Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 12 Commerce Maths Differential Equations Quiz 2 - MCQExams.com

dydx=4x+2y+1x2y+3 is a differential equation of the type:
  • variable separable
  • exact
  • Homogeneous
  • non homogeneous
The solution of dydx=3(y+1)x2 is:
  • y1=c(x2)3
  • y+1=c(x2)3
  • y+1=c(x2)2
  • y1=c(x2)2
The solution of dydx=x+x2yy2 is:
  • 3(y2x2)=2(x3+y3)+c
  • 3(x2+y2)=2(x3+y3)+c
  • x2y2=x3+y3+c
  • x2+y2=x3+y3+c
The solution of the differential equation
dydx=xy+yxy+x is
  • x+y=log(cycx)
  • x+y=log(cxy)
  • xy=log(cxy)
  • yx=log(cxy)
The solution of dydx=tan y is
  • logsinx=2x+c
  • logsiny=x+c
  • logsiny=2x+c
  • logsinx=2y+c
The solution of the differential equation (1+x2)dydx=2xcoty, is:
  • secy=c(1+x2)
  • cosy=c(1+x2)
  • tany=c(1+x2)
  • coty=c(1+x2)
The solution of dydx=exy is:
  • exey=c
  • ex+ey=c
  • exey=c
  • exey=c
The solution of (1+ex)ydy=exdx is:
  • y2=logc(ex+1)
  • y22=logcex
  • y22=logc(ex+1)
  • 2y=logc(ex+1)
The solution of dydx+ytanx=0 is:
  • y=acosx
  • y=asinx
  • y=logcosx+c
  • y=atanx+c
The solution of dydx=(1+y2)(1+x2)1 is
  • yx=c(1+xy)
  • y+x=c(1+xy)
  • y=(1+2x)c
  • xy=x2+x+c
The solution of dydx=1+y2secx is
  • tan1y=cosx+c
  • tan1y=sinx+c
  • y3=cscx+c
  • log(1+y2)=cosx+c
The solution of x3dyy3dx=0 is:
  • x4y4=c
  • x2y2=c
  • 1x1y=c
  • 1x21y2=c
The solution of dydx+2x=e3x is:
  • y=3e3xx2+c
  • y=e3x3x2+c
  • y=e3xx2x+c
  • y=e3xx2+c
The solution of d2ydx2=xex+1 is:
  • y=(x1)ex+12x2+C1x+C2
  • y=(x2)ex+12x2+C1x+C2
  • y=(x+2)ex+12x2+C1x+C2
  • y=(x+2)ex+C1
The solution of x2dyy2dx=0 is:
  • 1x1y=c
  • 1x+1y=c
  • x3y3=c
  • x2y2=c
The solution of dydx=cosech y is:
  • x=coshy+c
  • x=sech y+c
  • x=sinhy+c
  • x=cothy+c
The solution of dydx+x2y2=0 is:
  • x2+y2=c
  • x2y2=c
  • x3y3=c
  • x3+y3=c
The solution of dydx=1+y1x is:
  • 1+y=c(1x)
  • (1x)(1+y)=c
  • (1y)(1x)=c
  • (1+x)(1+y)=c
The solution of dydx+y=1 is:
  • x+log|1y|=c
  • y+log|1x|=c
  • x(1y)=c
  • y(1x)=c
The solution of dydx=x+x2y+y2 is:
  • x3y3y2x2=c
  • 2(x3y3)+3(x2y2)=c
  • x2+y2+x+y=c
  • x2y+xy2=c
The solution of dydx+1y21x2=0 is
  • sin1x+sin1y=c
  • cot1x+cot1y=c
  • Tan1x+Tan1y=c
  • sinh1x+sinh1y=c
Solution of dydx=y+2x1 is:
  • y+2=c(x1)
  • (y+2)(x1)=c
  • log(y+2)=c(xy)
  • log(x1)=c(y+2)
The solution of dydx=xy is:
  • x2y2=c
  • x2+y2=c
  • x2y=c
  • x2+y=c
The solution of ydydx=1+y2 is:
  • 2x=log[c(1+y2)]
  • x=cy2
  • c(1+y2)=x
  • 2y=log{c(1+x2)}
The solution of dydx=tanx is
  • ey=csinx
  • ey=ccosx
  • ey=ccscx
  • ey=csecx
The solution of x+ydydx=5 is:
  • x210x+y2=c
  • x25x+y2=c
  • y22=10x+x2+c
  • y2=10x+x2+c
The solution of dydx=e(yx) is
  • ey+ex=c
  • ex=ey+c
  • eyx=c
  • ey/x=c
The solution of dydx=2ytanhx is
  • cy=sinh2x
  • cy=sech2x
  • cy=cosh2x
  • cy=coth2x
The solution of (1+y2)dx=xydy is:
  • 1+y2=cx2
  • (1+y2)x2=c
  • 1+y2=cx
  • (1+y2)x=c
The solution of dydx=2xy is:
  • 2x+2y=c
  • 2x2y=c
  • 2xy=c
  • 2x+y=c
The solution of (x2+x)dydx=1+2x is:
  • ey=c(x2+x)
  • y=x(x+1)+c
  • y=(1+2x)+c
  • xy=x2+x+c
The solution of

(x2yx2)dydx+(y2+x2y2)=0
  • log(xy)=1x+1y+c
  • logy+1y=x1x+c
  • y1y=x1x+c
  • logx+1x=y1y+c
The solution of tanx dy+tany dx = 0
  • tanx.tany=c
  • sec2x+sec2y=c
  • sinx.siny =c 
  • cotx.coty =c 
The solution of extanydx+(1ex)sec2ydy=0 is
  • tany=c(1ex)
  • secy=c(1ex)
  • tany(1ex)=c
  • secy=1ex
The general solution of the differential equation dydx2xy1+x2=0 is
  • y=A(1+x2)
  • y=A1+x2
  • y=A1+x2
  • y=a1+x2
Solution of  tany.sec2xdx+tanx.sec2ydy=0 is:
  • secxsecy=c
  • tanx.tany=c
  • sinx.siny=c
  • cosx.cosy=c
The solution of x1+x2dx+y1+y2dy=0 is:
  • 1+x2+1+y2=c
  • (1+x2x1+y2))=c
  • (1+x2)32+(1+y2)32=c
  • x1+x2+y1+y2=c
The solution of x2+y2dydx=4 is
  • x2+y2=12x+c
  • x2+y2=3x+c
  • x3+y3=3x+c
  • x3+y3=12x+c
The solution of dydx=e2xy+x3ey is:
  • ey=e2x+3x2+c
  • ey=e2x+x44+c
  • 4ey=2e2x+x4+c
  • 2ey=e2x+3x4+c
Solve the differential equation:
1+x2dx+1+y2dy=0
  • x1+x2+y1+y2+log[(x+1+x2)(y+1+y2)]=c
  • 1+x2+1+y2=c
  • 11+x2+11+y2=c
  • log{(1+x2)+(1+y2)}=x+c
The solution of dydx=exy+e2logxy
  • ey=ex+x23+c
  • ey=ex+x33+c
  • ey=ex+logx+c
  • y=e3x+y3
The solution of x1y2dx+y1x2dy=0 is:
  • sin1x+sin1y=c
  • 1x2+1y2=c
  • 1x21y2=c
  • 1x21y2=c
The solution of xdx+ydy=x^{2}ydy-xy^{2}dx is
  • x^{2}-1=c(1+y^{2})
  • x^{2}+1=c(1-y^{2})
  • x^{3}-1=c(1+y^{3})
  • x^{3}+1=c(1-y^{3})
The solution of 2xy\dfrac{dy}{dx}=1+y^{2} is:
  • 1+y^{2}=cx
  • 1-y^{2}=cx
  • 1+x^{2}=cy
  • 1-x^{2}=cy
The solution of xcos^{2} y(dx) + tan y(dy)=0 is:
  • x^{2}+sec^{2}y=c
  • x^{2}+cot^{2}y=c
  • x^{2}+sin^{2}y=c
  • x^{2}+cos^{2}y=c
The solution of log\left (\displaystyle \frac{dy}{dx} \right )=ax+by
  • be^{\displaystyle ax}+ae^{\displaystyle -by}=k
  • e^{\displaystyle ax}+e^{\displaystyle -by}=c
  • e^{\displaystyle ax+by}=c
  • (ax+by)=cxy
The solution of \dfrac{dy}{dx}=x log x
  • 2y=x^{2}\left [ logx+\dfrac{1}{2} \right ]+c
  • 2y=x^{2}\left [ logx-\dfrac{1}{2} \right ]+c
  • y=\dfrac{x^{2}}{2}(log2-x)+c
  • y^{2}=x^{2} log x + x + c
Solution of (xy^{2}+x)dx+(yx^{2}+y)dy=0
  • (x^{2}+1)(y^{2}+1)=c
  • (xy+1)(xy-1)=c
  • (x^{3}+1)(y^{3}+1)=c
  • (1-x^{2})(1-y^{2})=c
The solution of \sqrt{1-x^{2}}sin^{-1}xdy+ydx=0 is:
  • ytan^{-1}x=c
  • ysin^{-1}x=c
  • ycos^{-1}x=c
  • xsin^{-1}x=c
The solution of \frac{dy}{dx}=e^{3x+y} given y=0 when x=0 is:
  • e^{3x}+3e^{-y}=4
  • e^{-y}=e^{3x}+4
  • 3e^{-y}=e^{3x}+12
  • y=\dfrac{e^{3x+y}}{3}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers