Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Integrals Quiz 1 - MCQExams.com

Let F(x)=f(x)+f(1x), where f(x)=xllogtl+tdt. Then F(e) equals
  • 12
  • 0
  • 1
  • 2
The following integral π/2π/4(2cosecx)17dx is equal to
  • log(1+2)02(eu+eu)16du
  • log(1+2)02(eu+eu)17du
  • log(1+2)02(eueu)17du
  • log(1+2)02(eueu)16du
The value of g(12) is?
  • π
  • 2π
  • π2
  • π4
xlogxdx is equal to
  • x24(2logx1)+c
  • x22(2logx1)+c
  • x24(2logx+1)+c
  • x22(2logx+1)
dxx10x2;x>1= ______ +C.
  • 14log|x10x2+x2|
  • 12log|x10x2|
  • 14sec1(x4)
  • 14sec1(x4)
Evaluate the integral
1011+x2dx
  • π/4
  • π
  • π/3
  • 0
The value of etanθ(secθsinθ)dθ is equal to ?
  • etanθsinθ+C
  • etanθsinθ+C
  • etanθsecθ+C
  • etanθcosθ+C
 Find π20cos3x dx
  • 23
  • 2
  • 1
  • 2
10tan1(x1x2)dx
  • π2
  • π21
  • 0
  • None of these
10ex.x(x+1)2dx=
  • e2
  • 1+e2
  • e21
  • 1e2
Find 202x2dx
  • π2
  • 8
  • 0
  • 2
Solve 1925x2dx
  • 15sin1(5x3)+C
  • sin1(5x3)+C
  • 15sin1(3x5)+C
  • sin1(3x5)+C
Evaluate 323xdx
  • 1ln3
  • 8ln3
  • 18ln3
  • None of these
π/20sin5xcos6xdx=
  • 8693
  • 32693
  • 899
  • 1663
The value of logx(x+1)2dx is
  • logxx+1+logxlog(x+1)+C
  • logxx+1+logxlog(x+1)+C
  • logxx+1logxlog(x+1)+C
  • logxx+1logxlog(x+1)+C
cotx2xdx is equal to =_____+C.
  • 2log|sinx|
  • log|sinx|
  • 12log|sinx|
  • None of these
3π/4π/4dx1+cosx is equal to 
  • 2
  • 2
  • 4
  • 1
sin1(cosx)dx is equal to
  • πx2+c
  • πx22+c
  • πxx22+c
  • πx+x22+c
Evaluate :
cos3xelogsinxdx
  • cos4x4+C
  • sinxx2+C
  • sin3x3+C
  • None of these
What is dxx(1+lnx)n equal to (n1) ?
  • 1(n1)(1+lnx)n1+c
  • 1n(1+lnx)1n+c
  • n+1(1+lnx)n+1+c
  • 1(n1)(1+lnx)n1+c
Evaluate 101(1+x2)dx
  • π2
  • π3
  • π4
  • None of these
Evaluate the integral
e31dxx1+lnx
  • 2
  • 22
  • 2
  • 2
The integral π/30cosx3+4sinxdX=
  • log(3+233)
  • 14log(3+233)
  • 2log(3+233)
  • 12log(3+232)
Evaluate the integral
π/20cosx1+sin2xdx
  • π
  • π/3
  • π/2
  • π/4

31(tan1xx2+1+tan1x2+1x)dx=
  • π
  • 2π
  • 4π
  • 3π
If k1/311+x2dx= π6 
then the upper limit k=?
  • 3
  • 13
  • 1
  • 2+3
The integral π/40sin9xcos11xdx=
  • 10
  • 5
  • 110
  • 15
104x31x8dx=?
  • π
  • π
  • π/2
  • π/2
Evaluate: 10tan1x1+x2dx
  • π24
  • π218
  • π232
  • π281
Evaluate: 211xx21dx
  • π
  • π2
  • π4
  • π3

π/20cosx1+sinxdX=
  • log2
  • loge
  • 12 log3
  • 0
The value of 0x.ex2dx=
  • 1
  • 1/2
  • 1/2
  • 0
10x21+x2dx equals
  • 1π4
  • 1π3
  • π3
  • π4

10dxex+ex=
  • tan1e
  • π4
  • tan1eπ4
  • tan1e+π4

21(1+xlogxx)exdx=
  • e2 log2
  • elog2
  • 12 log2
  • e22 log2
Evaluate the integral
3323dx49x2
  • π36
  • π3
  • π4
  • 7π30
π/201sinx+cosx dx
  • 2log(2+1)
  • 2log(21)
  • 12log(2+1)
  • 12log(2+1)
Evaluate the integral
π/20cos5x.sin2xdx
  • 2/7
  • 1/7
  • 1/7
  • 3/7

π401sin2x1+sin2xdx=
  • log2
  • log2
  • 2log2
  • 3log2
π/2π/4Cotx.dx=
  • 2 log 2
  • π2 log2
  • log2
  • log2
Evaluate the integral
10dx1x2
  • 0
  • 1
  • π/2
  • π/2
Evaluate the integral
10(sin1x)21x2dx
  • π324
  • π2
  • π2
  • 0
Evaluate the integral
a0a2x2dx
  • a24
  • πa2
  • πa22
  • πa24
Evaluate the integral
11/211x2dx
  • π
  • π/2
  • π/3
  • π/4

101x2dx=
  • 1π4
  • 1π3
  • π3
  • π4

a01a2+x2dx=
  • π/2
  • π/3
  • π/4
  • π/4a
Evaluate the integral
aa21a2x2dx
  • π2
  • πa
  • π1
  • π3
Evaluate the integral
10x1+x2dx
  • log2
  • 12log2 
  • 2
  • log4

The integral 10x31+x8dx=
  • π16
  • π4
  • π2
  • π8

1011+xdx=
  • log2
  • 12log2
  • 2
  • log3
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers