Explanation
We have,
$$I=\int{\dfrac{dx}{\sqrt{9-25{{x}^{2}}}}}$$
$$ I=\int{\dfrac{dx}{5\sqrt{\dfrac{9}{25}-{{x}^{2}}}}} $$
$$ I=\dfrac{1}{5}\int{\dfrac{dx}{\sqrt{{{\left( \dfrac{3}{5} \right)}^{2}}-{{x}^{2}}}}} $$
We know that
$$\int{\dfrac{dx}{\sqrt{{{a}^{2}}-{{x}^{2}}}}}={{\sin }^{-1}}\left( \dfrac{x}{a} \right)+C$$
Therefore,
$$ I=\dfrac{1}{5}{{\sin }^{-1}}\left( \dfrac{x}{\dfrac{3}{5}} \right)+C $$
$$ I=\dfrac{1}{5}{{\sin }^{-1}}\left( \dfrac{5x}{3} \right)+C $$
Hence, this is the correct answer.
$$\displaystyle \int_{1}^{e^3}\dfrac{dx}{x\sqrt{1+ln x}}=\displaystyle \int_{1}^{e^3}\dfrac{dlnx}{\sqrt{1+ln x}}$$
$$\displaystyle \int_{1}^{e^3}\dfrac{dlnx}{\sqrt{1+ln x}}=2\sqrt{1+lnx}\displaystyle \displaystyle \vert_{1}^{e^3}$$
$$=2\sqrt{1+3}-2\sqrt{1}$$
$$=2\sqrt{4}-2=2(1)$$
$$=2$$
So, $$\displaystyle \int_{1}^{e^3}\dfrac{dx}{x\sqrt{1+ln x}}=2$$
$$\displaystyle \int_{0}^{\dfrac{\pi}{3}}\dfrac{\cos x }{3+4 \sin x}dx=\int_{0}^{\dfrac{\pi}{3}}\dfrac{d(\sin x)}{3+4 \sin x}$$
$$\displaystyle =\int_{0}^{\dfrac{\pi}{3}}\dfrac{d (\sin x) }{3+4 \sin x}=\dfrac{1}{4}\left[\log (3+4 \sin x)\right]_{0}^{\dfrac{\pi}{3}}$$
$$\displaystyle =\dfrac{1}{4}\left[\log \left[3+4\left(\sin \dfrac{\pi}{3}\right)\right]-\log (3+4 \sin (0))\right]$$
$$=\dfrac{1}{4}\left (\log\left( 3+\dfrac{4\sqrt{3}}{2}\right)-\log (3)\right)$$
$$=\dfrac{1}{4}(\log (3+2\sqrt{3})-\log 3)$$
$$=\dfrac{1}{4}\log \left ( \dfrac{3+2\sqrt{3}}{3} \right )$$
$$\therefore \displaystyle \int_{0}^{\dfrac{\pi}{3}}\dfrac{\cos x}{3+4 \sin x}dx=\dfrac{1}{4} \log \left(\dfrac{3+2\sqrt{3}}{3}\right)$$
$$\displaystyle \int_{0}^{\dfrac{\pi}{2}}\dfrac{cos x}{1+sin^2 x}dx=\displaystyle \int_{0}^{\dfrac{\pi}{2}}\dfrac{d sin x}{1+sin^2 x}$$
$$\displaystyle \int_{0}^{\dfrac{\pi}{2}}\dfrac{d sin x}{1+sin^2 x}=\left [( tan^{-1}(sin x)+ c\right ) \displaystyle ]_{0}^{\dfrac{\pi}{2}}\ (\int\dfrac{1}{1+x^2}=\tan^{-1}x)$$
$$=\left ( tan^{-1}(sin ( \dfrac{\pi}{2})+ c \right )-\left ( tan^{-1}(sin 0)+ c\right )$$
$$=tan^{-1}(1)$$
$$=\dfrac{\pi}{4}$$
We need to find the value of $$\displaystyle \int_{-1}^{3} \left[ \tan^{-1}\left ( \dfrac{x}{x^2+1} \right) + \tan^{-1}\left ( \dfrac{x^2+1}{x}\right ) \right] dx$$
We know $$\tan^{-1}p+\cot^{-1}p=\dfrac{\pi}{2}$$
$$\Rightarrow \tan^{-1}p+\tan^{-1}\dfrac{1}{p}=\dfrac{\pi}{2}$$
So, $$\tan^{-1}\left ( \dfrac{x}{x^2+1} \right )+\tan^{-1}\left ( \dfrac{x^2+1}{x} \right )=\dfrac{\pi}{2}$$
$$\displaystyle \int_{-1}^{3}\left [ \tan^{-1} \left ( \dfrac{x}{1+x^2}\right ) + \tan^{-1}\left ( \dfrac{x^2+1}{x}\right ) \right ]dx$$
$$=\displaystyle \int_{-1}^{3}\dfrac{\pi}{2}dx$$
$$=\dfrac{\pi}{2}\int_{-1}^{3}1\cdot dx$$
$$=\dfrac{\pi}{2}[3-(-1)]$$
$$=\dfrac{\pi}{2}\times 4=2\pi$$
$$\displaystyle \int_{\frac{1}{\sqrt{3}}}^{k}\dfrac{1}{1+x^2}dx=\dfrac{\pi}{6}$$
$$\displaystyle \int_{\frac{1}{\sqrt{3}}}^{k}\dfrac{1}{1+x^2}dx=tan^{-1}x\displaystyle \vert _{\frac{1}{\sqrt{3}}}^{k}$$
$$=[tan^{-1}k-tan^{\dfrac{-1}{\sqrt{3}}}]$$
$$=tan^{-1}k-tan^{-1}\dfrac{1}{\sqrt{3}}=\dfrac{\pi}{6}$$
$$tan^{-1}\dfrac{1}{\sqrt{3}}=\dfrac{\pi}{6}$$ ---- equation (i)
$$tan^{-1}k=\dfrac{\pi}{6}+\dfrac{\pi}{6}$$ ---- equation (ii)
$$tan^{-1}k=\dfrac{\pi}{3}$$
$$k=\sqrt{3}$$
$$\displaystyle I=\int_{0}^{\dfrac{\pi}{4}}\dfrac{\sin ^9 x}{\cos ^{11}x}dx=\int_{0}^{\dfrac{\pi}{4}}\dfrac{\sin ^9 x}{\cos ^{9}x} \sec ^2 dx$$
$$\displaystyle =\int_{0}^{\dfrac{\pi}{4}} \tan ^9x d(\tan x)$$
$$=\left[\dfrac{\tan ^{10}x}{10}+c \right]_{0}^{\dfrac{\pi}{4}}$$
$$=\left [ \left ( \dfrac{\tan ^{10}(\dfrac{\pi}{4})}{10}+c \right ) -\left ( \dfrac{\tan ^{10}(0)}{10} +c \right )\right ]$$
$$\tan \dfrac{\pi}{4}=1 ; \tan 0=0$$
$$\Rightarrow I=\dfrac{1}{10}-\dfrac{0}{10}=\dfrac{1}{10}$$
So, $$\displaystyle \int_{0}^{\dfrac{\pi}{4}}\dfrac{\sin ^9 x}{\cos ^{11}x}dx=\dfrac{1}{10}$$
We need to find value of $$\displaystyle \int_{1}^{2}\dfrac{1}{x\sqrt{x^2-1}}dx$$We know that
$$\displaystyle \int \dfrac{1}{x\sqrt{x^2-1}}dx=\sec^{-1}x+c$$
$$\displaystyle \int_{1}^{2}\dfrac{1}{x\sqrt{x^2-1}}dx= \sec^{-1}2-\sec^{-1}1$$
$$\sec^{-1}2 =\dfrac{\pi}{3}$$
and $$\sec^{-1}1=0$$
So, $$\sec^{-1}2-\sec^{-1}1=\dfrac{\pi}{3}$$
$$\therefore \displaystyle \int_{1}^{2}\dfrac{1}{x\sqrt{x^2-1}}dx=\dfrac{\pi}{3}$$
$$\int_{0}^{\dfrac{\pi}{2}}\dfrac{cos x}{1+sin x}dx$$ we know that $$\int_{0}^{\dfrac{\pi}{2}}\dfrac{cos x}{1+sin x}dx=\int_{0}^{\dfrac{\pi}{2}}\dfrac{d(sin x)}{1+sin x}$$ $$\int_{0}^{\dfrac{\pi}{2}}\dfrac{d (sin x)}{1+sin x}=log (1+sin x)\int_{0}^{\dfrac{\pi}{2}}$$ $$=log (1+sin \dfrac{\pi}{2}) - log (1+sin 0)$$ $$=log (2)$$ $$=log 2$$
$$\int_{0}^{\infty}xe^{-x^2}dx=\dfrac{1}{2}\int_{0}^{\infty}e^{-x^2}dx^2$$ $$=\dfrac{1}{2}\int_{0}^{\infty}e^{-x^2}dx^2=\dfrac{1}{2}\left [ -\dfrac{1}{e^{x^2}}+c \right ] \int_{0}^{\infty}$$ $$=\dfrac{1}{2}\left [ (0+e)-(-1+e) \right ]$$ $$=\dfrac{1}{2}$$ $$\int_{0}^{\infty}xe^{-x^2}dx=\dfrac{1}{2}$$
$$\displaystyle \int_{0}^{1}\dfrac{x^2dx}{1+x^2}$$
$$\displaystyle \int_{0}^{1}1{dx}-\displaystyle \int_{0}^{1}\dfrac{1}{1+x^2}dx$$
$$=1-\left [ \tan^{-1}x \right ] \displaystyle \vert_{0}^{1}$$
$$=1 - \left [ \tan^{-1} 1 \right ]$$
$$=1 -\dfrac{\pi}{4}$$
Thus $$\displaystyle \int_{0}^{1}\dfrac{x^2}{1+x^2}dx=1-\dfrac{\pi}{4}$$
$$\int_{0}^{1}\dfrac{e^x}{1+e^{2x}}dx=\int_{0}^{1}\dfrac{de^x}{1+e^{2x}}$$ $$=tan^{-1}(e^x)\int_{0}^{1}$$ $$=tan^{-1}(e)-tan^{-1}(e^{\circ})$$ $$=tan^{-1}(e)-tan^{-1}(1)$$ $$=tan^{-1}(e)-\dfrac{\pi}{4}$$ So, $$\int_{0}^{1}\dfrac{e^x}{1+e^{2x}}dx=tan^{-1}e-\dfrac{\pi}{4}$$
$$\int_{1}^{2}\left ( \dfrac{1+x \log x}{x} \right ) e^x dx$$ $$\int_{1}^{2}\left ( \dfrac{1}{x} + \log x \right ) e^xdx$$ $$\displaystyle \int e^x [f(x)+f'(x) ] dx=e^x f(x)$$ $$= \int_{1}^{2} \left ( e^x \log x+ c\right ) $$ $$=e^2 \log 2-e \log 1$$ $$=e^2 \log 2-0$$ $$\int_{1}^{2}\left ( \dfrac{1+x \log x}{x} \right ) e^x dx=e^2 \log 2$$
$$\displaystyle \int_{\frac{\sqrt{2}}{3}}^{\frac{\sqrt{3}}{3}} \dfrac{dx}{2\sqrt{1-\dfrac{ax^2}{2}}}=\dfrac{1}{2}\displaystyle \int_{\frac{\sqrt{2}}{3}}^{\frac{\sqrt{3}}{3}} \dfrac{dx}{\sqrt{1-(\dfrac{3x}{2})^2}}$$
$$=\left[\dfrac{2}{3}\times \dfrac{1}{2} sin^{-1}\left(\dfrac{3x}{2}\right)\displaystyle \right]_{\frac{\sqrt{2}}{3}}^{\frac{\sqrt{3}}{3}}$$
$$=\dfrac{2}{3}\times \dfrac{1}{2} \left [ sin^{-1} \left ( \dfrac{3\sqrt{3}}{3(2)} \right ) -sin^{-1} \left ( \dfrac{3\sqrt{2}}{3\times 2} \right ) \right ]$$
$$=\dfrac{1}{3} \left [ sin^{-1} \left ( \dfrac{\sqrt{3}}{2} \right ) -sin \left ( \dfrac{1}{\sqrt{2}} \right ) \right ]$$
$$=\dfrac{1}{3} \left [ \dfrac{\pi}{3}-\dfrac{\pi}{4} \right ]$$
$$=\dfrac{1}{3} \left ( \dfrac{\pi}{12} \right )$$
$$=\dfrac{\pi}{36}$$
$$\displaystyle \int_{0}^{\dfrac{\pi}{2}} \dfrac{1}{sin x + cos x }dx$$
$$\displaystyle \int_{0}^{\dfrac{\pi}{2}} \dfrac{1+tan^2 \dfrac{x}{2}}{1-tan^2\dfrac{x}{2}+2 tan \dfrac{x}{2}} dx$$
$$\displaystyle \int_{0}^{\dfrac{\pi}{2}} \dfrac{2 d (tan \dfrac{x}{2})}{1-(tan\dfrac{x}{2}+1)^2}=2 \displaystyle \int_{0}^{\dfrac{\pi}{2}} \dfrac{d (tan \dfrac{x}{2})}{(\sqrt{2})^2-(tan \dfrac{x}{2}-1)^2}$$
$$=2\left [ \dfrac{1}{2\sqrt{2}} \right ] log \left | \dfrac{\sqrt{2}+tan\dfrac{x}{2}-1}{\sqrt{2}-(tan\dfrac{x}{2}-1)} \right | _{0}^{\dfrac{\pi}{2}}$$
$$=\dfrac{1}{\sqrt{2}} log \left ( \dfrac{\sqrt{2}+2}{\sqrt{2}-2} \right )$$
$$=log \left ( \dfrac{1+\sqrt{2}}{1-\sqrt{2}} \right )$$
$$=\sqrt{2}log (\sqrt{2}+1)$$
$$\displaystyle \int_{0}^{\dfrac{\pi}{2}}cos^5x\cdot sin2x dx=\displaystyle \int_{0}^{\dfrac{\pi}{2}}cos^5x\cdot 2 sinx cosx dx$$
$$=2\displaystyle \int_{0}^{\dfrac{\pi}{2}} cos^6 x sinx dx=-2\displaystyle \int_{0}^{\dfrac{\pi}{2}}cos^6 x\cdot d(cos x)$$
$$=-2\displaystyle \int_{0}^{\dfrac{\pi}{2}}cos^6 x dcos x=-2\left ( \dfrac{cos^7x}{7} \right )\displaystyle \vert_{0}^{\dfrac{\pi}{2}}$$
$$=-2\left [ \dfrac{cos^7 x}{7}\displaystyle \vert_{0}^{\frac{\pi}{2}} \right ]$$
$$=-2\left ( \dfrac{-1}{7} \right)=\dfrac{2}{7}$$
Thus $$\displaystyle \int_{0}^{\dfrac{\pi}{2}}cos^5 x\times sin 2x dx=\dfrac{2}{7}$$
Consider, $$I=\displaystyle \int_{0}^{\dfrac{\pi}{4}}\sqrt{\dfrac{1-sin 2 x}{1+sin 2 x}}\cdot dx$$
$$\displaystyle I= \int_{0}^{\dfrac{\pi}{4}}\sqrt{\dfrac{(sinx - cos x)^2}{(sin x + cos x)^2}}\cdot dx$$
$$\displaystyle I=\int_{0}^{\dfrac{\pi}{4}}{\dfrac{(sinx - cos x)}{sin x + cos x}}\cdot dx$$
$$\displaystyle I=-\int_{0}^{\dfrac{\pi}{4}}{\dfrac{cos x- sin x}{sin x + cos x}}dx$$
$$I=-\left[log |sin x + cos x|\right]_0^{\frac{\pi}{4}}$$
$$I=-\left[log (sin {\frac{\pi}{4}} + cos {\frac{\pi}{4}}) -\log (\sin 0+\cos 0))\right]$$
$$I=-\left[log \left (\dfrac{1}{\sqrt2}+\dfrac{1}{\sqrt 2}\right)-\log 1\right]$$
$$I=-log \left ( \dfrac{1}{\sqrt 2} +\dfrac{1}{\sqrt 2} \right ) =-log \sqrt{2}$$
So, $$\displaystyle \int_{0}^{\dfrac{\pi}{4}}\sqrt{\dfrac{1- sin 2 x}{1+sin 2 x}}x=-log (\sqrt{2})$$
$$\displaystyle \int_{0}^{1}\dfrac{dx}{\sqrt{1-x^2}}$$
$$\displaystyle \int \dfrac{dx}{\sqrt{1-x^2}}=\sin^{-1}x+c$$
$$\displaystyle \int_{0}^{1}\dfrac{dx}{\sqrt{1-x^2}}=\left[(\sin^{-1}x+c) \right]_{0}^{1}$$
$$=(\sin^{-1}1+c)-(\sin^{-1}0+c)$$
$$=\dfrac{\pi}{2}$$
$$\displaystyle \int_{0}^{1}\dfrac{dx}{\sqrt{1-x^2}}=\dfrac{\pi}{2}$$
$$\displaystyle \int_{0}^{1}\dfrac{(sin^{-1}x)^2}{\sqrt{1-x^2}} \cdot dx$$
$$\displaystyle \int \dfrac{(sin^{-1}x)^2}{\sqrt{1-x^2}} \cdot dx=\displaystyle \int (sin^{-1}x)d(sin^{-1}x)$$
$$=\dfrac{(sin^{-1}x)^3}{3}+c$$
$$\displaystyle \int_{0}^{1}\dfrac{(sin^{-1}x)^2}{\sqrt{1-x^2}} \cdot dx=\left[\dfrac{(sin^{-1}x)^3}{3}+c\right]_{0}^{1}$$
$$=\left ( \dfrac{(sin^{-1}1)^3}{3}+c\right )-\left ( \dfrac{(sin^{-1}0)^3}{3}+c\right )$$
$$=\dfrac{1}{3}\left ( \dfrac{\pi}{2} \right )^3$$
$$=\dfrac{\pi^3}{24}$$
$$\displaystyle \int_{\frac{1}{2}}^{1}\dfrac{1}{\sqrt{1-x^2}}dx$$
We know that $$\displaystyle \int \frac{1}{\sqrt{1-x^2}}dx=(\sin^{-1}x+c)$$
$$\displaystyle \int_{\frac{1}{2}}^{1}\dfrac{1}{\sqrt{1-x^2}}dx=\left[(\sin^{-1}x+c)\displaystyle \right]_{\frac{1}{2}}^{1}$$
$$=(sin^{-1}1+c)-(\sin{\dfrac{1}{2}}+c)$$
$$=\sin^{-1}1-\sin^{-1}\dfrac{1}{2}$$
$$=\dfrac{\pi}{2}-\dfrac{\pi}{6}$$
$$=\dfrac{\pi}{3}$$
$$\displaystyle \int_{\frac{1}{2}}^{1}\dfrac{1}{\sqrt{1-x^2}}dx=\dfrac{\pi}{3}$$
$$\int_{0}^{1}\sqrt{1-x^2}\cdot dx$$ $$\int \sqrt{1-x^2}dx=\dfrac{x}{2}\sqrt{a^2-x^2}+\dfrac{a^2}{2} sin^{-1}\left ( \dfrac{x}{a} \right )+ c $$ $$\int_{0}^{1}\sqrt{1-x^2}\cdot dx= \left ( \dfrac{1}{2} \sqrt{1^2-x^2}+\dfrac{a^2}{2}sin^{-1} \left ( \dfrac{x}{a} \right )+c \right )\int_{0}^{1}$$ $$=\left ( \dfrac{1}{2} (0)+ \dfrac{1}{2} sin^{-1}(1)+c \right ) - (0+0+c)$$ $$=\dfrac{1}{2}\dfrac{\pi}{2}$$ $$=\dfrac{\pi}{4}$$ $$\int_{0}^{1}\sqrt{1-x^2}dx=\dfrac{\pi}{4}$$
$$\int_{0}^{a}\dfrac{1}{a^2+x^2}dx$$
$$\int \dfrac{1}{a^2+x^2}dx=\dfrac{1}{a^2}$$
$$\int \dfrac{d(\dfrac{x}{a})}{1+(\dfrac{x}{a})^2}=\dfrac{1}{a}\int \dfrac{d(\dfrac{x}{a})}{1+(\dfrac{x}{a})^2}$$
$$=\dfrac{1}{a}tan^{-1}(\dfrac{x}{a})+c$$
$$\int_{0}^{a}\dfrac{1}{a^2+x^2}dx=\left [ \dfrac{1}{a} tan^{-1}\left ( \dfrac{x}{a} \right ) +c \right ] \int_{0}^{a}$$
$$=\left [ \dfrac{1}{a}tan^{-1}\left ( \dfrac{a}{a} \right ) +c \right ] -(0+c)$$ $$=\dfrac{1}{a}tan^{-1}(1)$$
$$=\dfrac{1}{a}\cdot \dfrac{\pi}{4}$$
$$=\dfrac{\pi}{4a}$$
$$\displaystyle \int_{a}^{\frac{a}{2}}\dfrac{1}{\sqrt{a^2-x^2}}\cdot dx$$
$$\displaystyle \int \dfrac{1}{\sqrt{a^2-x^2}}\cdot dx=\dfrac{1}{a}\displaystyle \int \dfrac{1}{\sqrt{1-\left ( \dfrac{x}{a} \right )^2}}\cdot dx$$
$$=\displaystyle \int \dfrac{d\left ( \dfrac{x}{a} \right )}{\sqrt{1-\left ( \dfrac{x}{a} \right )^2}}$$
$$=\sin^{-1}(\dfrac{x}{a})+c$$
$$\displaystyle \int_{\frac{a}{2}}^{a}\dfrac{1}{\sqrt{a^2-x^2}}\cdot =\left [ \sin^{-1}(\dfrac{x}{a})+c \right ] _{\frac{a}{2}}^{a}$$
$$=(\sin^{-1}(\dfrac{a}{a})+c)-(\sin^{-1}(\dfrac{\frac{a}{2}}{a})+c)$$
$$=\left [ (\sin (1)+c ) -(\sin^{-1}(\dfrac{1}{2})+c) \right ]$$
$$\displaystyle \int_{0}^{1}\dfrac{x}{a+x^2}dx$$
$$\displaystyle \int \dfrac{x}{1+x^2}dx=\dfrac{1}{2}\displaystyle \int \dfrac{dx^2}{1+x^2}=\dfrac{1}{2} \log (1+x^2)+c$$
$$=\displaystyle \int_{0}^{1}\dfrac{x}{1+x^2}dx=\left [ \dfrac{1}{2} \log (1+x^2)+c \right ]_{0}^{1}$$
$$=\left ( \dfrac{1}{2} \log (2)+c \right ) - \left ( \dfrac{1}{2} \log (1)+c\right )$$
$$=\dfrac{1}{2} \log 2$$
$$\displaystyle \int_{0}^{1}\dfrac{x}{1+x^2}dx=\dfrac{1}{2} \log 2$$
Let $$\displaystyle I=\int_{0}^{1}\dfrac{x^3}{1+x^8} dx$$
Now, $$\displaystyle \int \dfrac{x^3}{1+x^8 }dx =\dfrac{1}{4}\int \dfrac{d(x^4)}{1+x^8}=\dfrac{1}{4}\tan^{-1}(x^4)+c$$
$$I=\displaystyle \int_{0}^{1}\dfrac{x^3}{1+x^8}dx=\left(\dfrac{1}{4}\tan^{-1}(x^4)+c\right)_{0}^{1}$$
$$=\left [\dfrac{1}{4} \tan^{-1}(1)+c\right ]-\left [\dfrac{1}{4} \tan^{-1}(0)+c\right ]$$
$$=\dfrac{1}{4} \tan^{-1}(1)$$
$$=\dfrac{1}{4} \cdot \dfrac{\pi}{4}=\dfrac{\pi}{16}$$
Hence, $$\displaystyle \int_{0}^{1}\dfrac{x^3}{1+x^8}dx =\dfrac{\pi}{16}$$
Please disable the adBlock and continue. Thank you.