Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

CBSE Questions for Class 12 Commerce Maths Differential Equations Quiz 7 - MCQExams.com

The general solution of the differential equation exdy+(yex+2x)dx=0 is
  • xex+x2=C
  • xexy2=C
  • yex+x2=C
  • yexx2=C
The solution of differential equation cosx.sinydx+sinx.cosydy=0 is 
  • sinxsiny=c
  • sinx.siny=c
  • sinx+siny=c
  • cosx.cosy=c
Solution of the differential equation: (2xcosy+y2cosx)dx+(2ysinxx2siny)dy=0 is :
  • x2sinx+y2cosx=c
  • x2siny+y2cosx=c
  • x2cosy+y2sinx=c
  • None of these
For the given differential equation find the general solution:
dydx+2y=sinx
  • 15[2sinxcosx]+Ce2x
  • 15[2sinxcosx]+C
  • 12[5sinxcosx]+Ce2x
  • None of these
The differential equation of the system of circles touching the x-axis at origin is  
  • (x2y2)dydx2xy=0
  • (x2+y2)dydx+2xy=0
  • (x2y2)dydx+2xy=0
  • (x2+y2)dydx2xy=0
The solution of xdx+ydy=xdyydxx2+y2 is ________________________.
  • x2+y2=2tan1yx+C
  • x2y2=2tan1yx+C
  • x2+y2=2tan1xy+C
  • x2y2=2tan1xy+C
Solution of differential equation dydx+xsin2y= sinycosyis
  • tany=(x1)+cex
  • coty=(x1)+cex
  • tany=(x1)ex+c
  • coty=(x1)ex+c
Let y=y(x) be the solution of the differential equation sinxdydx+ycosx=4x,x(0,π). If y=(π2)=0,theny(π6) is equal to :
  • 493π2
  • 893π2
  • 89π2
  • 49π2
Let f(x)=cos1(cosx) then 
  • f\left( x \right) is differentable for all xϵR
  • f\left( x \right) is not differentable atxϵ0
  • f\left( x \right) is not differentable ifx=nπ.nϵI
  • f\left( x \right) is not differentable ifx=nπ2nϵI
differential equation of all parabolas whose axis s y - axis.......
  • ydydx+xd2ydx2=1
  • xd2ydx2dydx=1
  • y2dydx+2xdydx=0
  • xdydxx2d2ydx2=0
Let_y-y(x) be the solution of the differential
equation sinx\dfrac{dy}{dx} -ycosx -4x,_x\epsilon (0,\pi ). if y\left(\frac{\pi}{2}\right) = 0,
then y \left(\dfrac{\pi}{6}\right) is equal to 
  • -\dfrac{4}{9}\pi^2
  • -\dfrac{4}{9\sqrt3}\pi^2
  • -\dfrac{-8}{9\sqrt3}\pi^2
  • None of these
Integrating factors of the differential equation \frac{{dy}}{{dx}} + y = \frac{{1 + y}}{x} is 
  • x/{e^x}
  • {e^x}/x
  • x{e^x}
  • {e^x}
Solution of differential equation \dfrac{dy}{dx} + \dfrac{y}{x} = \dfrac{1}{(1 + \ell nx + \ell ny)} is (where C is an integration constant)
  • 2(1 + \ell n (xy)) = x^2 + C
  • xy \ell n (xy) = x^2 + C
  • (1 + \ell n (xy)) = x^2 + C
  • 2xy \ell n (xy) = x^2 + C
The solution of the differential equation (x^2-yx^2)\dfrac{y^3}{x}=k+y^2+xy^2=0 is?
  • log\left(\dfrac{x}{y}\right)=\dfrac{1}{x}+\dfrac{1}{y}+c
  • log\left(\dfrac{y}{x}\right)=\dfrac{1}{x}+\dfrac{1}{y}+c
  • log(xy)=\dfrac{1}{x}+\dfrac{1}{y}+c
  • log(xy)+\dfrac{1}{x}+\dfrac{1}{y}=c
An integrating factor for the DE: (1+y^{2})dx-(\tan^{-1}y-x)dy=0 is 
  • \tan^{-1} y
  • e^{\tan^{-1}y}
  • \dfrac{1}{1+y^{2}}
  • \dfrac{1}{x(1+y^{2})}
Solution of differential equation \left( { 2y+xy }^{ 3 } \right) dx+\left( x{ +x }^{ 2 }{ y }^{ 2 } \right) dy=0
  • { xy }^{ 2 }+\dfrac { { x }^{ 3 }{ y }^{ 3 } }{ 3 } =c
  • { xy }^{ 2 }-\dfrac { { x }^{ 3 }{ y }^{ 3 } }{ 3 } =c
  • { x }^{ 2 }y+\dfrac { { x }^{ 4 }{ y }^{ 4 } }{ 3 } =c
  • None of these
Solution of the differential equation \left( { x }^{ 2 }+1 \right) y'+2xy=4{ x }^{ 2 } is 
  • y\left( 1+{ x }^{ 2 } \right) =\dfrac { 4{ x }^{ 3 } }{ 3 } +C
  • y\left( 1-{ x }^{ 2 } \right) ={ x }^{ 3 }+C
  • y\left( 1-{ x }^{ 2 } \right) =\dfrac { { x }^{ 3 } }{ 2 } +C
  • None of these
Consider the differential equation, ydx-(x+y^{2})dy=0. If for y=1, x takes value 1, then value of x when y=4 is:

  • 16
  • 36
  • 64
  • 9
General solution of the differential equation \frac{{dy}}{{dx}} = 1 + xy is
  • y = c \cdot \,{e^{ - x2/2}}
  • y = c \cdot \,{e^{ x2/2}}
  • y = (x + c) \cdot {e^{ - x2/2}}
  • None
The solution of the differentiable equation x^{2}\dfrac {dy}{dx}.\cos \dfrac {1}{x}-y\sin \dfrac {1}{x}=-1, where y\rightarrow -1 as x\rightarrow \infty is
  • y=\sin \dfrac {1}{x}-\cos \dfrac {1}{x}
  • y=\dfrac {x+1}{x\sin \dfrac {1}{x}}
  • y=\cos \dfrac {1}{x}-\sin \dfrac {1}{x}
  • y=\dfrac {x+1}{x\cos \dfrac {1}{x}}
The population  p(t)  at time  t  of a certain mouse species satisfies the differential equation  \dfrac { d p ( t )  } { d t } = 0.5 p ( t ) - 450.  If  p ( 0 ) = 850 ,  then the time at which the population becomes zero is
  • \dfrac { 1 } { 2 } \ln 18
  • \ln 18
  • 2 \ln 18
  • \ln 9
The solution of differential equation  \cos ^ { 2 } x \dfrac { d y } { d x } - ( \tan 2 x ) y = \cos ^ { 4 } x , | x | < \dfrac { \pi } { 4 } ,  where y \left( \dfrac { \pi } { 6 } \right) = \dfrac { 3 \sqrt { 3 } } { 8 }
  • y = \tan 2 x \cos ^ { 2 } x
  • y = \cot 2 x \cos ^ { 2 } x
  • 2 y = \tan 2 x \cos ^ { 2 } x
  • 2 y = \cot 2 x \cos ^ { 2 } x
The order of the differential equation
2x^2\dfrac{d^2y}{dx^2}-3\dfrac{dy}{dx}+y=0 is
  • 2
  • 1
  • 0
  • Not defined
The general solution of the differential equation \dfrac{ydx-xdy}{y}=0 is
  • xy=C
  • x=Cy^2
  • y=Cx
  • y=Cx^2
A differential equation associated with the primitive y=a+b\ e^{5x}+c\ e^{7x} is
  • y_{3}+2y_{2}-y_{1}=0
  • y_{3}+2y_{2}-35y_{1}=0
  • 4y_{3}+5y_{2}-20y_{1}=0
  • none\ of\ these
If \sqrt { \dfrac { \upsilon  }{ \mu  }  } +\sqrt { \dfrac { \mu  }{ \upsilon  }  } =6, then \dfrac { d\upsilon  }{ d\mu  } =
  • \dfrac { 17\mu -\upsilon }{ \mu -17\upsilon }
  • \dfrac { \mu -17\upsilon }{ 17\mu -\upsilon }
  • \dfrac { 17\mu +\upsilon }{ \mu -17\upsilon }
  • \dfrac { \mu +17\upsilon }{ 17\mu -\upsilon }
The number of arbitrary constant in the particular solution of a differential equation is
  • 3
  • 4
  • infinite
  • zero
Solution of differential equation \sin y.\dfrac {dy}{dx}+\dfrac {1}{x}\cos y=x^{4}\cos^{2}y is
  • x\sec y=x^{6}+C
  • 6x\sec y=x+C
  • 6x\sec y=x^{6}+C
  • 6x\sec y=6x^{6}+C
The general solution of the differential equation \dfrac{dy}{dx}=e^{x+y}  is : 
  • e^{-x}+e^{-y}=c
  • e^{x}+e^{-y}=c
  • e^{x}+e^{y}=c
  • e^{-x}+e^{y}=c
The solution of the differential equation { 2x }^{ 2 }y\dfrac { dy }{ dx } =tan\left( { x }^{ 2 }{ y }^{ 2 } \right) -{ 2xy }^{ 2 } given y(1)=\sqrt { \dfrac { \pi  }{ 2 }  } is
  • sin \left( { x }^{ 2 }{ y }^{ 2 } \right) -1=0
  • cos\left( \dfrac { \pi }{ 2 } +{ x }^{ 2 }{ y }^{ 2 } \right) +x=0
  • sin\left( { x }^{ 2 }{ y }^{ 2 } \right) ={ e }^{ x-1 }
  • sin\left( { x }^{ 2 }{ y }^{ 2 } \right) ={ e }^{ 2(x-1) }
The solution of the equation (x^2 +xy)dy=(x^2+y^2)dx is 
  • log x=(x-y)+\frac{y}{x}+c
  • logx=2log(x-y)+\frac{y}{x}+c
  • logx=log(x-y)+\frac{x}{y}+c
  • none of these above
Solve the given differential equation \dfrac{dy}{dx}=(cosx-sinx),
  • y=sinx+cosx+c
  • y=sinx-cosx+c
  • y=tanx+secx
  • \text{None  of  these}
The solution of the differential equation x\dfrac{dy}{dx}=y(log y-log x+1) is
  • y=xe^{cx}
  • y+xe^{cx}=0
  • y+e^{x}
  • none of these
Which of the following functions is differentiable at x=0?
  • { e }^{ -\left| x \right| }-\left| x \right|
  • { e }^{ \left| x \right| }+\left| x \right|
  • \left| x \right| -{ e }^{ \left| x \right| }
  • \left| x \right| -{ e }^{ -\left| x \right| }
Solution of the differential equation of { (y }^{ 2 }-{ x }^{ 3 })dx-xydy=0\quad is
  • { y }^{ 2 }+2{ x }^{ 3 }+c{ x }^{ 2 }=0\quad
  • { y }^{ 2 }-2{ x }^{ 3 }+c{ x }^{ 2 }=0
  • { y }^{ 2 }+2{ x }^{ 3 }-c{ x }^{ 2 }=0
  • { y }^{ 2 }+3{ x }^{ 3 }+c{ x }^{ 2 }=0
The integrating factor (I.F) of differential equation \cfrac { dy }{ dx } \left( 1+x \right) -xy=1-x is _____
  • \left( 1+x \right) { e }^{ x }
  • \left( x-1 \right) { e }^{ x }\quad
  • \left( 1+x \right) { e }^{ -x }
  • \left( 1-x \right) { e }^{ -x }\quad
If \cos { x } \cfrac { dy }{ dx } -y\sin { x } =6x,(0<x<\cfrac { \pi  }{ 2 } ) and \quad y\left( \cfrac { \pi  }{ 3 }  \right) =0\quad then y\left( \cfrac { \pi  }{ 6 }  \right) is equal to:
  • -\cfrac { { \pi }^{ 2 } }{ 4\sqrt { 3 } }
  • -\cfrac { { \pi }^{ 2 } }{ 2 }
  • -\cfrac { { \pi }^{ 2 } }{ 2\sqrt { 3 } }
  • \cfrac { { \pi }^{ 2 } }{ 2\sqrt { 3 } }
Let f(x) be a function such that f(0)=f'(0)=0, f''(x)=\sec^{4}x+4, then the function is
  • \log (\sin x)+\dfrac{1}{3}\tan^{3}x+xb
  • \dfrac{2}{3}\log (\sec^2 x)+\dfrac{1}{6}\tan^{2}x+2x^{2}
  • \log (\cos x)+\dfrac{1}{6}\cos^{2}x+\dfrac{x^{2}}{5}
  • None\ of\ these
if y = y(x) and \dfrac{ 2 + sinx }{y + 1}(\dfrac{dy}{dx}) = -cosx, y(0) = 1, then y(\pi/2) equals
  • 1/3
  • 2/3
  • -1/3
  • 1
If x\dfrac{dy}{dx} = y(\log y - \log x + 1) , then the solution of the equation is 
  • \log \dfrac{x}{y} = cy
  • \log \dfrac{y}{x} = cy
  • \log \dfrac{x}{y} = cx
  • None of these
Solution of \dfrac{dy}{dx} + 2xy = y is 
  • y = ce^{x-x^{2}}
  • y = ce^{x^{2}-x}
  • y = ce^{x}
  • y = ce^{-x^{2}}
The solution of differential equation yy' = x\big(\dfrac{y^{2}}{x^{2}} + \dfrac{f (y^{2}/x^{2})}{f' (y^{2}/x^{2})}\big) is
  • f(y^{2}/x^{2}) = cx^{2}
  • x^{2}f(y^{2}/x^{2}) = c^{2}y^{2}
  • x^{2}f(y^{2}/x^{2}) = c
  • f(y^{2}/x^{2}) = cy/x
The solution of \dfrac{dv}{dt} + \dfrac{k}{m}v = -g is
  • v = ce^{-\dfrac{k}{m}t} - \dfrac{mg}{k}
  • v = c - \dfrac{mg}{k}e^{-\dfrac{k}{m}t}
  • ve^{-\dfrac{k}{m}t} = c - \dfrac{mg}{k}
  • ve^{-\dfrac{k}{m}t} = c - \dfrac{mg}{k}
The solution of the equation (x^{2}y + x^{2})dx + y^{2}(x-1)dy = 0 is given by
  • x^{2} + y^{2} + 2(x-y) + 2 ln \dfrac{(x-1)(y+1)}{c} = 0
  • x^{2} + y^{2} + 2(x-y) + ln \dfrac{(x-1)(y+1)}{c} = 0
  • x^{2} + y^{2} + 2(x-y) - 2 ln \dfrac{(x-1)(y+1)}{c} = 0
  • None of these
Solution of 2y sin x \frac {dv}{dx}= 2 sin x cos x -y^2 cos x, for x = \frac { \pi}{2} , y = 1 is 
  • y^2 = sin x
  • y = sin^2 x
  • y^2 = 1 +cos x
  • None of these
If \phi(x) =\int \left\{ \phi (x) \right\}^{-2} dx and \phi ( 1) =0 then \phi (x) =
  • \left\{ 2(x -1) \right\}^{1/4}
  • \left\{ 5(x -2) \right\}^{1/5}
  • \left\{ 3(x -1) \right\}^{1/3}
  • None of these
Solution of differential equation dy - \sin x \sin y dx = 0 is
  • e^{\cos x}\tan \dfrac{y}{2} = c
  • e^{\cos x}\tan y = c
  • \cos x \tan y = c
  • \cos x \sin y = c
if integrating factor of x(1-x^{2})dy + (2x^{2}y - y -ax^{3})dx=0 is e^{\int pdx} , then P is equal to 
  • \dfrac{2x^{2} - ax^{3}}{x(1-x^{2})}
  • 2x^{3} - 1
  • \dfrac{2x^{2} - a}{ax^{3}}
  • \dfrac{2x^{2} - 1}{x(1-x^{2})}
The solution of differentiation equation (2y+xy^{3})dx+(x+x^{2}y^{2})dy=o is 
  • x^{2}y+\dfrac{x^{3}y^{3}}{3}= c
  • xy^{2}+\dfrac{x^{3}y^{3}}{3}= c
  • x^{2}y+\dfrac{x^{4}y^{4}}{4}= c
  • None of these
The solution of differential equation \dfrac{x+y\dfrac{dy}{dx}}{y-x\dfrac{dy}{dx}} = \dfrac{x\cos^{2}(x^{2} + y^{2})}{y^{3}} is
  • \tan(x^{2}+y^{2})=\dfrac{x^{2}}{y^{2}}+c
  • \cot(x^{2}+y^{2})=\dfrac{x^{2}}{y^{2}}+c
  • \tan(x^{2}+y^{2})=\dfrac{y^{2}}{x^{2}}+c
  • \tan(x^{2}+y^{2})=\dfrac{y^{2}}{x^{2}}+c
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers