Processing math: 3%

CBSE Questions for Class 12 Commerce Maths Determinants Quiz 8 - MCQExams.com

If xayb=em,xcyd=en,1=|mbnd|,2=|amcn| and 3=|abcd| the value of x and y are respectively
  • 13 and 23
  • 21 and 31
  • log(13)andlog(23)
  • e1/3 and e2/3
The value of \dfrac { 1 }{ x-y } \begin{vmatrix} 1 & 0 & 0 \\ 3 & { x }^{ 3 } & 1 \\ 5 & { y }^{ 3 } & 1 \end{vmatrix} is-
  • x+y
  • {x}^{2}-xy+{y}^{2}
  • {x}^{2}+xy+{y}^{2}
  • {x}^{3}-{y}^{3}
One of the roots of \begin{vmatrix}x + a & b & c\\ a & x + b & c\\ a & b & x + c\end{vmatrix} = 0 is
  • abc
  • a + b + c
  • -(a + b + c)
  • -abc
Three straight lines 2x+11y-5=0, 24x+7y-20=0 and 4x-3y-2=0
  • form a triangle
  • are only congruent
  • are concurrent with one line bisecting the angle between the other two
  • None of above
If \Delta = \begin{vmatrix} x & 2y-z & -z \\ y & 2x-z & -z \\ y & 2y-z & \quad 2x-2y-z \end{vmatrix},then
  • x-y is a factor of \Delta
  • (x-y)^2 is a factor of \Delta
  • (x-y)^3 is a factor of \Delta
  • \Delta is independent of z
For distinct numbers a,b,c,x,y,z\ \epsilon R if { \Delta  }_{ 1 }\left| \begin{matrix} \left( a-x \right) ^{ 2 } & \left( b-x \right) ^{ 2 } & \left( c-x \right) ^{ 2 } \\ \left( a-y \right) ^{ 2 } & \left( b-y \right) ^{ 2 } & \left( c-y \right) ^{ 2 } \\ \left( a-z \right) ^{ 2 } & \left( b-z \right) ^{ 2 } & \left( c-z \right) ^{ 2 } \end{matrix} \right| { \Delta  }_{ 2 }\left| \begin{matrix} (ax+1)^{ 2 } & (bx+1)^{ 2 } & (cx+1)^{ 2 } \\ (ay+1)^{ 2 } & (by+1)^{ 2 } & (cy+1)^{ 2 } \\ (az+1)^{ 2 } & (bz+1)^{ 2 } & (cz+1)^{ 2 } \end{matrix} \right|  then \frac { { \Delta  }_{ 1 }^{ 2 } }{ { \Delta  }_{ 2 }^{ 2 } } +\frac { { \Delta  }_{ 2 }^{ 2 } }{ { \Delta  }_{ 1 }^{ 2 } } =
  • \dfrac {5}{4}
  • \dfrac {10}{3}
  • \dfrac {1}{4}
  • None\ of\ these
Let \Delta =\begin{vmatrix} sin\theta cos \phi & sin\theta sin\phi & cos\theta \\ cos\theta cos\phi & cos\theta sin\phi & -sin\theta \\ -sin\theta sin\phi & sin\theta cos\phi & 0\end{vmatrix}, then
  • \Delta is independent of \theta
  • \Delta is independent of \phi
  • \Delta is a constant
  • none of these
The determinant \Delta = \begin{vmatrix} a^ 2(1+x) & ab & ac \\ ab & b^ 2(1+x) & bc \\ ac & bc & c^ 2(1+x) \end{vmatrix} is divisible by
  • (x + 3)
  • (1 + x)^2
  • x^2
  • (x^2 + 1)
The determinant \Delta = \begin{vmatrix} b & c & b\alpha+c \\ c & d & c\alpha+d \\ b\alpha+c & c\alpha+d & a\alpha^3-c\alpha \end{vmatrix}  is equal to zero if 
  • b,c,d are in A.P
  • b,c,d are in G.P
  • b,c,d are in H.P
  • \alpha is a root of ax^3 - bx^2 - 3cx - d = 0
Find the values of a and b so that the points ( a, b, 3),( 2, 0, -1) and (1, -1, -3) are collinear.
  • a=4,b=2
  • a=0,b=2
  • a=4,b=-2
  • a=-4,b=-2
\Delta =\left| \begin{matrix} 0 & i-100 & i-500 \\ 100-i & 0 & 1000-i \\ 500-i & i-1000 & 0 \end{matrix} \right| is equal to
  • 100
  • 500
  • 1000
  • 0
Let A =\begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix} and suppose that det.(A) =2 then the det.(B) equals, where B =\begin{vmatrix} 4x & 2a & -p \\ 4y & 2b & -q \\ 4z & 2c & -t \end{vmatrix} 
  • det(B) = -2
  • det(B) = -8
  • det(B) = -16
  • det(B) = 8
The value of determinant \begin{vmatrix} a^ 2 & a & 1 \\ cos(nx) & cos(n+1)x & cos(n+2)x \\ sin(nx) & sin(n+1)x & sin(n+2)x \end{vmatrix} is independent of 
  • n
  • a
  • x
  • a , n and x
In \begin{vmatrix} 1 & 2 & 7 \\ 3 & 7 & -5 \\ -1 & 4 & 3 \end{vmatrix}, cofactor of 2=___________ and cofactor of -1=___________.
  • -4,-59
  • 4,-59
  • -4,59
  • 59,4
If f(x) = \left| \begin{array}{111} x-3 & 2x^2 -18 & 3x^3 -81\\ x-5 & 2x^2-50 & 4x^3-500\\ 1 & 2 & 3 \\ \end {array} \right| then f(1). f(3) + f(3) .f(5) + f(5) .f(1) is equal to-
  • f(1)
  • f(3)
  • f(1) + f(3)
  • f(1) + f(5)
The points ({X}_{1},{Y}_{1}), ({X}_{2},{Y}_{2}), ({X}_{1},{Y}_{2}) and ({X}_{2},{Y}_{1}) are always
  • Collinear
  • Concyclic
  • Vertices of a square
  • Vertices of rectangle
If a,b,c are non-zeros, then the system of equation : (\alpha+a)x+\alpha+\alpha z=0; \alpha x+(a+b)y+\alpha z=0; \alpha x+\alpha y+(\alpha +c)z=0 has a non-trivial solution if
  •  \dfrac{1}{\alpha}=-(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})
  • {\alpha}^{-1}=a+b+c
  • \alpha+a+b+c=1
  • None of the above
If p{\lambda ^4} + p{\lambda ^3} + p{\lambda ^2} + s\lambda  + t = \left| {\begin{array}{*{20}{c}}{{\lambda ^2} + 3\lambda } & {\lambda  + 1} & {\lambda  + 3}\\{\lambda  + 1} & {2 - \lambda } & {\lambda  - 4}\\{\lambda  - 3} & {\lambda  + 4} & {3\lambda }\end{array}} \right|, then value of t is 
  • 16
  • 18
  • 17
  • 19
State whether following statement is true or false.
If A is a square matrix of order n, then |Adj (Adj \,A)| is of order (n^2).
  • True
  • False
A=\left[ \begin{matrix} 5 & 5\alpha  & \alpha  \\ 0 & \alpha  & 5\alpha  \\ 0 & 0 & 5 \end{matrix} \right] ; If \left| { A }^{ 2 } \right| =25, then \left| \alpha  \right| =
  • 5
  • 5^{2}
  • 1
  • \dfrac{1}{5}
the following relation is \begin{vmatrix} a & a + b & a + b + c \\ 2a & 3a + 2b & 4a + 3b + 2c = a^3 \\ 3a & 6a + 2b & 10a + 6b + 3c \end{vmatrix} = a ^3 
  • True
  • False
If \begin{vmatrix} \lambda^2 + 3 \lambda & \lambda -1 & \lambda +3 \\ \lambda + 1 & 2- \lambda & \lambda - 4 \\ \lambda-3 & \lambda + 4 & 3 \lambda \end{vmatrix} = p \lambda^4 + q \lambda^3 + r \lambda^2 + s \lambda + t then t =
  • 16
  • 17
  • 18
  • 19
\begin{vmatrix}\dfrac{1}{a} &bc &a^2 \\ \dfrac{1}{b} &ca & b^2\\ \dfrac{1}{c} & ab & c^2\end{vmatrix} is equal to -
  • (a - b)(b-c) ( c-a)
  • abc(a-b)(b-c)(c-a)
  • 0
  • 1
\begin{vmatrix} log e & log e^2 & log e^3\\ log e^2 & log e^3 & log e^4\\ log e^3 & log e^4 & log e^5\end{vmatrix}=?
  • 0
  • 1
  • 4 log e
  • 5 log e
If f(x)=\begin{vmatrix} 1 & x & x+1\\ 2x & x(x-1) & (x+1)x\\ 3x(x-1) & x(x-1)(x-2) & (x+1)x(x-1)\end{vmatrix} then f(100) is equal to?
  • 0
  • 1
  • 100
  • -100
the value of the determinant of order 3 remains unchanged if its rows and columns are interchanged. that statement is ___
  • True
  • False
If none of a, b, c is zero,  Whether the given equation  \begin{vmatrix} -bc & { b }^{ 2 }+bc & { c }^{ 2 }+bc \\ { a }^{ 2 }+ac & -ac & { c }^{ 2 }+ac \\ { a }^{ 2 }+ab & { b }^{ 2 }+ab & -ab \end{vmatrix}={ \left( bc+ca+ab \right)  }^{ 3 } is ?

  • True
  • False
The value of the determinant \left| \begin{matrix} { b }^{ 2 }-ab & b-c & bc-ac \\ ab-{ b }^{ 2 } & a-b & { b }^{ 2 }-ab \\ bc-ac & c-a & ab-{ b }^{ 2 } \end{matrix} \right| 
  • abc
  • a+b+c
  • 0
  • ab+bc+ca
if a>0 and discriminant of {ax}^{2}+{2bx}+{c} is -ve, then \left| \begin{matrix} a & b & ax+b \\ b & c & bx+c \\ ax+b & bx+c & 0 \end{matrix} \right| is
  • +ve
  • {(ac-b^2)(ax^2+2bx+c)}
  • -ve
  • 0
\left| \begin{matrix} \sqrt { 13 } +\sqrt { 3 }  & 2\sqrt { 5 }  & \sqrt { 5 }  \\ \sqrt { 15 } +\sqrt { 26 }  & 5 & \sqrt { 10 }  \\ 3+\sqrt { 65 }  & \sqrt { 15 }  & 5 \end{matrix} \right| = 
  • 15\sqrt{2}-25\sqrt{3}
  • 15\sqrt{5}-25\sqrt{6}
  • 25\sqrt{2}-15\sqrt{3}
  • 0
The value of \left| \begin{matrix} 1+w & { w }^{ 2 } & -w \\ 1+{ w }^{ 2 } & w & -{ w }^{ 2 } \\ { w }^{ 2 }+w & w & -{ w }^{ 2 } \end{matrix} \right| is equal to 
  • 0
  • 2 \omega
  • 2 {\omega}^{2}
  • -3 {\omega}^{2}
If the points A(at^{2}_{1},2at_{1}), B(at^{2}_{2},2at_{2}) and C(\alpha,0) are collinear, then t_{1} t_{2} equals
  • 2
  • -1
  • 1
  • None\ of\ these
Let F(x)=\left | \left|  \right| \begin{matrix}1  &1+sin\ x  &1+sin\ x+cos\ x \\  2 &3+2\ sin\ x  &4+3\ sin\ x+2\ cos\ x  \\  3&6+3\ sin\ x&10+6\ sin\ x+3\ cos\ x  \end{matrix} \right |  then F'\ \left ( \dfrac{\pi}{2} \right ) is equal to
  • -1
  • 0
  • 1
  • 2
If A = \left[ {\begin{array}{*{20}{c}}a&0&0\\0&a&0\\0&0&a\end{array}} \right] then find the value of \left| A \right|\left| {adjA} \right|
  • {a^3}
  • {a^6}
  • {a^9}
  • a
If \begin{vmatrix} 1+x & 2 & 3 \\ 1 & 2+x & 3 \\ 1 & 2 & 3+x \end{vmatrix}=0 then x=
  • 1
  • -1
  • -6
  • 6
If A = {\left[ {\begin{array}{*{20}{c}}a\\b\\c\end{array}\begin{array}{*{20}{c}}p\\q\\r\end{array}} \right]_{3 \times 2}} then determinant \left( {A{A^T}} \right) is equal to
  • 0
  • {a^2} + {b^2} + {c^2}
  • {p^2} + {q^2} + {r^2}
  • {p^2} + {q^2}
If {t_{1,}}{t_2}\, and {t_3} distinct. and the points \left( {{t_1}.2a{t_1} + a{t_1}^3} \right).\left( {{t_2}.2a{t_2} + a{t_2}^3} \right),\left( {{t_3}.2a{t_3} + a{t_3}^3} \right) are collinear, then {t_1} + {t_2} + {t_3} =
  • t_1 t_2 t_3 =-1
  • t_1 +t_2 +t_3 =t_1 t_2 t_3
  • t_1 +t_2 +t_3 =0
  • t_1 +t_2 +t_3 =-1
Using properties of determinants it can be proved
\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix}=4abc
  • True
  • False
If \Delta  = \left| {\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}} \right| for x \ne 0,\,y \ne 0 then \Delta is
  • Divisible by neither x nor y
  • Divisible by both x and y
  • Divisible by x but not y
  • Divisible by y but not x
If A=\quad \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{bmatrix}, B=(adj\quad A) and C=5A, then \cfrac { \left| adj\quad B \right|  }{ \left| C \right|  } is equal to
  • 5
  • 25
  • -1
  • 1
Find the value of the determinant \begin{vmatrix} 1 & 0 & 0 \\ 2 & \cos { x }  & \sin { x }  \\ 3 & \sin { x }  & \cos { x }  \end{vmatrix}.
  • \cos{2x}
  • 1
  • 0
  • \sin{2x}
If the points (k, 2-2k), (1-k, 2k) and (-k-4, 6-2k) be collinear, the number of possible values of k are 
  • 4
  • 2
  • 1
  • 3
If A=\begin{bmatrix} 1 & 2 & -2 \\ -2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} then {A}^{-1}=
  • A
  • \dfrac{1}{9} {A}^{T}
  • \dfrac{1}{9}A
  • \dfrac{1}{9}{A}^{-1}
The determinant \begin{bmatrix} b_{1}+c_{1} & c_{1}+a_{1} & a_{1}+b_{1} \\ b_{2}+c_{2} & c_{2}+a_{2} & a_{2}+b_{2} \\ b_{3}+c_{3} & c_{3}+a_{3} & a_{3}+b_{3}\end{bmatrix}=_____
  • \begin{bmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{bmatrix}
  • 2\begin{bmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{bmatrix}
  • 3\begin{bmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{bmatrix}
  • 4\begin{bmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{bmatrix}
In a triangle ABC, with usual notations, if \begin{vmatrix} 1 & a & b \\ 1 & c & a \\ 1 & b & c \end{vmatrix}=0, then 4sin^2A+24sin^2B+36sin^2C is equal to 
  • 48
  • 50
  • 44
  • 34
If adj A=\begin{bmatrix}20 & -20 \\ 10 & 10 \end{bmatrix} , then |A|=..... 
  • 400
  • 200
  • \pm 20
  • 0
29 If z=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} where 0, I are 2x2 null and identity matrix then det \left( \left[ z \right]  \right) is  _______________.
  • 1
  • -1
  • 0
  • None of these
Sum of the real roots of the equation \begin{vmatrix} 1 & 4 & 20\\ 1 & -2 & 5 \\ 1 & 2x & 5{x}^{2} \end{vmatrix}=0 is
  • -2
  • -1
  • 0
  •  1
The cofactor of the element 4 in the determinant \begin{vmatrix} 1 & 3 & 5 & 1\\ 2 & 3 & 4 & 2\\ 8 & 0 & 1 & 1\\ 0 & 2 & 1 & 1\end{vmatrix} is?
  • 4
  • 10
  • -10
  • -4
Find the values of x if, \left| \begin{matrix} 1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2x & 5x^{ 2 } \end{matrix} \right| =0
  • -1, 2
  • -1, -2
  • 1, -2
  • 1, 2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers