?
  • 0
  • none of these
the below matrix  relation is 
|1a2a31b2b31c2c3|=|0a2c2a3c30b2c2b3c31c2c3|=(ab)(bc)|0aca2+ac+c20bcb2+bc+c21c2c3|
  • True
  • False
Let the matrix A and B be defined as A=(3221) and B=(3173) then the value of Det.(2A9b1), is

  • 2
  • 1
  • -1
  • -2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers