Processing math: 7%

CBSE Questions for Class 12 Commerce Maths Differential Equations Quiz 1 - MCQExams.com

For xϵR,x0, if y(x) is a differentiable function such that xx1y(t)dt=(x+1)x1ty(t)dt, then y(x) equals:
(Where C is a constant)
  • Cx3e1x
  • Cx2e1x
  • Cxe1x
  • Cx3e1x
The differential equation dydx=1y2y determines a family of circles with:
  • variable radii and a fixed centre at (0,1)
  • variable radii and a fixed centre at (0,1)
  • fixed radius 1 and variable centres along the x-axis
  • fixed radius 1 and variable centres along the y-axis
Check whether the function is homogenous or not. If yes then find the degree of the function
g(x)=x28x3.
  • Not homogenous
  • Homogenous with degree 4
  • Homogenous with degree 2
  • None of these
Solution of differential equation \displaystyle \frac{dy}{dx} = sin  x  + 2x, is
  • y = x^2 - cos x + c
  • y = cos x + x^2 + c
  • y = cos x + 2
  • y = cos x + 2 + C
Which of the following is/are correct regarding homogenous functions?
  • A function is defined as a homogeneous function if its argument or input is multiplied by some factor, then the result is multiplied by some exponent of this factor.
  • Denoted by: f(kx)= k^n f(v), where n is the degree
  • Denoted by: f(kx)= nk f(v), where n is the degree
  • None of these
The solution of \dfrac{dy}{dx}=e^{logx} is:
  • 2y=x^{2}+c
  • y=x^{2}+c
  • y^{2}=x+c
  • xy=x^{2}+c
The solution of \dfrac{dy}{dx}=\dfrac{2x}{3y^{2}} is:
  • y^{3}+x^{2}=c
  • y^{2}+x^{3}=c
  • y^{3}-x^{2}=c
  • y^{3}-x=c
The solution of \dfrac{dy}{dx}-\dfrac{2xy}{1+x^{2}}=0 is
  • y=c\left ( 1+x^{2} \right )
  • y=c\sqrt{1+x^{2}}
  • y=\dfrac{c}{1+x^{2}}
  • y=\dfrac{c}{\sqrt{1+x^{2}}}
The solution of x^{2} \cfrac{dy}{dx}=2 is
  • y=-\cfrac{2}{x}+c
  • y=\cfrac{x}{2}+c
  • y=\cfrac{2}{x}+c
  • y = 2x + c
Check whether the function is homogenous or not. If yes then find the degree of the function
g(x)=8x^4.
  • Homogenous with degree 4
  • Homogenous with degree 1
  • Not homogenous
  • None of these
If y = e^{-x}\cos 2x then which of the following differential equations is satisfied?
  • \dfrac {d^{2}y}{dx^{2}} + 2 \dfrac {dy}{dx} + 5y = 0
  • \dfrac {d^{2}y}{dx^{2}} + 5 \dfrac {dy}{dx} + 2y = 0
  • \dfrac {d^{2}y}{dx^{2}} - 5 \dfrac {dy}{dx} - 2y = 0
  • \dfrac {d^{2}y}{dx^{2}} + 2 \dfrac {dy}{dx} - 5y = 0
What is the solution of the differential equation \dfrac {ydx - xdy}{y^{2}} = 0?
where c is an arbitrary constant.
  • xy = c
  • y = cx
  • x + y = c
  • x - y = c
What is the solution of the differential equation \sin \left (\dfrac {dy}{dx}\right ) - a = 0?
where c is an arbitrary constant.
  • y = x \sin^{-1} a + c
  • x = y \sin^{-1} a + c
  • y = x + x \sin^{-1} a + c
  • y = \sin^{-1} a + c
Check whether the function is homogenous or not. If yes then find the degree of the function
g(x)=4-x^2.
  • Homogenous with degree 2
  • Not homogenous
  • Homogenous with degree 4
  • None of these
Which of the following is true regarding the function f(x, y)= x^4 \sin \dfrac{x}{y} ?
  • Not homogenous
  • Homogenous with degree 2
  • Homogenous with degree 3
  • None of the above
Find the value of k for the function: 2x^2y+3xyz+z^k to be homogenous.
  • 6
  • 3
  • 2
  • None of these
If \dfrac{dy}{dx}=x^{-3} then y
  • -\dfrac{1}{2x^2}+c
  • \dfrac{1}{2x^2}+c
  • -\dfrac{1}{3x^3}+c
  • -\dfrac{1}{4x^4}+c
The number of arbitrary constants in the particular solution of the differential equation of order 3 is ______.
  • 0
  • 1
  • 2
  • 3
The number of arbitrary constant in the general solution of differential equation of order 3 is _________.
  • 0
  • 2
  • 3
  • 4
What is the solution of the differential equation \dfrac {dx}{dy} + \dfrac {x}{y} - y^{2} = 0?
where c is an arbitrary constant.
  • xy = x^{4} + c
  • xy = y^{4} + c
  • 4xy = y^{4} + c
  • 3xy = y^{3} + c
What is the general solution of the differential equation x\, dy - y\, dx \,y^2 ?
  • x = cy
  • y^2=cx
  • x + xy - cy = 0
  • None of the above
The solution of the differential equation x^4\dfrac{dy}{dx}+x^3y+cosec(xy)=0 is equal to 
  • 2 \cos (xy)+x^{-2}=C
  • 2\cos(xy)+y^{-2}=C
  • 2\sin(xy)+x^{-2}=C
  • 2\sin (xy)+y^{-2}+C
The differential equation y\cfrac { dy }{ dx } +x=a where 'a' is any constant represents:
  • A set of straight lines
  • A set of ellipses
  • A set of circles
  • None of the above
What is the solution of the differential equation \dfrac{dy}{dx} +\dfrac{y}{x} = 0 ?
Where c is a constant.
  • xy = c
  • x = cy
  • y = cx
  • None of the above
The differential equation of y=c{ x }^{ 3 },c is a arbitrary constant is _______
  • x.\cfrac { dy }{ dx } =3y
  • { x }^{ 3 }.\cfrac { dy }{ dx } =3y
  • 3x\cfrac { dy }{ dx } =y
  • x.\cfrac { dy }{ dx } =3{ y }^{ 2 }
The equation of the curve passing through (0,1) which is a solution of the differential equation \left( 1+{ y }^{ 2 } \right) dx+\left( 1+{ x }^{ 2 } \right) dy=0 is given by
  • \tan ^{ -1 }{ \left( x \right) } +\tan ^{ -1 }{ \left( y \right) =0 }
  • \tan ^{ -1 }{ \left( x \right) } +\tan ^{ -1 }{ \left( y \right) =\dfrac {\pi}{4}}
  • \sin h ^{ -1 }{ \left( x \right) } +\sin h ^{ -1 }{ \left( y \right) =0 }
  • \sinh ^{ -1 }{ \left( x \right) } +\sinh ^{ -1 }{ \left( y \right) } \log { \left( 1+\sqrt { 2 } \right) =0 }
The solution of \dfrac{ydx-xdy}{y^{2}}=0 represents a family of
  • Straight lines passing through the origin
  • Circles
  • Parabola
  • Hyperbola
The D.E y\dfrac { dy }{ dx } +x=a represents
  • a circle whose centra is on X-axis
  • a circle whose centre is on Y-axis
  • a circle whose centre is origin
  • a parabola
The solution of \left( { x }^{ 2 }{ y }^{ 3 }+{ x }^{ 2 } \right) dx+\left( { y }^{ 2 }{ x }^{ 3 }+{ y }^{ 2 } \right) dy=0 is
  • \left( { x }^{ 3 }+1 \right) \left( { y }^{ 3 }+1 \right) =c
  • \left( { x }^{ 3 }-1 \right) \left( { y }^{ 3 }-1 \right) =c
  • \left( { x }^{ 3 }-1 \right) \left( { y }^{ 3 }+1 \right) =c
  • \left( { x }^{ 3 }+1 \right) \left( { y }^{ 3 }-1 \right) =c
Which of the following transformation reduce the differential equation \dfrac{{dz}}{{dx}} + \dfrac{z}{x}\log z = \dfrac{z}{{{x^2}}}{\left( {\log z} \right)^2} into the form \dfrac{{dv}}{{dx}} + P\left( x \right)v = Q\left( x \right)
  • v=logz
  • v=e^2
  • v=\dfrac{1}{logz}
  • v=(logz)^2
The differential equation for all the straight lines which are at a unit distance from the origin is  
  • {\left( {y - x\frac{{dy}}{{dx}}} \right)^2} = 1 - {\left( {\dfrac{{dy}}{{dx}}} \right)^2}
  • {\left( {y + x\frac{{dy}}{{dx}}} \right)^2} = 1 + {\left( {\dfrac{{dy}}{{dx}}} \right)^2}
  • {\left( {y - x\frac{{dy}}{{dx}}} \right)^2} = 1+{\left( {\dfrac{{dy}}{{dx}}} \right)^2}
  • {\left( {y + x\frac{{dy}}{{dx}}} \right)^2} = 1 - {\left( {\dfrac{{dy}}{{dx}}} \right)^2}
Which of the following differential equation is linear ?
  • \dfrac{d^2y}{dx^2}+x\dfrac{dy}{dx}+2y=0
  • \dfrac{d^2y}{dx^2}+y\dfrac{dy}{dx}+x=0
  • \dfrac{d^{2}y}{dx^2}+\dfrac{y}{x}+\sin y=x^2
  • (1+x)\dfrac{dy}{dx}-xy=1
Solution of the different equation, ydx - xdy + x{y^2}dx = 0 can be.
  • 2x + {x^2}y = \lambda y
  • 2y + {y^2}x = \lambda y
  • 2y - {y^2}x = \lambda y
  • none of these
Solve (1+\cos x)dy=(1-\cos x)dx.
  • y = \displaystyle \cot \cfrac{x}{2} - x +C
  • y = \displaystyle \tan \cfrac{x}{2} - x +C
  • y = \displaystyle \sin \cfrac{x}{2} - x +C
  • None of these
The solution of the differential equation \dfrac{dy}{dx} = \dfrac{3y - 7x - 3}{3x - 7y + 7} is 
  • (y - x - 2)^5 (y + x - 5)^7 = c
  • (y - x - 5)^2 (y + x - 1)^7 = c
  • (y - x - 7)^2 (y + x - 5) = c
  • (y - x - 1)^2 (y + x - 1)^5 = c
If \dfrac{dy}{dx}+y\tan x=\sin 2x and y(0)=1, then y(\pi)=?
  • 1
  • -1
  • -5
  • 5
The solution of the differential equaton 3{e^x}\tan ydx + \left( {1 - {e^x}} \right){\sec ^2}ydy = 0 is 
  • \tan y = c{\left( {1 - {e^x}} \right)^3}
  • {\left( {1 - {e^x}} \right)^3}\tan y = c
  • \tan y = c\left( {1 - {e^x}} \right)
  • \left( {1 - {e^x}} \right)\tan y = c
Solve:
\dfrac {dy}{dx} = y \cot x
  • y=k\tan x
  • y=k\csc x
  • y=k\sin x
  • y=k\cos x
The D.E. obtained from (y - a)^2 = 4 (x - b) is given by
  • 2y_2 + y_3 = 0
  • 2y_2 = y_3
  • 2y_1 + y^3_2 = 0
  • 2y_2 + y^3_1 = 0
The differential equation \dfrac{dy}{dx} = 2 represents
  • A straight line of slope 2 units
  • A circle with radius 2 units
  • A parabola with foci 2 units
  • None of these
The solution of the differential equation  \left( 1+y^{ { 2 } } \right) +\left( x-e^{ { { \tan   }^{ -1 }y } } \right) \dfrac { dy }{ dx } =0,  is
  • ( x - 2 ) = k e ^ { - \tan ^ { - 1 } y }
  • 2 x e ^ { 2 \tan ^ { - 1 } y } = e ^ { 2 \tan ^ { - 1 } y } = k
  • x e ^ { \tan ^ { - 1 } y } = \tan ^ { - 1 } y + k
  • xe^{ { 2\tan ^{ { -1 } } y } }=e^{ { \tan ^{ { -1 } } y } }+k
The order of the differential equation of the parabola whose axis is parallel to y-axis is:
  • 1
  • 2
  • 3
  • 4
The order of the differential equation of the curve y^{2}=4ax is:
  • 2
  • 1
  • 3
  • Cant be determined
The differential equation of all conics with the co-ordinate axes as axes is of the order
  • 1
  • 2
  • 3
  • 4
The solution of \dfrac{d^{2}y}{dx^{2}}=0 represents
  • a straight line
  • a circle
  • a parabola
  • a point
The order of the differenital equation of (x-a)^{2}+(y-b)^{2}=a^{2} is:
  • 4
  • 3
  • 2
  • 1
The differential equation y\dfrac{dy}{dx}+x=A where A is a constant represents a set of:
  • circles centred on y axis
  • circles centred on x axis
  • parabolas
  • ellipses
The differential equation of all conics with centre at origin is of order
  • 2
  • 3
  • 4
  • 1
The differential equation of the family of circles whose center lies on x-axis and passing through origin is
  • x^{2}+y^{2}+\dfrac{dy}{dx}=0
  • (y^{2}-x^2)dx-2xydy=0
  • y^{2}dx+(x^{2}+2xy)dy=0
  • xdy+ydx+x^{2}dx+y^{2}dy=0
The solution of \displaystyle \frac{dy}{dx}+\displaystyle \frac{\sqrt{1+y^{2}}}{\sqrt{1+x^{2}}}=0 is:
  • \sin^{-1}x+\sin^{-1}y=c
  • \tan^{-1}x+\tan^{-1}y=c
  • \sinh^{-1}x+\sinh^{-1}y=c
  • \cot^{-1}x+\cot^{-1}y=c
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers