Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 12 Commerce Maths Differential Equations Quiz 6 - MCQExams.com

If y=cos1x then (1x2)yxy=? where y=dydx
  • 1
  • 0
  • 2x
  • 2y
Solution of y2dx+(x2xy+y2)dy=0 
  • tan1(xy)+logy+c=0
  • 2tan1(xy)+logy+c=0
  • logy(y+x2+y2)+logy+c=0
  • logy(yx2+y2)+logy+c=0
If y=1x1+x then find (1x2)dydx+y =
  • 1
  • 1
  • 2
  • 0

If tangent at point p, with parameter t, on the curve x=4t2+3,y=8t31,tϵR, meets the curve again at point Q, then the coordinates of Q are:- 

  • t2+3,-t31
  • 4t2+3,8t21
  • t2+3,t31
  • 16t2+3,64t31
The solution of x \dfrac{dy}{dx} + y logy = xy e^x is 
  • logy = (x - 1)e^x + c
  • (x -1) logy = xe^x + c
  • x logy = (x + 1)e^x + c
  • x logy = (x - 1)e^x + c
The real value of n for which substitution y = {u^n} will transform differential equation 2{x^4}y\frac{{dy}}{{dx}} + {y^4} = 4{x^6} into homogeneous equation
  • \frac{1}{2}
  • 1
  • \frac{3}{2}
  • 4
The solution of the differential equation x\dfrac{dy}{dx}=y+x\tan \dfrac{y}{x} is :
  • \sin \dfrac{x}{y}=cx
  • \sin \dfrac{y}{x}=cx
  • \sin \dfrac{x}{y}=cy
  • \sin \dfrac{y}{x}=cy
Soluation of D.E. \dfrac{{dy}}{{dx}} = \dfrac{{3x + 4y + 3}}{{12x + 16y - 4}} is 
  • y = 4x + \ell n\left| {3x + 4y} \right| + C
  • 4y = x + \ell n\left| {3x + 4y} \right| + C
  • y = \ell n\left| {3x + 4y} \right| + C
  • x + y = \ell n\left| {3x + 4y} \right| + C
Solution of the differential equation \tan{y}\sec ^{ 2 }{ x } dx+\tan { x } \sec ^{ 2 }{ y } dy=0 is:
  • \tan{x}+\tan{y}=k
  • \tan{x}-\tan{y}=k
  • \cfrac{\tan{x}}{\tan{y}}=k
  • \tan{x}.\tan{y}=k
The solution of the differential equation ydx + (x+x^2y)dy = 0 is-
  • \dfrac{1}{xy} + \log y = c
  • \log y = cx
  • -\dfrac{1}{xy} = c
  • -\dfrac{1}{xy} + \log y = c
The general solution of the differential equation \dfrac { dy }{ dx } + y\cot { x } = \csc { x }, is
  • x + y sin { x } = C
  • x + y cos { x } = C
  • y+x(\sin { x + \cos { x } } )
  • y\sin { x = x + C }
The solution of \cfrac { dy }{ dx } =\left( \cfrac { ax+b }{ cy+d }  \right)  represents a parabola if:- 
  • a=0,c=0
  • a=1,c=2
  • a=0,c\neq0
  • a=1,c=1
The solution of the differential equation x \, dx + y\, dy = x^2y\, dy - y^2\, x\, dx is
  • x^2-1 = C(1+y^2)
  • x^2+1 = C(1-y^2)
  • x^3-1 = C(1+y^3)
  • x^3+1 = C(1-y^3)
Solve differential equation dx=\dfrac{xdv}{v^2-a^2}.
  • x^{2a}=\dfrac{v-a}{v+a}\times c
  • x^{2a}=\dfrac{v+a}{v-a}\times c
  • x=\dfrac{v-a}{v+a}\times c
  • None of these
Solution for \dfrac{x + y \dfrac{dy}{dx}}{y - x \dfrac{dy}{dx}} = x^2 + 2y^2 + \dfrac{y^4}{x^2} is 
  • \dfrac{y}{x} - \dfrac{1}{x^2 + y^2} = c
  • \dfrac{y}{x} + \dfrac{1}{x^2}{y^2} = c
  • \dfrac{x}{y} + \dfrac{1}{x^2 + y^2 } = c
  • \dfrac{x}{y} - \dfrac{1}{x^2 + y^2} = c
The particular solution of the differential equation y(1+\log x)\dfrac{dx}{dy} -x =0 when x=e, y=e^2 is
  • y =ex \log x
  • ey = x \log x
  • xy = e \log x
  • y \log x = ex
Solution of differential equation xdy-yx=0 represents:
  • rectangular hyperbola
  • straight line passing through origin
  • parabola whose vertex is at origin
  • circle whose center is at origin
The solution of \cos \, y \, \log (\sec \, x + \tan \, x) dx = \cos \, x \, \log (\sec \, y + \tan \, y) dy is 
  • [\log ( \sec \, x + \tan \, x)]^2 - [\log (\sec \, y + \tan \, y)]^2 = c
  • [\log ( sec \, x + \tan \, x)]^2 + [\log (\sec \, y + \tan \, y)]^2 = c
  • [\log ( \sec \, x - \tan \, x)]^2 - [\log (\sec \, y - \tan \, y)]^2 = c
  • [\log ( \sec \, x - \tan \, x)]^2 + [\log (\sec \, y - \tan \, y)]^2 = c
The solution of \dfrac{{dy}}{{dx}} = \dfrac{{x{{{\mathop{\rm log x}\nolimits} }^2} + x}}{{\sin y + y\cos y}}
  • y\sin y = {x^2}\log x + c
  • y\sin y = {x^2} + c
  • y\sin y = {x^2} + \log x + c
  • y\sin y = x \log x + c
The solution to the differential equation \cos\ xdy=y(\sin x-y)dx, 0<x<\dfrac{\pi}{2}, is
  • \tan x=(\sec x+c)y
  • \sec x=(\tan x+c)y
  • y\sec x=\tan x+c
  • y\tan x=\sec x+c
The solution of \dfrac{dy}{dx}=\dfrac{y}{x}+\tan\left(\dfrac{y}{x}\right).
  • \sin\left(\dfrac{y}{x}\right)=cx
  • \sin\left(\dfrac{y}{x}\right)=cy
  • \cos\left(\dfrac{y}{x}\right)=cx
  •  { \sec  \left( \dfrac { y }{ x }\right) +\tan \left( \dfrac { y }{ x }\right) }=xc 
If c is any arbitrary constant, then the general solution  of differential equation ydx-xdy=xydx is  given by -
  • y=cxe^{x}
  • y=cx e^{-x}
  • y+e^{x}=cx
  • ye^{x}=cx
Solve :

\displaystyle\int (x^x)^x(2xlog_ex+x)dx 
  • x^{(x^x)}+C
  • (x^x)^x+C
  • x^x\cdot log_ex+C
  • (x^x)+C
The solution of the equation \dfrac {dy}{dx}+\sqrt {\dfrac { {1-y}^{2} }{ {1-x}^{2} }}=0 is 
  • x\sqrt { {1-y}^{2} }-y\sqrt { {1-x}^{2} }=c
  • x\sqrt { {1-y}^{2} }+y\sqrt { {1-x}^{2} }=c
  • x\sqrt { {1+y}^{2} }+y\sqrt { {1+x}^{2} }=c
  • None of these
The solution of \dfrac{dy}{dx}=\dfrac{\sqrt{x^2-y^2}+y}{x}.
  • \tan^{-1}\left(\dfrac{y}{x}\right)=log(cx)
  • \sin^{-1}\left(\dfrac{y}{x}\right)=log(cx)
  • \cos^{-1}\left(\dfrac{y}{x}\right)=log(cy)
  • \sec^{-1}\dfrac{y}{x}=log(cy)
The solution of the differential equations \dfrac{dy}{dx}=\dfrac{x-2y+1}{2x-4y} is?
  • (x-2y)^2+2x=c
  • (x-2y)^2+x=c
  • (x-2y)+2x^2=c
  • (x-2y)+x^2=c
The solution of x\sqrt{1+y^2}dx+y\sqrt{1+x^2}dy=0.
