Explanation
We have,
I=∫dx√9−25x2
I=∫dx5√925−x2
I=15∫dx√(35)2−x2
We know that
∫dx√a2−x2=sin−1(xa)+C
Therefore,
I=15sin−1(x35)+C
I=15sin−1(5x3)+C
Hence, this is the correct answer.
∫e31dxx√1+lnx=∫e31dlnx√1+lnx
∫e31dlnx√1+lnx=2√1+lnx|e31
=2√1+3−2√1
=2√4−2=2(1)
=2
So, ∫e31dxx√1+lnx=2
∫π30cosx3+4sinxdx=∫π30d(sinx)3+4sinx
=∫π30d(sinx)3+4sinx=14[log(3+4sinx)]π30
=14[log[3+4(sinπ3)]−log(3+4sin(0))]
=14(log(3+4√32)−log(3))
=14(log(3+2√3)−log3)
=14log(3+2√33)
∴∫π30cosx3+4sinxdx=14log(3+2√33)
∫π20cosx1+sin2xdx=∫π20dsinx1+sin2x
∫π20dsinx1+sin2x=[(tan−1(sinx)+c)]π20 (∫11+x2=tan−1x)
=(tan−1(sin(π2)+c)−(tan−1(sin0)+c)
=tan−1(1)
=π4
We need to find the value of ∫3−1[tan−1(xx2+1)+tan−1(x2+1x)]dx
We know tan−1p+cot−1p=π2
⇒tan−1p+tan−11p=π2
So, tan−1(xx2+1)+tan−1(x2+1x)=π2
∫3−1[tan−1(x1+x2)+tan−1(x2+1x)]dx
=∫3−1π2dx
=π2∫3−11⋅dx
=π2[3−(−1)]
=π2×4=2π
∫k1√311+x2dx=π6
∫k1√311+x2dx=tan−1x|k1√3
=[tan−1k−tan−1√3]
=tan−1k−tan−11√3=π6
tan−11√3=π6 ---- equation (i)
tan−1k=π6+π6 ---- equation (ii)
tan−1k=π3
k=√3
I=∫π40sin9xcos11xdx=∫π40sin9xcos9xsec2dx
=∫π40tan9xd(tanx)
=[tan10x10+c]π40
=[(tan10(π4)10+c)−(tan10(0)10+c)]
tanπ4=1;tan0=0
⇒I=110−010=110
So, ∫π40sin9xcos11xdx=110
We need to find value of ∫211x√x2−1dxWe know that
∫1x√x2−1dx=sec−1x+c
∫211x√x2−1dx=sec−12−sec−11
sec−12=π3
and sec−11=0
So, sec−12−sec−11=π3
∴∫211x√x2−1dx=π3
∫π20cosx1+sinxdx we know that ∫π20cosx1+sinxdx=∫π20d(sinx)1+sinx ∫π20d(sinx)1+sinx=log(1+sinx)∫π20 =log(1+sinπ2)−log(1+sin0) =log(2) =log2
∫∞0xe−x2dx=12∫∞0e−x2dx2 =12∫∞0e−x2dx2=12[−1ex2+c]∫∞0 =12[(0+e)−(−1+e)] =12 ∫∞0xe−x2dx=12
∫10x2dx1+x2
∫101dx−∫1011+x2dx
=1−[tan−1x]|10
=1−[tan−11]
=1−π4
Thus ∫10x21+x2dx=1−π4
∫10ex1+e2xdx=∫10dex1+e2x =tan−1(ex)∫10 =tan−1(e)−tan−1(e∘) =tan−1(e)−tan−1(1) =tan−1(e)−π4 So, ∫10ex1+e2xdx=tan−1e−π4
∫21(1+xlogxx)exdx ∫21(1x+logx)exdx ∫ex[f(x)+f′(x)]dx=exf(x) =∫21(exlogx+c) =e2log2−elog1 =e2log2−0 ∫21(1+xlogxx)exdx=e2log2
∫√33√23dx2√1−ax22=12∫√33√23dx√1−(3x2)2
=[23×12sin−1(3x2)]√33√23
=23×12[sin−1(3√33(2))−sin−1(3√23×2)]
=13[sin−1(√32)−sin(1√2)]
=13[π3−π4]
=13(π12)
=π36
∫π201sinx+cosxdx
∫π201+tan2x21−tan2x2+2tanx2dx
∫π202d(tanx2)1−(tanx2+1)2=2∫π20d(tanx2)(√2)2−(tanx2−1)2
=2[12√2]log|√2+tanx2−1√2−(tanx2−1)|π20
=1√2log(√2+2√2−2)
=log(1+√21−√2)
=√2log(√2+1)
∫π20cos5x⋅sin2xdx=∫π20cos5x⋅2sinxcosxdx
=2∫π20cos6xsinxdx=−2∫π20cos6x⋅d(cosx)
=−2∫π20cos6xdcosx=−2(cos7x7)|π20
=−2[cos7x7|π20]
=−2(−17)=27
Thus ∫π20cos5x×sin2xdx=27
Consider, I=∫π40√1−sin2x1+sin2x⋅dx
I=∫π40√(sinx−cosx)2(sinx+cosx)2⋅dx
I=∫π40(sinx−cosx)sinx+cosx⋅dx
I=−∫π40cosx−sinxsinx+cosxdx
I=−[log|sinx+cosx|]π40
I=−[log(sinπ4+cosπ4)−log(sin0+cos0))]
I=−[log(1√2+1√2)−log1]
I=−log(1√2+1√2)=−log√2
So, ∫π40√1−sin2x1+sin2xx=−log(√2)
∫10dx√1−x2
∫dx√1−x2=sin−1x+c
∫10dx√1−x2=[(sin−1x+c)]10
=(sin−11+c)−(sin−10+c)
=π2
∫10dx√1−x2=π2
∫10(sin−1x)2√1−x2⋅dx
∫(sin−1x)2√1−x2⋅dx=∫(sin−1x)d(sin−1x)
=(sin−1x)33+c
∫10(sin−1x)2√1−x2⋅dx=[(sin−1x)33+c]10
=((sin−11)33+c)−((sin−10)33+c)
=13(π2)3
=π324
∫1121√1−x2dx
We know that ∫1√1−x2dx=(sin−1x+c)
∫1121√1−x2dx=[(sin−1x+c)]112
=(sin−11+c)−(sin12+c)
=sin−11−sin−112
=π2−π6
=π3
∫1121√1−x2dx=π3
∫10√1−x2⋅dx ∫√1−x2dx=x2√a2−x2+a22sin−1(xa)+c ∫10√1−x2⋅dx=(12√12−x2+a22sin−1(xa)+c)∫10 =(12(0)+12sin−1(1)+c)−(0+0+c) =12π2 =π4 ∫10√1−x2dx=π4
∫a01a2+x2dx
∫1a2+x2dx=1a2
∫d(xa)1+(xa)2=1a∫d(xa)1+(xa)2
=1atan−1(xa)+c
∫a01a2+x2dx=[1atan−1(xa)+c]∫a0
=[1atan−1(aa)+c]−(0+c) =1atan−1(1)
=1a⋅π4
=π4a
∫a2a1√a2−x2⋅dx
∫1√a2−x2⋅dx=1a∫1√1−(xa)2⋅dx
=∫d(xa)√1−(xa)2
=sin−1(xa)+c
∫aa21√a2−x2⋅=[sin−1(xa)+c]aa2
=(sin−1(aa)+c)−(sin−1(a2a)+c)
=[(sin(1)+c)−(sin−1(12)+c)]
∫10xa+x2dx
∫x1+x2dx=12∫dx21+x2=12log(1+x2)+c
=∫10x1+x2dx=[12log(1+x2)+c]10
=(12log(2)+c)−(12log(1)+c)
=12log2
∫10x1+x2dx=12log2
Let I=∫10x31+x8dx
Now, ∫x31+x8dx=14∫d(x4)1+x8=14tan−1(x4)+c
I=∫10x31+x8dx=(14tan−1(x4)+c)10
=[14tan−1(1)+c]−[14tan−1(0)+c]
=14tan−1(1)
=14⋅π4=π16
Hence, ∫10x31+x8dx=π16
Please disable the adBlock and continue. Thank you.