Explanation
We have,
\left( {{x}^{2}}+1 \right)y'+2xy=4{{x}^{2}}
\Rightarrow \left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}+2xy=4{{x}^{2}}
\Rightarrow \dfrac{dy}{dx}+\dfrac{2x}{\left( {{x}^{2}}+1 \right)}y=\dfrac{4{{x}^{2}}}{\left( {{x}^{2}}+1 \right)}
On comparing that,
\dfrac{dy}{dx}+Py=Q
Now,
P=\dfrac{2x}{{{x}^{2}}+1},\,\,\,\,\,Q=\dfrac{4{{x}^{2}}}{{{x}^{2}}+1}
I.F.={{e}^{\int{pdx}}}
={{e}^{\int{\dfrac{2x}{1+{{x}^{2}}}dx}}}
={{e}^{\log \left( {{x}^{2}}+1 \right)}}\,\,\,\,\,\,\therefore {{e}^{\log x}}=x
=\left( {{x}^{2}}+1 \right)
y\times I.F.=\int{Q.IFdx+C}
y\times \left( {{x}^{2}}+1 \right)=\int{\dfrac{4{{x}^{2}}}{\left( {{x}^{2}}+1 \right)}\times }\left( {{x}^{2}}+1 \right)dx+C
y\left( {{x}^{2}}+1 \right)=\int{4{{x}^{2}}}dx+C
y\left( {{x}^{2}}+1 \right)=4\int{{{x}^{2}}}dx+C
y\left( {{x}^{2}}+1 \right)=4\dfrac{{{x}^{3}}}{3}+C
y\left( {{x}^{2}}+1 \right)=\dfrac{4{{x}^{3}}}{3}+C
Please disable the adBlock and continue. Thank you.