Processing math: 3%

CBSE Questions for Class 12 Commerce Maths Integrals Quiz 2 - MCQExams.com

The integral 10(tan1x)31+x2dx=
  • π464
  • π4256
  • π41024
  • π4512

The integral π/40etanxcos2xdx=
  • e1
  • e11
  • e1+1
  • e21

\displaystyle \int_{0}^{1/2}\mathrm{e}^{\mathrm{x}}\left[ { s }{ i }{ n }^{ -1 }{ x }+\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } }  }  \right] dx =


  • \displaystyle \frac{e^{4}}{4}
  • \displaystyle \frac{\pi\sqrt{\mathrm{e}}}{6}
  • \displaystyle \frac{\sqrt{\pi \mathrm{e}}}{4}
  • \displaystyle \frac{\pi\sqrt{\mathrm{e}}}{2}
If  \displaystyle \int_{0}^{k}\frac{\cos x}{1+\sin^{2}x}dx=\frac{\pi}{4} then {k}=?
  • 1
  • \pi/4
  • \pi/2
  • \pi/6

\displaystyle \int_{0}^{1}\tanh xdx=
  • \log(\mathrm{e}+1/\mathrm{e})
  • \log (e-1/e)
  • \log(\mathrm{e}/2+1/2\mathrm{e})
  • \displaystyle \log(\frac{\mathrm{e}}{2}-\frac{1}{\mathrm{e}})
Evaluate the integral
\displaystyle \int_{1}^{e}\frac{(\ln x)^{3}}{x}dx
  • e^{4}/4
  • \dfrac{1}{4}
  • \displaystyle \frac{1}{4}({e}^{4}-1)
  • e^{4}-1

\displaystyle \int_{0}^{\pi}\frac{\tan x}{\sec x+\cos x}dx_{=}
  • \pi
  • \dfrac {-\pi}2
  • -\pi
  • 2 \pi
Evaluate: \displaystyle \int_{\sqrt{8}}^{\sqrt{15}}x\sqrt{1+x^{2}}.dx
  • \dfrac{15}{8}
  • \dfrac{37}{3}
  • \dfrac{37}{6}
  • \displaystyle \frac{37}{9}

\displaystyle \int_{0}^{1}\mathrm{e}^{\mathrm{x}}(\mathrm{e}^{\mathrm{x}}+1)^{3}\mathrm{d}\mathrm{x}=
  • \displaystyle \frac{e^{4}}{4}-4
  • \displaystyle \frac{(e+1)^{4}}{4}-4
  • \displaystyle \frac{(e+1)^{4}+16}{4}
  • \displaystyle \frac{(\mathrm{e}+1)^{4}}{4}+4

\displaystyle \int_{0}^{1}\frac{xdx}{(x^{2}+1)^{2}}=
  • 1/2
  • 1/3
  • 1/4
  • 0
Evaluate: \displaystyle \int_{0}^{\dfrac{\pi}{2}}e^{\sin^2 x}\sin 2xdx
  • e
  • e+1
  • e-1
  • 2{e}+1

\displaystyle \int_{0}^{4}\sqrt{16-x^{2}}d_{X}=
  • \displaystyle \frac{\pi}{4}
  • \pi
  • 16\pi
  • 4\pi

Find \displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\sec^{2}xdx}{(\sec x+\tan x)^{n}}, where (\mathrm{n}>2)
  • \displaystyle \frac{1}{n^{2}-1}
  • \displaystyle \frac{n}{n^{2}-1}
  • \displaystyle \frac{n}{n^{2}+1}
  • \displaystyle \frac{2}{n^{2}-1}
\displaystyle \int_{0}^{\pi/2}\frac{d_{X}}{4\cos^{2}x+9\sin^{2}x}=
  • \displaystyle \frac{\pi}{12}
  • \displaystyle \frac{\pi}{4}
  • \displaystyle \frac{\pi}{9}
  • \displaystyle \frac{\pi}{6}
Evaluate the following definite integral:
\displaystyle \int_{0}^{\pi_/{2}}\frac{1}{4+5\cos x}dx=
  • \displaystyle \frac{1}{5}\log 2
  • \displaystyle \frac{1}{2}\log 2
  • \displaystyle \frac{1}{3}\log 3
  • \displaystyle \frac{1}{3}\log 2
\displaystyle \int_{0}^{1}\frac{1}{\sqrt{2+3x}}dx_{=}
  • \displaystyle \frac{2}{3}(\sqrt{5}-\sqrt{2})
  • \displaystyle \frac{2}{3}(\sqrt{5}+\sqrt{2})
  • \displaystyle \frac{3}{5}(\sqrt{5}-\sqrt{2})
  • \displaystyle \frac{2}{3}(\sqrt{3}-\sqrt{2})

\displaystyle \int_{0}^{\infty}(a^{-x}-b^{-x})dx=(\mathrm{a}>1,\mathrm{b}>1)
  • \displaystyle \dfrac{1}{\log a}-\dfrac{1}{\log b}
  • \log a-\log b
  • \log a + \log b
  • \displaystyle \dfrac{1}{\log a}+\dfrac{1}{\log b}

\displaystyle \int_{0}^{a}\frac{x-a}{x+a} dx =
  • a+2a\log 2
  • a - 2a\log 2
  • 2a\log-a
  • 2a\log 2

If \displaystyle \int_{0}^{60}\frac{dx}{2x+1}=\log   a, then a=
  • 3
  • 11
  • 81
  • 40
Evaluate the integral
\displaystyle \int_{0}^{1}\frac{1-x}{1+x}dx
  • \log 4
  • \log (\dfrac{4}{e})
  • 1
  • \log (\dfrac{e}{4})

\displaystyle \int_{1}^{2}\frac{\mathrm{d}\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}=
  • \displaystyle \log_{\mathrm{e}}(\frac{2+\sqrt{5}}{\sqrt{2}+1})
  • \displaystyle \log_{\mathrm{e}}(\frac{\sqrt{2}+1}{2+\sqrt{5}})
  • \displaystyle \log_{\mathrm{e}}(\frac{2-\sqrt{5}}{\sqrt{2}-1})
  • 0
\int_{-1}^{1} \displaystyle \frac{d{x}}{1+x^{2}}=
  • 0
  • \displaystyle \frac{\pi}{2}
  • \displaystyle \frac{\pi}{4}
  • \displaystyle \frac{\pi}{6}
Evaluate the integral
\displaystyle \int_{1}^{2}\sqrt{(x-1)(2-x)}dx
  • \dfrac {\pi }{8}
  • \dfrac {\pi }{4}
  • \dfrac {1}{8}
  • \dfrac {1}{4}

\displaystyle \int_{1}^{\infty}\left( \frac { 1 }{ 1+x^{ 2 } }  \right) d{ x }=

  • \displaystyle \frac{\pi}{4}
  • -\displaystyle \frac{\pi}{4}
  • \displaystyle \frac{\pi}{2}
  • -\displaystyle \frac{\pi}{2}
Evaluate: \displaystyle \int_{0}^{\pi /8} \cos^{3}4x\ dx
  • 1/6
  • 1/5
  • -1/3
  • 1/8
\displaystyle \int \sec^{2}x.\text{cosec}^{2}xdx=
  • \tan x-\cot x +c
  • \tan x +\cot x +c
  • -\tan x + \cot x +c
  • \sec x \tan x +c
\int_{0}^{\pi /2} \sin^{4}x.\cos^{2}xd_{X=}
  • \displaystyle \frac{\pi}{32}
  • \displaystyle \frac{\pi^{2}}{16}
  • \displaystyle \frac{\pi}{15}
  • \displaystyle \frac{\pi}{64}
Evaluate the integral
\displaystyle \int_{1}^{3}\frac{d_{X}}{\sqrt{(x-1)(3-x)}}
  • \pi
  • -\pi
  • \pi/2
  • 0

\displaystyle \int_{0}^{\infty}\frac{dx}{(x+\sqrt{x^{2}+1})^{5}}=
  • 1/24
  • 1/5
  • 5/24
  • 5/36
Evaluate : \displaystyle \int\frac{\cot^{2}x}{(co\sec^{2}x+co\sec x)}d{x}
  • x-\sin x +C
  • x + \cos x +C
  • \sin x - x+C 
  • 2\tan(\displaystyle \frac{ax}{2})+c
\displaystyle \int_{0}^{1}\sqrt{x(1-x)}dx=
  • \pi /2
  • \pi /4
  • \pi /6
  • \pi /8
Evaluate the integral
\displaystyle\int_{\pi}^{5\pi/4}\frac{\sin 2x}{\cos^4 x + \sin^4 x}dx
  • \displaystyle \frac{5\pi}{4}
  • \displaystyle \frac{\pi}{2}
  • \pi
  • \displaystyle \frac{\pi}{4}

\displaystyle \int_{0}^{a}\frac{x^{5}dx}{\sqrt{a^{2}-x^{2}}}=
  • \displaystyle \frac{\mathrm{a}^{5}}{15}
  • \displaystyle \frac{8\mathrm{a}^{5}}{15}
  • \displaystyle \frac{8a}{15}
  • \displaystyle \frac{11\mathrm{a}^{2}}{15}
Evaluate the integral
\displaystyle \int_{0}^{1}  cos ^{-1}\left(\displaystyle \frac{1- {x}^{2}}{1+ {x}^{2}}\right) {d} {x}
  • \displaystyle \frac{\pi}{2} -\log 2
  • \displaystyle \frac{\pi}{2}+\log 2
  • \displaystyle \frac{\pi}{4} - log 2
  • \displaystyle \frac{\pi}{4} - log 3
Evaluate: \displaystyle \int_{1/3}^{1}\frac{(x-x^{3})^{1/3}}{x^{4}}dx.
  • 3
  • 0
  • 6
  • 4

\displaystyle \int_{\log 2}^{t}\frac{d_{X}}{\sqrt{e^{x}-1}}=\frac{\pi}{6}, then \mathrm{t}=
  • 4
  • \log 8
  • log 4
  • log 2
Evaluate: \displaystyle \int_{0}^{\pi /2} \sin^{3}x.\cos^{3}x dx
  • \displaystyle \frac{1}{12}
  • \displaystyle \frac{\pi}{24}
  • \displaystyle \frac{\pi}{12}
  • \displaystyle \frac{1}{24}
Evaluate: \displaystyle \int_{0}^{1} \cos \left(2 \cot^{-1}\sqrt{\displaystyle \frac{1- {x}}{1+ {x}}}\right)dx
  • \dfrac{-1}{2}
  • \dfrac{1}{2}
  • 0
  • 1
Evaluate the integral
I=\displaystyle \int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }{ \cfrac { { sin }^{ -1 }x }{ { \left( 1-{ x }^{ 2 } \right)  }^{ \frac { 3 }{ 2 }  } } dx }  
  • \displaystyle \frac{\pi}{4}+\frac{1}{2} log 2
  • \displaystyle \frac{\pi}{4}-\frac{1}{2} log 2
  • \displaystyle \frac{\pi}{3}
  • \displaystyle \frac{\pi}{6}

lf 0<\mathrm{a}<\mathrm{c},\ 0<\mathrm{b}<\mathrm{c} then \displaystyle \int_{0}^{\infty}\frac{a^{x}-b^{x}}{c^{x}}dx=
  • \displaystyle \log\frac{b}{c}-\log\frac{a}{c}
  • \displaystyle \frac{\log a-\log b}{\log c}
  • \displaystyle \frac{1}{\log b/c}-\frac{1}{\log a/c}
  • l\displaystyle \mathrm{o}\mathrm{g}\frac{\mathrm{a}}{\mathrm{c}}-l\mathrm{o}\mathrm{g}\frac{\mathrm{b}}{\mathrm{c}}

\displaystyle \int_{0}^{1}\frac{xe^{x}}{(x+1)^{2}}dx=
  • \displaystyle \frac{e}{2}
  • \displaystyle \frac{e-1}{2}
  • \displaystyle \frac{e}{2}-1
  • \displaystyle \frac{e-3}{2}

The solution of the equation \displaystyle \int_{\sqrt{2}}^{\mathrm{x}}\frac{\mathrm{d}\mathrm{x}}{\mathrm{x}\sqrt{\mathrm{x}^{2}-1}}=\frac{\pi}{12} is
  • 1
  • 1/2
  • 2
  • -2
Evaluate the integral
\displaystyle \int_{0}^{1}\frac{ {d} {x}}{ {x}^{2}+2 {x} {c} {o} {s}\alpha+1}
  • \sin \alpha
  • \tan^{-1} (\sin \alpha)
  • \dfrac{\alpha}{(2\sin \alpha)}
  • \alpha (\sin \alpha)

\displaystyle \int_{0}^{\pi/2}\frac{1}{1+4\sin^{2}x}dx=
  • \displaystyle \frac{\pi}{\sqrt{5}}
  • \displaystyle \frac{\pi}{2\sqrt{5}}
  • \displaystyle \frac{\pi}{2}
  • \displaystyle \frac{\pi}{3\sqrt{5}}

\displaystyle \int_{0}^{16}\frac{dx}{\sqrt{x+9}-\sqrt{x}}=
  • 10
  • 12
  • 14
  • 16

\displaystyle \int_{0}^{1}\frac{\sqrt{x}}{1+x}dx_{=}
  • 2-\pi/2
  • 1-\pi/2
  • \pi/2
  • 2+\pi/2

\displaystyle \int_{0}^{\pi/4}\frac{\sqrt{\tan x}}{sin x cos x}dx=
  • 1
  • 2
  • 0
  • 4

\displaystyle \int_{1}^{2}\frac{dx}{x^{2}-2x+4}=
  • 0
  • \displaystyle \frac{\pi}{2}
  • \displaystyle \frac{\pi}{3}
  • \displaystyle \frac{\pi}{6\sqrt{3}}

\displaystyle \int_{0}^{1}\frac{x}{1+\sqrt{x}}dx_{=}
  • \frac{5}{3}-\log 4
  • \frac{5}{3}+\log 4
  • \frac{5}{3}\log 4
  • \displaystyle \frac{3}{5}-l\mathrm{o}\mathrm{g}4\frac{3}{5}-l\mathrm{o}\mathrm{g}4

\displaystyle \int_{0}^{\pi}\frac{dx}{3+2\sin x+\cos x}=
  • \pi/3
  • \pi/4
  • \pi/6
  • \pi/2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers