Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Integrals Quiz 10 - MCQExams.com
CBSE
Class 12 Commerce Maths
Integrals
Quiz 10
The value of
∫
b
a
(
x
−
a
)
3
(
b
−
x
)
4
d
x
is
Report Question
0%
(
b
−
a
)
4
6
4
0%
(
b
−
a
)
8
280
0%
(
b
−
a
)
7
7
3
0%
n
o
n
e
o
f
t
h
e
s
e
The value of
∫
3
−
1
[
t
a
n
−
1
(
x
x
2
+
1
)
+
t
a
n
−
1
(
x
2
+
1
x
)
]
d
x
Report Question
0%
2
π
0%
π
0%
π
2
0%
π
4
Evaluate :
∫
d
x
x
cos
x
Report Question
0%
ln
x
+
x
2
2
+
3
x
3
3
+
.
.
.
0%
ln
x
−
x
2
4
+
4
x
4
16
+
.
.
.
0%
ln
x
+
x
2
4
+
5
x
4
96
+
.
.
.
0%
ln
x
−
x
2
3
+
x
4
9
+
.
.
.
The value of the integral
π
/
4
∫
0
sin
x
+
cos
x
3
+
sin
2
x
d
x
, is
Report Question
0%
log
2
0%
log
3
0%
1
4
log
3
0%
1
8
log
3
Explanation
∫
π
4
0
sin
x
+
cos
x
3
+
sin
2
x
d
x
=
∫
π
4
0
sin
x
+
cos
x
4
−
(
sin
x
−
cos
x
)
2
d
x
substitute
u
=
sin
x
−
cos
x
⇒
(
sin
x
+
cos
x
)
d
x
=
d
t
x
(
0
,
π
4
)
→
t
(
−
1
,
0
)
=
∫
0
−
1
d
t
4
−
t
2
=
∫
0
−
1
d
t
2
2
−
t
2
=
1
2
×
2
[
ln
2
+
t
2
−
t
]
0
−
1
=
1
4
{
ln
1
−
ln
1
3
}
=
1
4
ln
3
∫
x
2
(
x
sin
x
+
cos
x
)
2
d
x
would be equal to
Report Question
0%
sin
x
+
x
cos
x
x
sin
x
+
cos
x
+
c
0%
sin
x
−
x
cos
x
x
sin
x
+
cos
x
+
c
0%
sin
x
−
x
cos
x
x
sin
x
−
cos
x
+
c
0%
none of these
∫
e
x
(
1
−
sin
x
1
−
cos
x
)
d
x
is equal to :
Report Question
0%
−
e
x
tan
x
2
+
c
0%
−
e
x
cot
x
2
+
c
0%
−
1
2
e
x
tan
x
2
+
c
0%
−
1
2
e
x
cot
x
2
+
c
Explanation
Let
I
=
∫
e
x
1
−
sin
x
1
−
cos
x
d
x
=
∫
e
x
1
−
2
sin
x
2
cos
x
2
1
−
1
+
2
sin
2
x
2
d
x
=
∫
e
x
1
−
2
sin
x
2
cos
x
2
2
sin
2
x
2
d
x
=
∫
e
x
(
csc
2
x
2
2
−
cot
x
2
)
d
x
Let
f
(
x
)
=
−
cot
x
2
⇒
f
′
(
x
)
=
1
2
csc
2
x
2
⇒
I
=
∫
e
x
(
csc
2
x
2
2
−
cot
x
2
)
d
x
Using
∫
e
x
(
f
(
x
)
+
f
′
(
x
)
)
d
x
=
e
x
f
(
x
)
+
C
⇒
I
=
−
e
x
cot
x
2
+
c
The value of
∫
π
/
2
0
log
sin
x
d
x
is
Report Question
0%
−
π
log
2
0%
−
π
2
log
2
0%
π
log
2
0%
0
The value of
∫
π
/
2
0
(
sin
x
)
√
3
+
1
d
x
∫
π
/
2
0
(
sin
x
)
√
3
−
1
is
Report Question
0%
√
3
+
1
√
3
−
1
0%
√
3
−
1
√
3
+
1
0%
√
3
+
1
√
3
0%
none of these
The value of
∫
1
−
1
log
(
2
−
x
2
+
x
)
sin
2
x
d
x
Report Question
0%
1
0%
−
1
0%
2
0%
0
∫
1
−
1
x
ℓ
n
(
1
+
e
x
)
d
x
=
Report Question
0%
0
0%
ℓ
n
(
1
+
e
)
0%
ℓ
n
(
1
+
e
)
−
1
0%
1
/
3
∫
2
+
√
3
2
−
√
3
x
d
x
(
1
+
x
)
(
1
+
x
2
)
=
?
Report Question
0%
π
4
0%
π
6
0%
π
12
0%
π
24
The value of the integral
∫
1
0
d
x
x
2
+
2
x
cos
α
+
1
, where
0
<
α
<
π
2
,
is equal to
Report Question
0%
sin
α
0%
α
sin
α
0%
α
2
sin
α
0%
α
2
sin
α
Explanation
∫
1
0
d
x
x
2
+
2
x
c
o
s
α
+
1
=
∫
1
0
d
x
x
2
+
2
x
c
o
s
α
+
c
o
s
2
α
+
s
i
n
2
α
=
∫
1
0
d
x
(
x
+
c
o
s
α
)
2
+
s
i
n
2
α
=
1
s
i
n
α
[
t
a
n
−
1
(
x
+
c
o
s
α
s
i
n
α
)
]
1
0
=
1
s
i
n
α
[
t
a
n
−
1
(
1
+
c
o
s
α
s
i
n
α
)
−
t
a
n
−
1
(
c
o
s
α
s
i
n
α
)
]
=
1
s
i
n
α
[
t
a
n
−
1
(
2
c
o
s
2
α
/
2
2
s
i
n
α
/
2
c
o
s
α
/
2
)
−
t
a
n
−
1
(
c
o
t
α
)
]
=
1
s
i
n
α
[
t
a
n
−
1
(
c
o
t
+
α
/
2
)
−
t
a
n
−
1
(
c
o
t
α
)
]
=
1
s
i
n
α
[
t
a
n
−
1
(
t
a
n
(
π
/
2
−
α
/
2
)
)
−
t
a
n
−
1
(
t
a
n
(
π
/
2
−
α
)
)
]
=
1
s
i
n
α
[
π
/
2
−
α
/
2
−
π
/
2
+
α
]
=
α
2
s
i
n
α
If
∫
1
0
cot
−
1
(
1
+
x
2
−
x
)
d
x
=
k
(
π
4
−
log
e
√
2
)
, then the value of
k
is equal to
Report Question
0%
0
0%
1
0%
−
1
0%
2
∫
3
π
/
4
π
/
4
d
x
1
+
cos
x
is equal to
Report Question
0%
−
2
0%
2
0%
4
0%
−
1
∫
1
2
0
x
s
i
n
−
1
x
√
1
−
x
2
d
x
is equal to
Report Question
0%
1
2
+
π
2
√
3
0%
1
2
−
π
2
√
3
0%
1
2
+
π
4
√
3
0%
1
2
−
π
4
√
3
The integral
∫
s
i
n
2
×
c
o
s
2
×
(
s
i
n
5
×
+
c
o
s
3
×
s
i
n
2
×
+
s
i
n
3
×
c
o
s
2
×
+
c
o
s
5
×
)
2
dx is equal to:
Report Question
0%
1
1
+
c
o
s
3
x
+
c
0%
−
1
1
+
c
o
s
3
x
+
c
0%
1
3
(
1
+
t
a
n
3
x
)
+
c
0%
−
1
3
(
1
+
t
a
n
3
x
)
+
c
The value of
∫
[
x
]
0
(
x
−
[
x
]
)
d
x
, where
[
x
]
is the greatest integer
|
l
e
x
is equal to
Report Question
0%
4
[
x
]
0%
2
[
x
]
0%
1
2
[
x
]
0%
1
5
[
x
]
The value of the definite integral
∫
3
2
[
√
2
x
−
√
5
(
4
x
−
5
)
+
√
2
x
+
√
5
(
4
x
−
5
)
]
d
x
=
Report Question
0%
7
√
3
+
3
√
5
3
√
2
0%
4
√
2
0%
4
√
3
+
4
3
0%
7
√
7
−
2
√
5
3
√
2
The value of the integral
∫
e
2
e
−
1
|
log
e
x
x
|
d
x
is
Report Question
0%
3
2
0%
5
2
0%
3
0%
5
The integral
∫
π
4
π
12
8
cos
2
x
(
tan
x
+
cot
x
)
3
d
x
equals :
Report Question
0%
15
128
0%
15
64
0%
13
32
0%
13
256
Let
f
:
R
⟶
R
,
g
:
R
⟶
R
be continuous functions. then the value of integeral.
∫
ℓ
n
/
λ
ℓ
n
λ
f
(
x
2
4
)
[
f
(
x
)
−
f
(
−
x
)
]
g
(
x
2
4
)
[
g
(
x
)
+
g
(
−
x
)
]
d
x
is:
Report Question
0%
depend on
λ
0%
a non-zero constant
0%
zero
0%
1
If
P
=
lim
n
→
∞
(
∏
n
r
=
1
(
n
3
+
r
3
)
)
1
/
n
n
3
and
λ
=
∫
1
0
d
x
1
+
x
3
then
I
n
P
is equal to
Report Question
0%
I
n
2
−
1
+
λ
0%
I
n
2
−
3
+
3
λ
0%
2
I
n
2
−
λ
0%
I
n
4
−
3
+
3
λ
The value of
∫
∞
0
√
x
2
+
1
(
x
+
√
x
2
+
1
)
n
+
1
.
d
x
∀
n
∈
N
−
{
±
1
}
is
Report Question
0%
0
0%
n
(
n
2
−
1
)
0%
n
(
n
2
−
1
)
0%
n
2
∫
3
π
−
3
π
sin
2
θ
sin
2
2
θ
d
θ
is equal to-
Report Question
0%
π
0%
3
π
2
0%
5
π
2
0%
6
π
∫
π
/
4
0
x
⋅
sin
x
cos
3
x
d
x
equals to :
Report Question
0%
π
4
+
1
2
0%
π
4
−
1
2
0%
π
4
0%
π
4
+
1
Explanation
Let
I
=
∫
π
/
4
0
x
.
sin
x
cos
3
x
d
x
Applying by-parts formula, we get
=
[
x
2
cos
2
x
]
π
/
4
0
−
∫
π
/
4
0
1
2
cos
2
x
d
x
=
π
4
2
(
1
√
2
)
2
−
0
−
∫
π
/
4
0
sec
2
x
2
d
x
=
π
4
−
1
2
[
tan
x
]
π
/
4
0
=
π
4
−
1
2
[
tan
π
4
−
tan
0
]
=
π
4
−
1
2
[
1
−
0
]
=
π
4
−
1
2
Value of the definite integral
∫
1
−
1
d
x
(
1
+
x
3
+
√
1
+
x
6
)
Report Question
0%
i
s
1
2
0%
i
s
1
0%
i
s
2
0%
i
s
z
e
r
o
The value of
∫
10
5
(
√
x
+
√
20
x
−
100
+
√
x
−
√
20
x
−
100
)
d
x
is
Report Question
0%
10
√
5
0%
5
√
5
0%
10
√
2
0%
8
√
2
Let
f
(
x
)
=
|
sec
x
cos
x
sec
2
x
+
cot
x
csc
x
cos
2
x
cos
2
x
csc
2
x
1
cos
2
x
cos
2
x
|
. Then
∫
π
/
2
0
f
(
x
)
d
x
is equal to
Report Question
0%
15
π
60
0%
15
π
+
32
60
0%
15
π
−
32
60
0%
n
o
n
e
o
f
t
h
e
s
e
∫
π
/
2
0
(
sin
x
−
cos
x
)
.
log
(
sin
x
+
cos
x
)
d
x
=
Report Question
0%
π
4
0%
π
2
0%
0
0%
2
Let
f
(
x
)
+
f
(
1
x
)
=
F
(
x
)
where
f
(
x
)
=
∫
x
1
ln
t
1
+
t
d
x
.Then
F
(
e
)
=
Report Question
0%
−
1
2
0%
1
2
0%
1
0%
−
1
Evaluate:
∫
3
−
2
|
1
−
x
2
|
d
x
Report Question
0%
28
3
0%
2
3
0%
8
3
0%
5
3
If
I
1
=
∫
π
/
2
0
cos
(
sin
x
)
d
x
,
I
2
=
∫
π
/
2
0
sin
(
cos
x
)
d
x
and
I
3
=
∫
π
/
2
0
cos
x
d
x
, then
Report Question
0%
I
1
>
I
2
>
I
3
0%
I
3
>
I
2
>
I
1
0%
I
3
>
I
1
>
I
2
0%
I
1
>
I
3
>
I
2
∫
8
2
√
10
−
x
√
x
+
√
10
−
x
d
x
is
Report Question
0%
1
0%
2
0%
3
0%
4
∫
π
0
√
1
−
x
1
+
x
d
x
=
Report Question
0%
π
2
0%
π
2
−
1
0%
π
2
+
1
0%
π
+
1
∫
π
/
4
0
tan
2
x
d
x
equals -
Report Question
0%
π
/
4
0%
1
+
(
π
/
4
)
0%
1
−
(
π
/
4
)
0%
1
−
(
π
/
2
)
Evaluate
∫
d
x
√
1
−
x
Report Question
0%
sin
−
1
√
x
0%
−
sin
−
1
√
x
+
c
0%
2
√
1
−
x
+
c
0%
−
2
√
1
−
x
+
c
2
π
∫
0
x
l
o
g
(
3
+
cos
x
3
−
cos
x
)
d
x
Report Question
0%
π
2
l
o
g
3
0%
π
12
l
o
g
3
0%
π
3
l
o
g
3
0%
0
The smallest interval in which value of
∫
1
0
x
d
x
x
3
+
3
lies
Report Question
0%
[
0
,
1
]
0%
[
0
,
1
2
]
0%
[
0
,
1
4
]
0%
[
0
,
1
8
]
3
∫
0
d
x
√
5
−
x
2
Report Question
0%
π
6
0%
π
2
0%
−
π
2
0%
−
π
6
∫
∞
0
d
x
(
x
+
√
x
2
+
1
)
3
=
Report Question
0%
3
8
0%
1
8
0%
−
3
8
0%
N
o
n
e
o
f
t
h
e
s
e
If I =
2
∫
−
3
(
|
x
+
1
|
+
|
x
+
2
|
+
|
x
−
1
|
)
d
x
, then i equals
Report Question
0%
31
2
0%
35
2
0%
47
2
0%
39
2
If
I
=
∫
15
8
d
x
(
x
−
3
)
√
x
+
1
, then
I
equals
Report Question
0%
1
2
log
5
3
0%
2
log
1
3
0%
1
2
log
1
5
0%
2
log
5
3
The floor value of integral
∫
3
π
π
4
x
1
+
4
x
d
x
is
Report Question
0%
1
0%
2
0%
3
0%
4
Solve :-
∫
1
0
d
x
(
x
2
+
1
)
3
/
2
=
Report Question
0%
1
0%
1
√
2
0%
1
2
0%
√
2
Value of
∫
5
1
(
√
x
+
2
√
x
−
1
+
√
x
−
2
(
x
−
1
)
)
d
x
is
Report Question
0%
8
3
0%
16
3
0%
32
3
0%
34
3
Let
[
⋅
]
denote the greatest integer function then the value of
∫
1.5
0
x
[
x
2
]
d
x
is?
Report Question
0%
0
0%
3
2
0%
7
4
0%
5
4
∫
2
0
√
x
√
x
+
√
2
−
x
is equal to
Report Question
0%
−
1
0%
0
0%
2
0%
1
∫
∞
0
x
2
+
1
x
4
+
7
x
2
+
1
dx=
Report Question
0%
π
0%
π
2
0%
π
3
0%
π
6
4
The solution of
x
of the equation
∫
x
√
2
d
t
t
√
t
2
−
1
=
π
2
is
Report Question
0%
2
√
2
0%
2
0%
π
0%
−
√
2
If the value of the definite integral
∫
π
4
π
6
1
+
cot
x
e
x
s
i
n
x
d
x
, is equal to
a
e
−
π
/
6
+
b
e
−
π
/
4
then
(
a
+
b
)
equals
Report Question
0%
2
−
√
2
0%
2
+
√
2
0%
2
√
2
−
2
0%
2
√
3
−
√
2
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page