Explanation
We have,
$$ \left( {{x}^{2}}+1 \right)y'+2xy=4{{x}^{2}} $$
$$ \Rightarrow \left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}+2xy=4{{x}^{2}} $$
$$ \Rightarrow \dfrac{dy}{dx}+\dfrac{2x}{\left( {{x}^{2}}+1 \right)}y=\dfrac{4{{x}^{2}}}{\left( {{x}^{2}}+1 \right)} $$
On comparing that,
$$\dfrac{dy}{dx}+Py=Q$$
Now,
$$P=\dfrac{2x}{{{x}^{2}}+1},\,\,\,\,\,Q=\dfrac{4{{x}^{2}}}{{{x}^{2}}+1}$$
I.F.$$={{e}^{\int{pdx}}}$$
$$ ={{e}^{\int{\dfrac{2x}{1+{{x}^{2}}}dx}}} $$
$$ ={{e}^{\log \left( {{x}^{2}}+1 \right)}}\,\,\,\,\,\,\therefore {{e}^{\log x}}=x $$
$$ =\left( {{x}^{2}}+1 \right) $$
$$ y\times I.F.=\int{Q.IFdx+C} $$
$$ y\times \left( {{x}^{2}}+1 \right)=\int{\dfrac{4{{x}^{2}}}{\left( {{x}^{2}}+1 \right)}\times }\left( {{x}^{2}}+1 \right)dx+C $$
$$ y\left( {{x}^{2}}+1 \right)=\int{4{{x}^{2}}}dx+C $$
$$ y\left( {{x}^{2}}+1 \right)=4\int{{{x}^{2}}}dx+C $$
$$ y\left( {{x}^{2}}+1 \right)=4\dfrac{{{x}^{3}}}{3}+C $$
$$ y\left( {{x}^{2}}+1 \right)=\dfrac{4{{x}^{3}}}{3}+C $$
Please disable the adBlock and continue. Thank you.