Explanation
∫10(tan−1x)31+x2dx
∫(tan−1x)31+x2dx=∫(tan−1x)3d(tan−1x)
=(tan−1x)44+c
∫10(tan−1x)31+x2⋅dx=((tan−1x)44+c)10
=[(tan−11)44+c]−[(tan−10)44+1]
=[(π4)44+c]−[0+c]
=π445=π41024
Consider, I=∫π40etanxcos2xdx
∫etanx⋅sec2xdx=∫etanx⋅d(tanx)
=∫etanxd(tanx)=etanx+c
∴
=\left ( e^{\tan \frac{\pi}{4}}+c\right ) -\left ( e^{\tan 0}+c \right )
=(e+c)-(1+c)
=e-1
Hence, \displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{e^{\tan x}}{\cos ^2 x}dx=e-1
\int_{0}^{1} tan h x dx \int tan h x dx=\int \dfrac{e^x-e^{-x}}{e^x+e^{-x}} dx =log (e^x+e^{-x})+c \int_{0}^{1} tan h x dx = log (e^x+e^{-x})+c \int_{0}^{1} =\left ( log (e+\dfrac{1}{e}) +c \right ) - \left ( log (2)+c \right ) =log (e+\dfrac{1}{e})-log 2 =log (\dfrac{e}{2}+\dfrac{1}{2e}) \int_{0}^{1}tan hx dx=log (\dfrac{e}{2}+\dfrac{1}{2e})
\int_{0}^{\pi}\dfrac{\tan x}{\sec x+\cos x}dx
\int \dfrac{\tan x}{\sec x+\cos x}dx=\int \dfrac{d (\sec x)}{1+\sec ^2 x}
=\tan ^{-1}(\sec x)+c
\int_{0}^{\pi}\dfrac{\tan x}{\sec x+\cos x}dx=\left [ \tan (\sec x)+c \right ] |_{0}^{\pi}
=(\tan ^{-1}(\sec \pi)+c)- [ \tan ^{-1}(\sec 0) ]
=-\dfrac{\pi}{2}
\int_{0}^{1}\dfrac{x dx}{(x^2+1)^2} \int \dfrac{x dx}{(x^2+1)^2} =\dfrac{1}{2}\int \dfrac{dx^2}{(1+x^2)^2}=-\dfrac{1}{2}\left ( \dfrac{1}{1+x^2} \right )^{-1} =-\dfrac{1}{2}(1+x^2)^{+c} =\int_{0}^{1}\dfrac{x dx}{(x^2+1)^2}=\left [ -\dfrac{1}{2} (1+x^2)+c \right ] \int_{0}^{1} =\left [ -\dfrac{1}{2} (2)+c \right ] - \left [ -\dfrac{1}{2}+c \right ] =-\dfrac{1}{4}+\dfrac{1}{2} =\dfrac{1}{4} \int_{0}^{1}\dfrac{x dx}{(x^2+1)^2}=\dfrac{1}{4}
\int_{0}^{\dfrac{\pi}{2}}\dfrac{dx}{4 cos^2 x + 9 sec^2 x} \int \dfrac{dx}{4 cos^2 x + 9 sec^2 x}=\int \dfrac{sec^2 x dx} {4+9 tan^2 x}=\int \dfrac{d(tan x)}{4+9 tan^2 x} =\dfrac{1}{4} tan^{-1}\left ( \dfrac{3}{2} tan x \right ) \dfrac{2}{3} +c =\dfrac{1}{6} tan^{-1}\left ( \dfrac{3}{2} tan x \right ) +c \int_{0}^{\dfrac{\pi}{2}}\dfrac{dx}{4 cos^2 x + 9 sec^2 x}=\left [ \dfrac{1}{6} tan^{-1}\left ( \dfrac{3}{2} tan x \right ) +c \right ]\int_{0}^{\dfrac{\pi}{2}} =\left (\dfrac{1}{6} tan^{-1}\left ( \dfrac{3}{2} tan \dfrac{\pi}{2} \right ) +c \right ]- \left ( \dfrac{1}{6}tan^{-1}(0)+c \right ) =\dfrac{1}{6}\times \dfrac{\pi}{2}=\dfrac{\pi}{12}
\Rightarrow \displaystyle I=\frac { 2 }{ 3 } \int _{ 0 }^{ \frac { 1 }{ 3 } }{ \cfrac { 1 }{ 1-{ u }^{ 2 } } du } =\cfrac { 2 }{ 3 } { \left[ \cfrac { 1 }{ 2 } \log { \cfrac { 1+u }{ 1-u } } \right] }_{ 0 }^{ \frac { 1 }{ 3 } }