  • \sin h^{-1}x+\sin h^{-1}y=c
  • \sqrt{1+x^2}+\sqrt{1+y^2}=c
  • (1+x^2)(1+y^2)=c
  • \sqrt{\dfrac{1+x^2}{1+y^2}}=c
The solution of \dfrac{dy}{dx}=(1+y^2)(1+x^2)^{-1} is?
  • y-x=c(1+xy)
  • y+x=c(1+xy)
  • y=(1+2x)c
  • xy=x^2+x+x
The solution of \dfrac{dy}{dx}=\dfrac{y^2}{xy-x^2}.
  • y=ce^{xy}
  • y=\dfrac{e^{\frac{y}{x}}}{c}
  • log y=xy+c
  • log x=xy+c
If f:R \rightarrow R be a continuous   function such that f(x)=\displaystyle \int^{x}_{1}2tf(t)dt, then which of the following does not hold(s) good?
  • f(\pi)=e^{\pi^{2}}
  • f(1)=e
  • f(0)=1
  • f(2)=-2
The solution of the differential equation {x}^{2}dy=-2xydx is
  • x{y}^{2}=c
  • {x}^{2}{y}^{2}=c
  • {x}^{2}y=c
  • xy=c
Solution of the differential equation \dfrac{dy}{dx}+y\sec x=\tan x\left(\le x< \dfrac{\pi}{2}\right) is 
  • y\left( \sec { x } -\tan { x } \right) =\left( \sec { x } +\tan { x } \right) -x+C
  • y\left( \sec { x } +\tan { x } \right) =\left( \sec { x } -\tan { x } \right) -x+C
  • y\left( \sec { x } +\tan { x } \right) =\left( \sec { x } +\tan { x } \right) -x+C
  • none of these
Solution of the differential equation xdy-ydx=\sqrt {x^{2}+y^{2}}dx is
  • y+\sqrt {x^{2}+y^{2}}=cx
  • y+\sqrt {x^{2}+y^{2}}=cx^{2}
  • y+\sqrt {x^{2}+y^{2}}=C
  • none\ of\ these
The solution of the differential equation \cfrac{dy}{dx}=1+x+y+xy is
  • \log{(1+y)}=x+\cfrac{{x}^{2}}{2}+c
  • {(1+y)}^{2}=x+\cfrac{{x}^{2}}{2}+c
  • \log{(1+y)}=\log{(1+x)}+c
  • None of these
A continuously differentiable function \phi(x) in (0,\pi) satisfying y'=1+{y}^{2},y(0)=0=y(\pi) is
  • \tan{x}
  • x(x-\pi)
  • (x-\pi)(1-{e}^{x})
  • Not possible
Solution of the differential equation (1+x^{2})dy+2xy dx=\cot x dx is
  • y=\log|\sin x|(1+x^{2})+C(1+x^{2})^{-1}
  • y=\log|\sin x|(1+x^{2})^{-1}+C(1+x^{2})
  • y=\log|\sin x|(1+x^{2})+C(1+x)
  • y=\log|\sin x|(1+x^{2})^{-1}+C(1+x^{2})^{-1}
The solution of the differential equation x^3 \dfrac{dy}{dx} + 4x^2 \tan y = e^x \sec y satisfying y(1) = 0 is 
  • \tan \, y = (x - 2) e^x \log \, x
  • \sin \, y = e^x (x - 1) x^{-4}
  • \tan \, y = (x - 1) e^x x^{-3}
  • \sin \, y = e^x (x - 1) x^{-3}
The solution of \cfrac{dy}{dx}=\cfrac{1+{y}^{2}}{\sec{x}} is
  • \tan ^{ -1 }{ y } =\cos { x } +c
  • \tan ^{ -1 }{ y } =\sin { x } +c
  • { y }^{ 3 }=co\sec { x } +c
  • \log { \left( 1+{ y }^{ 2 } \right) } =\cos { x } +c
The solution of ydx-xdy=0 is
  • {y}^{2}=cx
  • y=c{x}^{3}
  • y=cx
  • {x}^{2}=cy
Solution of differential equation \dfrac{dy}{dx}-2xy=x is
  • y=Ce^{x^2}-\dfrac {1}{2}
  • y=Ce^{x^2}+\dfrac {1}{2}
  • y=Cx^2-\dfrac {1}{2}
  • None
If 2x = {y^{\dfrac{1}{5}}} + {y^{\dfrac{{ - 1}}{5}}}{\text{and}}\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + \lambda x\dfrac{{dy}}{{dx}} + {\text{ky}} = 0,\;{\text{then}}\;\lambda  + {\text{K}} is equal to.
  • 26
  • -24
  • -23
  • -26
The solution of y d x - x d y + 3 x ^ { 2 } y ^ { 2 } e ^ { x ^ { 3 } } d x = 0
  • \frac { x } { y } + e ^ { x ^ { 3 } } = c
  • \frac { x } { y } - e ^ { x ^ { 3 } } = c
  • \frac { x } { y } = - e ^ { x ^ { 3 } } + c
  • none of these
The solution of, \dfrac{xdy}{x^2 + y^2} = \left(\dfrac{y}{x^2 + y^2} - 1 \right)dx, is given by
  • \tan^{-1} \left(\dfrac{x}{y}\right) + x = C
  • \tan^{-1} \left(\dfrac{y}{x}\right) + x = C
  • \tan^{-1} \left(\dfrac{y}{x}\right) + xy = C
  • \tan^{-1} \left(\dfrac{y}{x}\right) + x^2 = C
The solution of the differential equation \operatorname { xdy } \left( y ^ { 2 } e ^ { x y } + e ^ { \tfrac { x } { y } } \right) = y d x \left( e ^ { \frac { x } { y } } - y ^ { 2 } e ^ { x y } \right) is-
  • x y = \ln \left| e ^ { x / y } + C \right|
  • e ^ { x y } = \ln ( x y + C )
  • x y = e ^ { x / y } + C
  • x y = e ^ { x / y } + \frac { x } { y }
The solution of the differential equation ( x \cot y + \log \cos x ) d y + ( \log \sin y - y \tan x ) d x = 0 is:-
  • ( \sin x ) ^ { y } ( \cos y ) ^ { x } = c
  • ( \sin y ) ^ { x } ( \cos x ) ^ { y } = c
  • ( \sin x ) ^ { x } ( \cos y ) ^ { y } = c
  • none of these
The solution of the differential equation y ^ { 2 } d y = x ( y d x - x d y ) \text { is } y = y ( x ). If y ( \sqrt { 3 } e ) = e and y \left( x _ { 0 } \right) = 1 then x_0 is
  • 0
  • 1
  • \frac { 1 } { e }
  • -1
The differential equation whose solution is y = Ax^{5} + Bx^{4} is
  • x^{2} \dfrac {d^{2}y}{dx^{2}} + 8x \dfrac {dy}{dx} + 20y = 0
  • x^{2} \dfrac {d^{2}y}{dx^{2}} + 8x \dfrac {dy}{dx} - 20y = 0
  • x^{2} \dfrac {d^{2}y}{dx^{2}} - 8x \dfrac {dy}{dx} + 20y = 0
  • x^{2} \dfrac {d^{2}y}{dx^{2}} - 8x \dfrac {dy}{dx} - 20y = 0
Solution of the equation \dfrac{{dy}}{{dx}} = 1 + xy + x + y is
  • \left( {1 + y} \right)\left( {1 + x} \right) = c
  • \log \left( {1 + y} \right) = 1 + x + c
  • \ln |1 + y| = x + \dfrac{{{x^2}}}{2} + c
  • \ln |1 + y| + x + \dfrac{{{x^2}}}{2} + c = 0
The general solution of the differential equation \dfrac { dy }{ dx } +y={ x }^{ 3 } is ______.
  • { ye }^{ x }={ e }^{ x }\left( { x }^{ 3 }+{ 3x }^{ 2 }-6x-6 \right) +c
  • { ye }^{ x }={ e }^{ x }\left( { x }^{ 3 }-{ 3x }^{ 2 }-6x+6 \right) +c
  • y=\left( { x }^{ 3 }-{ 3x }^{ 2 }+6x-6 \right) +c{ e }^{ -x }
  • y={ e }^{ x }
If \dfrac{dy}{dx}=y+3>0 and y(0)=2 then y(\ln{2}) is equal to :
  • 7
  • 5
  • 13
  • -2
0:0:4


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers