CBSE Questions for Class 12 Commerce Maths Integrals Quiz 1 - MCQExams.com

Let $$F(x)=f(x)+f\left ( \dfrac{1}{x} \right )$$, where $$f(x)=\int_{l}^{x}\dfrac{logt}{l+t}dt$$. Then $$F(e)$$ equals
  • $$\dfrac{1}{2}$$
  • 0
  • 1
  • 2
The following integral $$\displaystyle \int_{\pi/4}^{\pi/2} (2 cosec  x)^{17}dx$$ is equal to
  • $$\displaystyle \int_{0}^{log(1+\sqrt{2})} 2(e^u + e^{-u})^{16} du$$
  • $$\displaystyle \int_{0}^{log(1+\sqrt{2})} 2(e^u + e^{-u})^{17} du$$
  • $$\displaystyle \int_{0}^{log(1+\sqrt{2})} 2(e^u - e^{-u})^{17} du$$
  • $$\displaystyle \int_{0}^{log(1+\sqrt{2})} 2(e^u - e^{-u})^{16} du$$
The value of $$g\displaystyle \left ( \frac{1}{2} \right )$$ is?
  • $$\pi$$
  • $$2 \pi$$
  • $$\displaystyle \frac{\pi}{2}$$
  • $$\displaystyle \frac{\pi}{4}$$
$$\int x  log  x  dx $$ is equal to
  • $$\displaystyle\frac{x^2}{4}(2log x-1)+c$$
  • $$\displaystyle\frac{x^2}{2}(2log x-1)+c$$
  • $$\displaystyle\frac{x^2}{4}(2log x+1)+c$$
  • $$\displaystyle\frac{x^2}{2}(2log x+1)$$
$$\int \dfrac {dx}{\sqrt {x^{10} - x^{2}}}; x > 1=$$ ______ $$+ C$$.
  • $$\dfrac {1}{4}\log |\sqrt {x^{10} - x^{2}} + x^{2}|$$
  • $$\dfrac {1}{2}\log |x^{10} - x^{2}|$$
  • $$-\dfrac {1}{4}\sec^{-1} (x^{4})$$
  • $$\dfrac {1}{4}\sec^{-1} (x^{4})$$
Evaluate the integral
$$\displaystyle \int_{0}^{1}\frac{1}{1+x^{2}}dx$$
  • $$\pi/4$$
  • $$\pi$$
  • $$\pi/3$$
  • $$0$$
The value of $$\int { { e }^{ \tan { \theta  }  } } \left( \sec { \theta  } -\sin { \theta  }  \right) d\theta$$ is equal to ?
  • $$-{ e }^{ \tan { \theta } }\sin { \theta } +C$$
  • $${ e }^{ \tan { \theta } }\sin { \theta } +C$$
  • $${ e }^{ \tan { \theta } }\sec { \theta } +C$$
  • $${ e }^{ \tan { \theta } }\cos { \theta } +C$$
 Find $$\displaystyle\int_0^\dfrac{\pi}{2}{cos^3}{x}\ dx$$ = 
  • $$\dfrac{2}{3}$$
  • $$2$$
  • $$1$$
  • $$-2$$
$$\displaystyle  \int _{ 0 }^{ 1 }{ \tan ^{ -1 }{ \left( \dfrac { x }{ \sqrt { 1-{ x }^{ 2 } }  }  \right)  } dx }$$
  • $$\dfrac{\pi}{2}$$
  • $$\dfrac{\pi}{2}-1$$
  • $$0$$
  • None of these
$$\int _{ 0 }^{ 1 }{ \dfrac { { e }^{ x }.x }{ { \left( x+1 \right)  }^{ 2 } } dx= }$$
  • $$\dfrac{e}{2}$$
  • $$1+\dfrac{e}{2}$$
  • $$\dfrac{e}{2}-1$$
  • $$1-\dfrac{e}{2}$$
Find $$\int\limits_0^{\sqrt 2 } {\sqrt {2 - {x^2}} dx} $$
  • $$\frac{\pi }{2}$$
  • 8
  • 0
  • 2
Solve $$\int {\dfrac{1}{{\sqrt[{}]{{9 - 25{x^2}}}}}} dx$$
  • $$ \dfrac{1}{5}{{\sin }^{-1}}\left( \dfrac{5x}{3} \right)+C $$
  • $$ {{\sin }^{-1}}\left( \dfrac{5x}{3} \right)+C $$
  • $$ \dfrac{1}{5}{{\sin }^{-1}}\left( \dfrac{3x}{5} \right)+C $$
  • $${{\sin }^{-1}}\left( \dfrac{3x}{5} \right)+C $$
Evaluate $$\displaystyle\int^{3}_{2}3^{x}dx$$
  • $$\dfrac{1}{\ln 3}$$
  • $$\dfrac{8}{\ln 3}$$
  • $$\dfrac{18}{\ln 3}$$
  • None of these
$$ \int_0^{ \pi /2 } \sin^5 x \cos ^6 x dx = $$
  • $$ \dfrac {8}{693} $$
  • $$ \dfrac {32}{693} $$
  • $$ \dfrac {8}{99} $$
  • $$ \dfrac {16}{63} $$
The value of $$\int _{  }^{  }{ \cfrac { \log { x }  }{ { \left( x+1 \right)  }^{ 2 } }  } dx$$ is
  • $$\cfrac { -\log { x } }{ x+1 } +\log { x } -\log { \left( x+1 \right) } +C $$
  • $$\cfrac { \log { x } }{ x+1 } +\log { x } -\log { \left( x+1 \right) } +C  $$
  • $$\cfrac { \log { x } }{ x+1 } -\log { x } -\log { \left( x+1 \right) } + C $$
  • $$\cfrac { -\log { x } }{ x+1 } -\log { x } -\log { \left( x+1 \right) } +C  $$
$$\int {\dfrac{{\cot \sqrt x }}{{2\sqrt x }}dx} $$ is equal to $$ = \_\_\_\_\_ + C.$$
  • $$2\log |\sin \sqrt x |$$
  • $$\log |\sin \sqrt x |$$
  • $$\dfrac{1}{2}\log |\sin \sqrt x |$$
  • None of these
$$\displaystyle \int_{\pi /4}^{3\pi/4 }\dfrac{dx}{1+\cos x} $$ is equal to 
  • $$-2$$
  • $$2$$
  • $$4$$
  • $$-1$$
$$ \int \sin ^{-1}(\cos x) d x  $$ is equal to
  • $$ \frac{\pi x}{2}+c $$
  • $$ \frac{\pi x^{2}}{2}+c $$
  • $$ \frac{\pi x-x^{2}}{2}+c $$
  • $$ \frac{\pi x+x^{2}}{2}+c $$
Evaluate :
$$\int \cos^3 x e^{\log \sin x} dx$$
  • $$-\dfrac{\cos ^4x}{4}+C$$
  • $$\dfrac{\sin x}{x^2}+C$$
  • $$-\dfrac{\sin^3x}{3}+C$$
  • None of these
What is $$\displaystyle \int \dfrac{dx}{x(1 + ln x)^n}$$ equal to $$(n \neq 1)$$ ?
  • $$\dfrac{1}{(n - 1)(1 + ln x)^{n - 1}} + c$$
  • $$\dfrac{1 - n}{(1 + ln x)^{1- n}} + c$$
  • $$\dfrac{n + 1}{(1 + ln x)^{n+1}} + c$$
  • $$-\dfrac{1}{(n - 1)(1 + ln x)^{n-1}} + c$$
Evaluate $$\displaystyle\int^1_0\dfrac{1}{(1+x^2)}dx$$
  • $$\dfrac{\pi}{2}$$
  • $$\dfrac{\pi}{3}$$
  • $$\dfrac{\pi}{4}$$
  • None of these
Evaluate the integral
$$\displaystyle \int_{1}^{e^{3}}\frac{dx}{x\sqrt{1+\ln x}}$$
  • $$2$$
  • $$2\sqrt{2}$$
  • $$\sqrt{2}$$
  • $$-2$$
The integral $$\displaystyle \int_{0}^{\pi_/{3}}\frac{\cos x}{3+4\sin x}d_{X=}$$
  • $$\displaystyle \log\left(\frac{3+2\sqrt{3}}{3}\right)$$
  • $$\dfrac{1}{4} \log\left(\displaystyle \frac{3+2\sqrt{3}}{3}\right)$$
  • $$2\displaystyle \log\left(\frac{3+2\sqrt{3}}{3}\right)$$
  • $$\dfrac{1}{2}\log\left(\displaystyle \frac{3+2\sqrt{3}}{2}\right)$$
Evaluate the integral
$$\displaystyle \int_{0}^{\pi_/{2}}\frac{cosx}{1+sin^{2}x}dx $$
  • $$\pi$$
  • $$\pi/3$$
  • $$\pi/2$$
  • $$\pi/4$$

$$\displaystyle \int_{-1}^{3}\left( \tan^{ -1 }\frac { x }{ x^{ 2 }+1 } +\tan ^{ -1 } \frac { x^{ 2 }+1 }{ x }  \right) dx=$$
  • $$\pi$$
  • $$2\pi$$
  • $$4\pi$$
  • $$3\pi$$
If $$\displaystyle \int_{1/\sqrt{3}}^{k}\dfrac{1}{1+x^{2}}dx=$$ $$\dfrac{\pi}{6}$$ 
then the upper limit $$k=?$$
  • $$\sqrt{3}$$
  • $$\displaystyle \frac{1}{\sqrt{3}}$$
  • $$1$$
  • $$2+\sqrt{3} $$
The integral $$\displaystyle \int_{0}^{\pi/4}\frac{\sin^{9}x}{\cos^{11}x}dx=$$
  • $$10$$
  • $$5$$
  • $$\dfrac{1}{10}$$
  • $$\dfrac{1}{5}$$
$$\displaystyle \int_{0}^{1}\frac{4x^{3}}{\sqrt{1-x^{8}}}dx =?$$
  • $$\pi$$
  • $$-\pi$$
  • $$\pi /2$$
  • $$- \pi /2$$
Evaluate: $$\displaystyle \int_{0}^{1}\frac{\tan^{-1}x}{1+x^{2}}dx$$
  • $$\displaystyle \frac{\pi^{2}}{4}$$
  • $$\displaystyle \frac{\pi^{2}}{18}$$
  • $$\displaystyle \frac{\pi^{2}}{32}$$
  • $$\displaystyle \frac{\pi^{2}}{8}-1$$
Evaluate: $$\displaystyle \int_{1}^{2}\frac{1}{x\sqrt{x^{2}-1}}d{x}$$
  • $$\pi$$
  • $$\dfrac {\pi}{2}$$
  • $$\dfrac {\pi}{4}$$
  • $$\dfrac {\pi}{3}$$

$$\displaystyle \int_{0}^{\pi_/{2}}\frac{\cos x}{1+\sin x}d_{X=}$$
  • $$\log 2$$
  • $$\log \mathrm{e}$$
  • $$\dfrac{1}{2}$$ log3
  • $$0$$
The value of $$\int_{0}^{\infty} x.e^{-x^{2}}dx_{=}$$
  • $$1$$
  • $$- 1/2$$
  • $$1/2$$
  • $$0$$
$$\displaystyle \int_{0}^{1}\frac{x^{2}}{1+x^{2}}dx$$ equals
  • $$1-\displaystyle \frac{\pi}{4}$$
  • $$1-\displaystyle \frac{\pi}{3}$$
  • $$\displaystyle \frac{\pi}{3}$$
  • $$\displaystyle \frac{\pi}{4}$$

$$\displaystyle \int_{0}^{1}\frac{dx}{e^{x}+e^{-x}}=$$
  • $$tan^{-1}e$$
  • $$\displaystyle \frac{\pi}{4}$$
  • $$ta\displaystyle \mathrm{n}^{-1}\mathrm{e}-\frac{\pi}{4}$$
  • $$ta\displaystyle \mathrm{n}^{-1}\mathrm{e}+\frac{\pi}{4}$$

$$\displaystyle \int_{1}^{2}(\frac{1+x\log x}{x})e^{x}dx_{=}$$
  • $$\mathrm{e}^{2}$$ $$log2$$
  • $$elog2$$
  • $$\displaystyle \frac{1}{2}$$ log2
  • $$\displaystyle \frac{\mathrm{e}^{2}}{2}$$ log2
Evaluate the integral
$$\displaystyle \int_{\frac{\sqrt{2}}{3}}^{ \frac{\sqrt{3}}{3}}\displaystyle \frac{dx}{\sqrt{4-9x^{2}}}$$
  • $$\displaystyle \frac{\pi}{36}$$
  • $$\displaystyle \frac{\pi}{3}$$
  • $$\displaystyle \frac{\pi}{4}$$
  • $$\displaystyle \frac{7\pi}{30}$$
$$\displaystyle \int_{0}^{\pi /2} \displaystyle \frac{1}{\sin x+\cos x} \ dx $$
  • $$\sqrt{2}l\mathrm{o}\mathrm{g}(\sqrt{2}+1)$$
  • $$\sqrt{2}l\mathrm{o}\mathrm{g}(\sqrt{2}-1)$$
  • $$\dfrac{1}{\sqrt{2}}l\mathrm{o}\mathrm{g}(\sqrt{2}+1)$$
  • $$\dfrac{-1}{\sqrt{2}}l\mathrm{o}\mathrm{g}(\sqrt{2}+1)$$
Evaluate the integral
$$\displaystyle \int_{0}^{\pi_/{2}}\cos^{5}x.\sin 2xdx$$
  • $$2/7$$
  • $$1/7$$
  • $$-1/7$$
  • $$3/7$$

$$\displaystyle \int_{0}^{\displaystyle \tfrac{\pi}{4}}\sqrt{\frac{1-\sin 2x}{1+\sin 2x}}dx=$$
  • $$\log 2$$
  • $$-\log\sqrt{2}$$
  • $$2\log 2$$
  • $$3\log\sqrt{2}$$
$$ \int_{\pi /4}^{\pi /2} Cotx.dx_{=}$$
  • 2 log 2
  • $$\displaystyle \frac{\pi}{2}$$ log2
  • $$\log\sqrt{2}$$
  • $$\log 2$$
Evaluate the integral
$$\displaystyle \int_{0}^{1}\frac{dx}{\sqrt{1-x^{2}}}$$
  • $$0$$
  • $$-1$$
  • $$\pi/2$$
  • $$-\pi/2$$
Evaluate the integral
$$\displaystyle \int_{0}^{1}\frac{(\sin^{-1} {x})^{2}}{\sqrt{1-x^{2}}}dx $$
  • $$\displaystyle \frac{\pi^{3}}{24}$$
  • $$\pi^{2}$$
  • $$-\pi^{2}$$
  • $$0$$
Evaluate the integral
$$\displaystyle \int_{0}^{a}\sqrt{a^{2}-x^{2}}dx$$
  • $$\displaystyle \frac{a^{2}}{4}$$
  • $$\pi {a}^{2}$$
  • $$\displaystyle \frac{\pi a^{2}}{2}$$
  • $$\displaystyle \frac{\pi a^{2}}{4}$$
Evaluate the integral
$$\displaystyle \int_{1/2}^{1}\frac{1}{\sqrt{1-x^{2}}}dx$$
  • $$\pi$$
  • $$\pi/2$$
  • $$\pi/3$$
  • $$\pi/4$$

$$\displaystyle \int_{0}^{1}\sqrt{1-x^{2}}dx_{=}$$
  • $$1-\displaystyle \frac{\pi}{4}$$
  • $$1-\displaystyle \frac{\pi}{3}$$
  • $$\displaystyle \frac{\pi}{3}$$
  • $$\displaystyle \frac{\pi}{4}$$

$$\displaystyle \int_{0}^{a}\frac{1}{a^{2}+x^{2}}dx_{=}$$
  • $$\pi/2$$
  • $$\pi/3$$
  • $$\pi/4$$
  • $$\pi/4a$$
Evaluate the integral
$$\displaystyle \int_{\frac{a}{2}}^{a}\frac{1}{\sqrt{a^{2}-x^{2}}}dx$$
  • $$\dfrac{\pi}{2}$$
  • $$\pi a$$
  • $$\pi-1$$
  • $$\dfrac{\pi}{3}$$
Evaluate the integral
$$\displaystyle \int_{0}^{1}\frac{x}{1+x^{2}}dx$$
  • $$\log 2$$
  • $$\displaystyle \frac{1}{2} \log2$$ 
  • $$2$$
  • $$\log 4$$

The integral $$\displaystyle \int_{0}^{1}\frac{x^{3}}{1+x^{8}}dx=$$
  • $$\dfrac{\pi}{16}$$
  • $$\dfrac{\pi}{4}$$
  • $$\dfrac{\pi}{2}$$
  • $$\dfrac{\pi}{8}$$

$$\displaystyle \int_{0}^{1}\frac{1}{1+x}dx_{=}$$
  • $$\log 2$$
  • $$\displaystyle \frac{1}{2} \log2$$
  • $$2$$
  • $$\log 3$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers