Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Maths Integrals Quiz 10 - MCQExams.com

The value of ba(xa)3(bx)4dx is
  • (ba)464
  • (ba)8280
  • (ba)773
  • none of these
The value of 31[tan1(xx2+1)+tan1(x2+1x)]dx 
  • 2π
  • π
  • π2
  • π4
Evaluate : dxxcosx
  • lnx+x22+3x33+...
  • lnxx24+4x416+...
  • lnx+x24+5x496+...
  • lnxx23+x49+...
The value of the integral π/40sinx+cosx3+sin2xdx, is 
  • log2
  • log3
  • 14log3
  • 18log3
x2(xsinx+cosx)2dx would be equal to 
  • sinx+xcosxxsinx+cosx+c
  • sinxxcosxxsinx+cosx+c
  • sinxxcosxxsinxcosx+c
  • none of these
ex(1sinx1cosx)dx is equal to :
  • extanx2+c
  • excotx2+c
  • 12extanx2+c
  • 12excotx2+c
The value of π/20logsinxdx is 
  • πlog2
  • π2log2
  • πlog2
  • 0
The value of π/20(sinx)3+1dxπ/20(sinx)31 is
  • 3+131
  • 313+1
  • 3+13
  • none of these
The value of 11log(2x2+x)sin2xdx
  • 1
  • 1
  • 2
  • 0
11xn(1+ex)dx=
  • 0
  • n(1+e)
  • n(1+e)1
  • 1/3
2+323xdx(1+x)(1+x2)=?
  • π4
  • π6
  • π12
  • π24
The value of the integral 10dxx2+2xcosα+1 , where 0<α<π2, is equal to
  • sinα
  • αsinα
  • α2sinα
  • α2sinα
If 10cot1(1+x2x)dx=k(π4loge2), then the value of k is equal to
  • 0
  • 1
  • 1
  • 2
3π/4π/4dx1+cosx is equal to 
  • 2
  • 2
  • 4
  • 1
120xsin1x1x2dx is equal to
  • 12+π23
  • 12π23
  • 12+π43
  • 12π43
The integral sin2×cos2×(sin5×+cos3×sin2×+sin3×cos2×+cos5×)2dx is equal to:
  • 11+cos3x+c
  • 11+cos3x+c
  • 13(1+tan3x)+c
  • 13(1+tan3x)+c
The value of [x]0(x[x])dx, where [x] is the greatest integer |lex is equal to
  • 4[x]
  • 2[x]
  • 12[x]
  • 15[x]
The value of the definite integral 32[2x5(4x5)+2x+5(4x5)]dx= 
  • 73+3532
  • 42
  • 43+43
  • 772532
The value of the integral e2e1|logexx|dx is
  • 32
  • 52
  • 3
  • 5
The integral π4π128cos2x(tanx+cotx)3dx equals :
  • 15128
  • 1564
  • 1332
  • 13256
Let f:RR,g:RR be continuous functions. then the value of integeral. 
n/λnλf(x24)[f(x)f(x)]g(x24)[g(x)+g(x)]dx is:
  • depend on λ
  • a non-zero constant
  • zero
  • 1
If P=limn(nr=1(n3+r3))1/nn3  and λ=10dx1+x3 then InP is equal to
  • In21+λ
  • In23+3λ
  • 2In2λ
  • In43+3λ
The value of 0x2+1(x+x2+1)n+1.dx  n  N{±1} is
  • 0
  • n(n21)
  • n(n21)
  • n2
3π3πsin2θsin22θdθ is equal to-
  • π
  • 3π2
  • 5π2
  • 6π
π/40xsinxcos3xdx equals to :
  • π4+12
  • π412
  • π4
  • π4+1
Value of the definite integral 11dx(1+x3+1+x6)
  • is12
  • is 1
  • is 2
  • is zero
The value of 
105(x+20x100+x20x100)dx is 
  • 105
  • 55
  • 102
  • 82
Let f(x)=|secxcosxsec2x+cotxcscxcos2xcos2xcsc2x1cos2xcos2x|. Then π/20f(x)dx is equal to 
  • 15π60
  • 15π+3260
  • 15π3260
  • none of these
π/20(sinxcosx).log(sinx+cosx)dx=
  • π4
  • π2
  • 0
  • 2
Let f(x)+f(1x)=F(x) where f(x)=x1lnt1+tdx.Then F(e)=
  • 12
  • 12
  • 1
  • 1
Evaluate:
32|1x2|dx
  • 283
  • 23
  • 83
  • 53
If I1=π/20cos(sinx)dx,I2=π/20sin(cosx)dx and I3=π/20cosxdx, then
  • I1>I2>I3
  • I3>I2>I1
  • I3>I1>I2
  • I1>I3>I2
8210xx+10xdx is
  • 1
  • 2
  • 3
  • 4
π01x1+xdx=
  • π2
  • π21
  • π2+1
  • π+1
π/40tan2xdx equals -
  • π/4
  • 1+(π/4)
  • 1(π/4)
  • 1(π/2)
Evaluate
dx1x
  • sin1x
  • sin1x+c
  • 21x+c
  • 21x+c
2π0xlog(3+cosx3cosx)dx
  • π2log3
  • π12log3
  • π3log3
  • 0
The smallest interval in which value of 10xdxx3+3 lies 
  • [0,1]
  • [0,12]
  • [0,14]
  • [0,18]
30dx5x2
  • π6
  • π2
  • π2
  • π6
0dx(x+x2+1)3=
  • 38
  • 18
  • 38
  • None of these
If I =23(|x+1|+|x+2|+|x1|)dx, then i equals 
  • 312
  • 352
  • 472
  • 392
If I=158dx(x3)x+1, then I equals 

  • 12log53
  • 2log13
  • 12log15
  • 2log53
The floor value of integral 3ππ4x1+4xdx is 
  • 1
  • 2
  • 3
  • 4
Solve :-
10dx(x2+1)3/2=

  • 1
  • 12
  • 12
  • 2
Value of 51(x+2x1+x2(x1))dx is
  • 83
  • 163
  • 323
  • 343
Let [] denote the greatest integer function then the value of 1.50x[x2]dx is?
  • 0
  • 32
  • 74
  • 54
  20xx+2x is equal to
  • 1
  • 0
  • 2
  • 1
0x2+1x4+7x2+1 dx=
  • π
  • π2
  • π3
  • π64
The solution of x of the equation x2dttt21=π2 is 
  • 22
  • 2
  • π
  • 2
If the value of the definite integral π4π61+cotxexsinxdx, is equal to aeπ/6+beπ/4 then (a+b) equals
  • 22
  • 2+2
  • 222
  • 232
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers