Explanation
$$\dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } +3y=-2x.......(i)$$
This is second order non homogeneous differential equation.
Its solution is given as $$CF+PI$$
For $$CF$$ part
$$\dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } +3y=0....(ii)\\ y={ { { c }_{ 1 } }e }^{ mx }\\ \dfrac { dy }{ dx } ={ c }_{ 1 }m{ e }^{ mx }\\ \dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } ={ c }_{ 1 }{ m }^{ 2 }{ e }^{ mx }$$
Substituting in $$(ii)$$, we get $${ m }^{ 2 }{ e }^{ mx }+3{ e }^{ mx }=0\\ { e }^{ mx }({ m }^{ 2 }+3)=0\\ { m }^{ 2 }+3=0\\ \Rightarrow m=\sqrt { -3 } \\ m=i\sqrt { 3 } \\ y=c_{1}{ e }^{ i\sqrt { 3 } x }={ c }_{ 1 }(\cos { \sqrt { 3 } x } +i\sin { \sqrt { 3 } x } )\\ y={ c }_{ 1 }\cos { \sqrt { 3 } x } +{ c }_{ 2 }\sin { \sqrt { 3 } x } \quad \quad $$
For $$PI$$ part
Let $$y=cx+d$$
$$\dfrac { dy }{ dx } =c\\ \dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } =0$$
Substituting in $$(i)$$
$$0+3(cx+d)=-2x\\ 3cx+3d=-2x$$
Comparing both sides
$$c=-\dfrac { 2 }{ 3 } ,d=0$$
So solution for $$PI$$ part is
$$y=-\dfrac { 2 }{ 3 } x$$
General solution is $$CF+PI$$
$${ c }_{ 1 }\cos { \sqrt { 3 } x } +{ c }_{ 2 }\sin { \sqrt { 3 } x } -\dfrac { 2 }{ 3 } x\quad $$
Given: $$y\dfrac { dy }{ dx } =a-x$$
Integrating on both sides
$$\int { ydx } =\int { adx } -\int { xdx } $$
$$\dfrac { { y }^{ 2 } }{ 2 } =ax-\dfrac { { x }^{ 2 } }{ 2 } +c$$
$${ x }^{ 2 }+{ y }^{ 2 }-2ax+c=0$$
$${ (x-a) }^{ 2 }+{ y }^{ 2 }=r^{ 2 }$$
Hence family of circles with centre on x axis
A particle, initially at origin moves along $$x$$ axis according to the rule $$\dfrac{dx}{dt}=x+4$$. The time taken by the particle to traverse a distance of $$96$$ units is
The equation of the curves, satisfying the differential equation $$\dfrac{d^2y}{dx^2}(x^2+1)=2x\dfrac{dy}{dx}$$ passing through the point $$(0,1)$$ and having the slope of tangent at $$x=0$$ as $$6$$ is
$${ e }^{ 2x-3y }dx + { e }^{ 2x-3y }dy=0\\ \Rightarrow \cfrac { { e }^{ 2x } }{ { e }^{ 3y } } dx+\cfrac { { e }^{ 2y } }{ { e }^{ 3x } } dy=0 \\ \Rightarrow \cfrac { { e }^{ 5x }dx + { e }^{ 5y }dy }{ { e }^{ 3y }{ e }^{ 3x } } =0\\ \Rightarrow { e }^{ 5x }dx + { e }^{ 5y }dy=0$$
Integrating n both sides.
$$\cfrac { { e }^{ 5x } }{ 5 } +\cfrac { { e }^{ 5y } }{ 5 } =k\\ \Rightarrow { e }^{ 5x }+{ e }^{ 5y }=k$$
Given,
$${ x }^{ 2 }\dfrac { dy }{ dx } .cos{ \dfrac { 1 }{ x } }=-1$$
$$\Rightarrow dy=\dfrac { 1 }{ cos{ \dfrac { 1 }{ x } } } .\dfrac { -1 }{ { x }^{ 2 } } dx$$
Let us assume $$\dfrac { 1 }{ x } =t$$.
Therefore, $$\dfrac { -1 }{ { x }^{ 2 } } dx=dt$$.
$$\Rightarrow dy=\dfrac { 1 }{ cos{ t } } dt$$
$$\Rightarrow dy=\sec { t } dt$$
Integrating both sides, we get,
$$\Rightarrow \int { dy } =\int { \sec { t } } dt$$
$$\Rightarrow y=log_{ e }{ \left| \sec { t } +tan{ t } \right| }+C$$
$$\Rightarrow y=log_{ e }{ \left| \sec { \dfrac { 1 }{ x } } +tan{ \dfrac { 1 }{ x } } \right| }+C$$
Now, given that $$y\rightarrow -1\quad as\quad x\rightarrow \infty $$
$${ \Rightarrow lim }_{ x\rightarrow \infty }y=-1$$
$${ \Rightarrow lim }_{ x\rightarrow \infty }\left( log_{ e }{ \left| \sec { \dfrac { 1 }{ x } } +tan{ \dfrac { 1 }{ x } } \right| }+C \right) =-1$$
$${ \Rightarrow }\left( log_{ e }{ \left| \sec { 0 } +tan{ 0 } \right| }+C \right) =-1$$
$$\Rightarrow C=-1$$.
Therefore, the solution of given differential equation is:
$$y=log_{ e }{ \left| \sec { \dfrac { 1 }{ x } } +tan{ \dfrac { 1 }{ x } } \right| }-1$$.
Please disable the adBlock and continue. Thank you.