To find : \displaystyle \int_{0}^{a}\dfrac{x-a}{x+a} \cdot dx Consider, \displaystyle \int \dfrac{x-a}{x+a} \cdot dx=\int 1 - 2a \int \dfrac{1}{(x+a)}dx =x-2a \log (x+a)+c Then, \displaystyle \int_{0}^{a}\dfrac{x-a}{x+a} \cdot dx=\left[x-2a \log (x+a)+c\right]_{0}^{a} =(a-2a \log (1a)+c)- [0-2a \log (a)+c] =a-2a \log 2 \displaystyle \int_{0}^{a}\dfrac{x-a}{x+a}\cdot dx= a-2a \log 2
\displaystyle \int_{0}^{1} \left ( \dfrac{1-x}{1+x} \right ) dx
\displaystyle \int \dfrac{1-x}{1+x} dx = \displaystyle \int \dfrac{2}{1+x}dx -\displaystyle \int1 \cdot dx
=2\log (1+x) - x + c
\displaystyle \int \dfrac{1-x }{1+x}dx = 2 \log (1+x)- x+c
\displaystyle \int_{0}^{1}\dfrac{1-x}{1+x}dx= \left(2 \log (1+x)-x+c\right)_{0}^{1}
=2 \log (2)-1
=\log 4- \log \ e
=\log \left(\dfrac{4}{e}\right)
\int_{1}^{2}\dfrac{dx}{\sqrt{1+x^2}}=\log |x+\sqrt{x^2+a}|+c \int_{1}^{2}\dfrac{dx}{\sqrt{1+x^2}}=\log |x+\sqrt{x^2+1}|+c =\log |2+\sqrt{5}|-\log |1+\sqrt{2}| =\log \left | \dfrac{2+\sqrt{5}}{1+\sqrt{2}} \right | \int_{1}^{2}\dfrac{dx}{\sqrt{1+x^2}}=\log \left | \dfrac{2+\sqrt{5}}{1+\sqrt{2}} \right |
=\int_{-1}^{1}\dfrac{dx}{1+x^2} \int \dfrac{dx}{1+x^2}=tan^{-1}x+c \int_{-1}^{1}\dfrac{dx}{1+x^2}=(tan^{-1}x+c)\int_{-1}^{1} =tan^{-1}1-tan^{-1}(-1) =\dfrac{\pi}{4}-(\dfrac{-\pi}{4}) =\dfrac{\pi}{2} So, \int_{-1}^{1}\dfrac{dx}{1+x^2}=\dfrac{\pi}{2}
\displaystyle \int_{1}^{2}\sqrt{-x^2+3x-2}dx
=\displaystyle \int_{1}^{2}\sqrt{-x^2+3x-\dfrac{9}{4}+\dfrac{9}{4}-2} dx
=\displaystyle \int_{1}^{2}\sqrt{-\left (x-\dfrac{3}{2}\right)^2+\left (\dfrac{1}{2}\right)^2}dx=\int_{1}^{2}\sqrt{\left (\dfrac{1}{2}\right)^2-\left (x-\dfrac{3}{2}\right)^2}dx
=\left ( \dfrac{x}{2}\sqrt{(x-1)(2-x)+\dfrac{(\dfrac{1}{2})^2}{2}}\sin^{-1}\left ( \dfrac{x-\dfrac{3}{2}}{\dfrac{1}{2}} \right )+c \right )_{1}^{2}
=\left ( \dfrac{x}{2}\sqrt{(x-1)(2-x)}+\dfrac{1}{8}\sin^{-1}(2x-3)+c \right )_{1}^{2}
=\dfrac{1}{8}\sin^{-1}(1)-\dfrac{1}{8}\sin^{-1}(-1)
=\dfrac{1}{8}\left ( \dfrac{\pi}{2}+\dfrac{\pi}{8} \right )
=\dfrac{\pi}{8}
\int_{1}^{\infty }\left [ \dfrac{1}{1+x^2} \right ] dx tan^{-1}x \int_{1}^{\infty } \dfrac{\pi}{2}-\dfrac{\pi}{4}=\dfrac{\pi}{4}
\int_{0}^{\dfrac{\pi}{2}} sin ^4 x cos^2 x dx \int_{0}^{\dfrac{\pi}{2}}sin ^m x cos ^x dx I_{m, n}=\left (\dfrac{m-1}{m+n} \right )\left (\dfrac{m-3}{m+n-2} \right )\left (\dfrac{m-5}{m+n-4} \right ) ..... I_0, n or I_1,,,,, I_{4,2}=\left (\dfrac{4-1}{6} \right )\left (\dfrac{4-3}{4} \right )I_{0,2} \int_{0}^{\dfrac{\pi}{2}}cos^2x dx=\dfrac{1}{2}\times \dfrac{\pi}{2} \dfrac{3}{6}\left (\dfrac{1}{4} \right )\times \dfrac{\pi}{4}=\dfrac{\pi}{32}
\int_{1}^{3}\dfrac{dx}{\sqrt{(x-1)(3-x)}} \int_{1}^{3}\dfrac{dx}{\sqrt{-3+4x-x^2}}=\int_{1}^{3}\dfrac{dx}{\sqrt{1-(x-2)^2}} =\int_{1}^{3}\dfrac{dx}{\sqrt{1-(x-2)^2}}=\left [ sin^{-1}\left (\dfrac{x-2}{1}\right )+c\right ]_1^3 =sin^{-1}(x-2)_{1}^{3} =sin^{-1}(1)-sin^{-1}(-1) =\dfrac{\pi}{2}-\left ( \dfrac{-\pi}{2}\right ) =\pi
\int_{0}^{\infty}\dfrac{dx}{(x+\sqrt{x^2+1})^5}=\int_{0}^{\infty}\dfrac{(x-\sqrt{x^2+1})^5}{-1}dx =\int_{0}^{\infty}(\sqrt{x^2+1}-1)^5 dx x=Sin h \theta \int_{0}^{\infty}(cos h \theta- sin h \theta)^5 cos h \theta d\theta \int_{0}^{\infty}(e^{-x})^5\left (\dfrac{e^x+e^{-x}}{2} \right ) d\theta \int_{0}^{+\infty}\dfrac{e^{-4x}+e^{-6x}}{2} dx=\dfrac{1}{2}\left [ \left (\dfrac{-1}{4}\right )[0-1]+\left (\dfrac{-1}{6} \right )[0-1] \right ] =\dfrac{1}{2}\left ( \dfrac{1}{4}+\dfrac{1}{6}\right )=\dfrac{1}{2}\left (\dfrac{1+4}{24}\right ) =\dfrac{5}{24}
\displaystyle \int_{\pi}^{\dfrac{3\pi}{4}}\dfrac{sin 2x}{cos^4 x + sin^4 x}dx=\displaystyle \int_{\pi}^{\dfrac{3\pi}{4}}\dfrac{d sin^2 x}{(1-sin^2 x)^2+sin^4x}
=\displaystyle \int_{\pi}^{\dfrac{3\pi}{4}}\dfrac{d sin^2 x}{(2 sin^2 x-2 sin^2 x +\dfrac{1}{2}+\dfrac{1}{2})}
sin^2 x=t\displaystyle \int_{0}^{\dfrac{1}{2}}\dfrac{dt}{(\sqrt{2}t-\dfrac{1}{\sqrt{2}})^2+ (\dfrac{1}{\sqrt{2}})^2}=\dfrac{1}{\sqrt{2}}\dfrac{1}{(\dfrac{1}{\sqrt{2}})}tan^{-1}\left [ \dfrac{\left (\sqrt{2}t- \dfrac{1}{\sqrt{2}} \right )}{\dfrac{1}{\sqrt{2}}} \right ]_{0}^{\dfrac{1}{2}}
=tan^{-1}(2t-1)_{0}^{{1}/{2}}
=tan^{-1}(0)-tan^{-1}(-1)
=0-\left ( \dfrac{-\pi}{4} \right )
=\dfrac{\pi}{4}
\int_{a}^{0}\dfrac{x^5dx}{\sqrt{a^2-x^2}}x=a sin \theta \int_{o}^{a}\dfrac{a^5sin ^5\theta}{a cos \theta}a cos \theta d \theta \int_{0}^{\dfrac{\pi}{2}}a^5 sin^5\theta d \theta=a^5\int_{0}^{\dfrac{\pi}{2}}sin ^5\theta d \theta =a^5\left ( \dfrac{4}{5}\right )\left ( \dfrac{2}{3}\right ) =\dfrac{8a^5}{15}
\displaystyle \int_{0}^{1} cos^{-1}\left ( \dfrac{1-x^2}{1+x^2} \right )
x=tan \theta
dx =sec^2 \theta \cdot d \theta
\displaystyle \int_{0}^{\dfrac{\pi}{4}}cos^{-1}(cos 2\theta)cos^2\theta d\theta
\displaystyle \int_{0}^{\dfrac{\pi}{4}}2 \theta sec^2 \theta d \theta =2\displaystyle \int_{0}^{\dfrac{\pi}{4}}\theta sec^2 \theta d \theta
2 [ \theta tan \theta + log |cos \theta| ]_{0}^{\dfrac{\pi}{4}}
2 \left [ (\dfrac{\pi}{4}-0)+ log (\dfrac{1}{\sqrt{2}})\right ]
\dfrac{\pi}{2}- 2 log (\sqrt{2})=\dfrac{\pi}{2}-\dfrac{2}{2}log (2)
=\dfrac{\pi}{2}-log 2
\displaystyle \int_{\frac {1}{3}}^{1} \dfrac {(x – x^{3})^{\frac {1}{3}}}{x^{4}} dx = \int_{\frac {1}{3}}^{1} \frac {(x^{3})^{\frac {1}{3}} \left (\dfrac {1}{x^{2}} – 1\right )^{\frac {1}{3}}}{x^{4}} dx
\displaystyle = \int_{\dfrac {1}{3}}^{1} \dfrac {\left (\dfrac {1}{x^{2}} – 1\right )^{\frac {1}{3}}}{x^{3}} dx (let \dfrac {1}{x^{2}} – 1 = t)
\displaystyle = \int_{8}^{0} \dfrac{t^{\frac{1}{3}}}{-2} dt \therefore \dfrac {-2}{x^{3}} dx = dt
\int_{0}^{\infty}\left ( \dfrac{a^x}{c^x}-\dfrac{b^x}{c^x} \right ) dx =\int_{0}^{\infty}\left ( \dfrac{a}{c} \right )^xdx-\int_{0}^{\infty}\left ( \dfrac{b}{c}\right )^x dx =\dfrac{(\dfrac{a}{c})^x}{log (\dfrac{a}{c})}\int_{0}^{\infty}-\dfrac{(\dfrac{b}{c})^x}{log (\dfrac{b}{c})}\int_{0}^{\infty} =\left [ 1-\dfrac{1}{log(\dfrac{a}{c})} \right ] - \left [ 1-\dfrac{1}{log(\dfrac{b}{c})}\right ] =\dfrac{1}{log(\dfrac{b}{c})}-\dfrac{1}{log(\dfrac{a}{c})}
\displaystyle \int_{0}^{1}e^x\left ( \dfrac{1}{(x=+1)}-\dfrac{1}{(x+1)^2}\right ) dx
It is in the form of
\displaystyle \int e^x \left [ f(x)+f^1 (x) \right ] dx=e^x f(x)+c
=\left [ \dfrac{e^x}{(1+x)}+c \right ] _{0}^{1}
=\dfrac{e}{2}-1
\int_{\sqrt{2}}^{x}\dfrac{dx}{x\sqrt{x^2-1}}=\dfrac{\pi}{2} =\left ( sin^{-1}x+c \right ) \int_{\sqrt{2}}^{x}=\dfrac{\pi}{2} \left ( sec^{-1}x - sec^{-1}\sqrt{2} \right ) =\dfrac{\pi}{2} sec^{-1}x- \dfrac{\pi}{4}=\dfrac{\pi}{12} sec^{-1}x =\dfrac{\pi}{12}+\dfrac{3\pi}{12} sec^{-1}=\dfrac{\pi}{3} x=sec \dfrac{\pi}{3} =2
\int_{0}^{1}\dfrac{dx}{x^2+x cos_\alpha+1} \int_{0}^{1}\dfrac{dx}{(x+cos \alpha)^2}+ sin^2 \alpha \left ( \dfrac{1}{sin \alpha} \left [ tan^{-1} \left ( \dfrac{x+ cos \alpha}{sin \alpha} \right ) \right ]+c \right )_{0}^{1} =\dfrac{1}{sin \alpha} \left [ tan^{-1} \left ( \dfrac{1+cos \alpha}{sin \alpha} \right ) \right ]-\dfrac{1}{sin \alpha}tan^{-1}\left ( \dfrac{cos \alpha}{sin \alpha} \right ) =\dfrac{1}{sin \alpha}\left [ tan^{-1} (cot \dfrac{\alpha}{2})-tan^{-1}(cot \alpha) \right ] =\dfrac{1}{sin \alpha} \left ( \alpha -\dfrac{\alpha}{2} \right ) =\dfrac{\alpha}{2} sin \alpha
\int_{0}^{\dfrac{\pi}{4}} \dfrac{1}{1+4 sin^2 x}dx =\int_{0}^{\dfrac{\pi}{4}} \dfrac{1}{1+4 cos^2 x}dx \int_{0}^{\dfrac{\pi}{4}} \dfrac{1}{1+4 cos^2x}dx =\int_{0}^{\dfrac{\pi}{4}} \dfrac{sec^2x}{(sec^2x + 4)}dx =\int_{0}^{\dfrac{\pi}{4}} \dfrac{d(tan x)}{5 + tan^2 x} dx= \left [ \dfrac{1}{\sqrt{5}} tan^{-1}\left ( \dfrac{tan x}{\sqrt{5}} \right ) + c \right ]_{0}^{\dfrac{\pi}{2}} =\dfrac{1}{\sqrt{5}}(\dfrac{\pi}{2}) =\dfrac{\pi}{2\sqrt{5}}
\int_{0}^{16}\dfrac{dx}{\sqrt{x+9}-\sqrt{x}} \int_{0}^{16}\dfrac{\sqrt{x}+9+\sqrt{x}}{9}dx =\dfrac{1}{19}\left [ \int_{0}^{16} \sqrt{x+9}dx + \int_{0}^{16}\sqrt{x}dx \right ] =\dfrac{1}{19}\times \dfrac{2}{3}\left [ (x+a)^{\dfrac{3}{2}}\int_{0}^{16}+ x^{\dfrac{3}{2}} \int_{0}^{16} \right ] =\dfrac{2}{27}\left [ (25)^{\dfrac{3}{2}} - (9)^{\dfrac{3}{2}}+ (16)^{\dfrac{3}{2}} \right ] =\dfrac{2}{27}\left [ 125-27+64 \right ] =\dfrac{2}{27}\left [ 189-27 \right ] =\dfrac{2}{27}\left [ 162 \right ] =12
\int_{0}^{\dfrac{\pi}{4}}\dfrac{sec^2 x \sqrt{tan x}}{tan x}dx dividing and multiplying by sec^2 x =\int_{0}^{\dfrac{\pi}{4}}\dfrac{d tan x}{\sqrt{tan x}} =(2\sqrt{tanx}+c)\int_{0}^{\dfrac{\pi}{4}} =2
\int_{1}^{2}\dfrac{dx}{(x-1)^2+(\sqrt{3})^2}=\left [ \dfrac{1}{\sqrt{3}} tan^{-1} \left ( \dfrac{x-1}{\sqrt{3}}\right ) +c \right ] \int_{1}^{2} =\dfrac{1}{\sqrt{3}}tan^{-1}\left ( \dfrac{1}{\sqrt{3}} \right ) =\dfrac{1}{\sqrt{3}}\cdot \dfrac{\pi}{6} =\dfrac{\pi}{6\sqrt{3}}
x=t^2 dx=2t dt =\int_{0}^{1}\left ( \dfrac{t^2}{1+t} \right ) 2t \cdot dt =2\int_{0}^{1}\dfrac{t^3}{1+t}dt =2\int_{0}^{1}\dfrac{t^3+1}{t+1}dt -2\int_{0}^{1}\dfrac{1}{t+1}dt =2\left [ \dfrac{t^3}{3}\dfrac{t^2}{2}+t \right] \int_{0}^{1} -2 log (1+1) \int_{0}^{1} =2\left [ \dfrac{1}{3} -\dfrac{1}{2} +1 \right ] -2 log (2) =2 \left [ \dfrac{2-3+6}{6} \right ] -2 log (2) =\dfrac{5}{3}-log 4
\int_{0}^{\pi}\dfrac{dx}{3+2 sin x+ cos x} =\int_{0}^{\pi}\dfrac{dx(1+tan^2 \dfrac{x}{2})}{3(1+tan^2 \dfrac{x}{2}) + 2 (2 tan \dfrac{x}{2}) + (1- tan^2 \dfrac{x}{2})} =\int_{0}^{\pi}\dfrac{sec^2\dfrac{x}{2} dx}{2 tan^2 \dfrac{x}{2}+ 4 tan \dfrac{x}{2}+4} =\int_{0}^{\pi}\dfrac{2 d (tan^2 \dfrac{x}{2})}{(\sqrt{2}tan \dfrac{x}{2}+\sqrt{2})^2+(\sqrt{2})^2} =\int_{0}^{\pi}\dfrac{d (tan^2 \dfrac{x}{2})}{(\sqrt{2}tan \dfrac{x}{2}+\sqrt{2})^2+(\sqrt{2})^2} =\int_{0}^{\pi}\dfrac{d(tan^2 \dfrac{x}{2})}{(tan \dfrac{x}{2}+1)^2} =tna^{-1}(tan \dfrac{x}{2}+1)\int_{0}^{\pi} =\dfrac{\pi}{2} -\dfrac{\pi}{4} =\dfrac{\pi}{4}
Please disable the adBlock and continue. Thank you.