Processing math: 43%

CBSE Questions for Class 12 Commerce Maths Integrals Quiz 3 - MCQExams.com

Evaluate the following definite integral:
10 sin(2tan11x1+x)dx
  • π
  • π2
  • π3
  • π4
The value of π/40sin12xcos52xdx is
  • 0
  • π4
  • 1
  • 23

π/20(2tanx2+xsec2x2)dx=
  • π
  • π/2
  • 2π/3
  • π/6
322x5x6x2dx=
  • π/2
  • π/2
  • π/3
  • π

Evaluate the following definite integral:
π/4π/4log(cosx+sinx)dx
  • π log2
  • π log2
  • π4log2
  • π2log2
Evaluate the integral
a0a+xaxdx
  • a2(π+2)
  • a2(π2)
  • a3(π+2)
  • a2(π+3)

10x1x3dx=
  • π4
  • π3
  • π6
  • π2

30x1+xdx=
  • 9/2
  • 27/4
  • 116/15
  • 112/15

π2/4π2/16sinxxdx=
  • 2
  • 1/2
  • 2 2
  • π/2

10dxx+x=
  • log 2
  • 2 log 2
  • 3 log 3
  • 12 log2

lf k0dx2+8x2=π16 then k=
  • 1
  • 1/2
  • π/2
  • 2
If In=π/2π/4(Tanθ)n.dθ for (n>1) 
then In+In+2=?
  • 1n+1
  • 1n+1
  • 1n1
  • 1n1
Evaluate the integral
7211x(2x7+1)dx
  • log65
  • 6log65
  • 17log65
  • 15log65
Evaluate: π/40tan5xdx
  • log214
  • 12log214
  • 0
  • log2+14
If Un=π/40tannθdθthen u10+u12 is equal to:
  • 110
  • 112
  • 111
  • 122
Evaluate: 10x31+x8dx 
  • π4
  • π8
  • π16
  • π2
Evaluate: π40(tan4x+tan2x)dx
  • 1
  • 1/2
  • 1/3
  • 1/4
Evaluate: 11/21xx2dx
  • π/8
  • π/4
  • π/2
  • π
If f(x)=|sinx+sin2x+sin3xsin2xsin3x3+4sinx34sinx1+sinxsinx1|, then the value of π20f(x)dx, is
  • 3
  • 23
  • 13
  • 0
Evaluate: π/40tan6xdx
  • 1315π4
  • 1315+π4
  • π423
  • 13154π
lf In=π40 tannxdx, then lim
  • \displaystyle \dfrac{1}{2}
  • 1
  • \infty
  • 0
The value of \displaystyle \int_{3}^{5}\frac{x^{2}}{x^{2}-4} dx is
  • 2(1-\displaystyle \mathrm{l} \mathrm{o}\mathrm{g}_{\mathrm{e}}(\frac{15}{7}))
  • 2(1+\displaystyle \mathrm{l}\mathrm{o}\mathrm{g}_{\mathrm{e}}(\frac{15}{7}))
  • 2(1+4\log_{\mathrm{e}}3-4\log_{\mathrm{e}}7+4\log_{\mathrm{e}}5)
  • 2(1-\displaystyle \tan^{-1}(\frac{15}{7}))

lf \displaystyle \int_{0}^{1}\frac{\tan^{-1}x}{x}dx=k\int_{0}^{\pi/2}\frac{x}{\sin x}dx, then the value of k is
  • 1
  • \displaystyle \frac{1}{4}
  • 4
  • {2}

The value of the integral \displaystyle \int_{0}^{\infty}\frac{1}{1+x^{4}} dx is
  • \displaystyle \frac{\pi}{2}
  • \displaystyle \frac{\pi}{\sqrt{2}}
  • \displaystyle \frac{\pi}{2\sqrt{2}}
  • \pi/4
The value of x such that  \displaystyle \int_{\sqrt{2}}^{\mathrm{x}}\frac{1}{x\sqrt{x^{2}-1}}dx=\frac{\pi}{12} is
  • \mathrm{x}=3
  • \mathrm{x}=4
  • \mathrm{x}=1
  • \mathrm{x}=2
\displaystyle \int e^{tan^{-1}x}\left[\frac{1+x+x^{2}}{1+x^{2}}\right]dx=
  • \displaystyle x^{2}e^{\tan^{-1}x}+c
  • \displaystyle x e^{\tan^{-1}x}+c
  • \displaystyle e^{\tan^{-1}x}+c
  • \displaystyle \frac{1}{2}e^{\tan^{-1}x}+c
lf f(x)=\left\{\begin{array}{l}e^{\cos x}\sin x, for |x|\leq 2\\2    ;       otherwise\end{array}\right., then \displaystyle \int_{-2}^{3}f(x)dx is
  • 0
  • 1
  • 2
  • 3

The value of the integral \displaystyle \int_{0}^{1}\frac{1}{(x^{2}+1)^{3/2}} dx is
  • \displaystyle \frac{3}{\sqrt {2}}
  • \displaystyle \frac { 1 }{ \sqrt { 2 } }
  • 1
  • {\sqrt{2}}

Area bounded by \mathrm{y}=\{\mathrm{x}\},\{.\} is fractional part of function and \mathrm{x}=\pm 1 is in sq. units
  • 1
  • 2
  • 3
  • 4
If \displaystyle \int^{x}_{\log 2} \dfrac{1}{\sqrt{e^{x}-1}}dx = \dfrac{\pi}{6}

then x is equal to?
  • e^{2}
  • 1/e
  • \log 4
  • \log 2
Let \displaystyle \frac{d}{dx}F\left ( x \right )=\frac{e^{\sin x}}{x},x> 0. If \displaystyle \int_{1}^{4}\frac{2e^{\sin x^{2}}}{x}dx=F\left ( k \right )-F\left ( 1 \right ) then one of the possible values of \displaystyle k is
  • 4
  • \displaystyle -4
  • 16
  • none of these
The value of \displaystyle \int_{1}^{2}\left [ f\left \{ g\left ( x \right ) \right \} \right ]^{-1}.{f}'\left \{ g\left ( x \right ) \right \}.{g}'\left ( x \right )dx, where \displaystyle g\left ( 1 \right )=g\left ( 2 \right ), is equal to?
  • 1
  • 2
  • 0
  • none of these
The value of integral  \displaystyle \int_{0}^{\infty }\frac{x\log x}{(1+x^2)^2}  \: dx is
  • 0
  • \log 7
  • 5\log 13
  • none\ of\ these
Let \displaystyle \frac{{df(x)}}{{dx}} = \frac{{{e^{\sin x}}}}{x}, x>0. If \displaystyle \int_1^4 {\frac{{3{e^{\sin {x^3}}}}}{x}dx = f(k) - f(1)} then one of the possible values of k is
  • 16
  • 63
  • 64
  • 15
Let f(0) = 0 and \displaystyle \int_{0}^{2}{f}'(2t)e^{f(2t)} \:dt=5.
Then the value of f (4) is?
  • \log 2
  • \log 7
  • \log 11
  • \log 13
 \displaystyle \int_{\sin \theta }^{\cos \theta }f(x \tan \theta )dx\left ( where \theta \neq \frac{n\pi}{2} ,n\epsilon I\right ) is equal to
  • \displaystyle -\int_{1}^{\tan }f(x\sin \theta )dx
  • \displaystyle -\tan \theta \int_{\sin \theta }^{\cos \theta }f(x)dx
  • \displaystyle \sin \theta \int_{1}^{\tan }f(x\cos \theta )dx
  • \displaystyle \frac{1}{\tan \theta }\int_{\sin \theta }^{\sin \theta \tan \theta}f(x)dx
The possible negative values of real number 'a' such that \overset { 0 }{ \underset { a }{ \int }  } (9^{-2t}-2.9^{-t})dt\geq 0 is
  • -2013
  • -\frac{2013}{2}
  • -2
  • -1
If I_1 = \displaystyle \int_x^1 \frac{1}{1 + t^2} dt and I_2 \displaystyle = \int_1^{1 / x}\frac{1}{1+ t^2}dt for x > 0, then
  • I_1 = I_2
  • I_1 > I_2
  • I_2 > I_1
  • none of these
Suppose that F(x) is an anti-derivative of \displaystyle f(x)=\frac{\sin x}{x}, where x>0.
Then \displaystyle \int_{1}^{3}\dfrac{\sin2x}{x} \:dx can be expressed as?
  • F(6)-F(2)
  • \dfrac{1}{2}(F(6)-F(2))
  • \dfrac{1}{2}(F(3)-F(1))
  • 2(F(6)-F(2))
If \displaystyle f\left ( x \right )=\int_{-1}^{1}\frac{\sin x}{1+t^{2}}dt then \displaystyle {f}'\left ( \frac{\pi }{3} \right ) is
  • nonexistent
  • \displaystyle \pi /4
  • \displaystyle \pi \sqrt{3/4}
  • none of these
The value of  \displaystyle \int_{0}^{\pi /4}\frac{\sec x}{\left ( \sec x+\tan x \right )^{2}}dx is 
  • \displaystyle 1+\sqrt{2}
  • \displaystyle -\left ( 1+\sqrt{2} \right )
  • \displaystyle -\sqrt{2}
  • none of these
\displaystyle \int_{\pi /4}^{3\pi /4}\frac{dx}{1+\cos x} is equal to
  • 2
  • \displaystyle -2
  • 1 / 2
  • \displaystyle -1/2
The solution for x of the equation \displaystyle \int_{\sqrt{2}}^{x}\frac{dt}{t\sqrt{t^{2}-1}}=\frac{\pi }{2} is
  • \displaystyle \frac{\sqrt{3}}{2}
  • -\sqrt{2}
  • 2
  • \pi
\displaystyle \int_{0}^{1}\frac{2^{x+1}-3^{x-1}}{6^{x}}dx
  • \displaystyle \frac{4}{3}\log _{3}e-\frac{1}{6}\log _{2}e.
  • \displaystyle -\frac{4}{3}\log _{3}e+\frac{1}{6}\log _{2}e.
  • \displaystyle \frac{4}{3}\log _{3}e-\frac{1}{3}\log _{2}e.
  • \displaystyle -\frac{2}{3}\log _{3}e+\frac{1}{6}\log _{2}e.
\displaystyle \int_{1}^{2}\left ( x+\frac{1}{x} \right )^{3/2}\frac{x^{2}-1}{x^{2}}dx
  • \displaystyle \frac{5}{2}\sqrt{\left ( \frac{5}{2} \right )}+\frac{8}{5}\sqrt{2}
  • \displaystyle \frac{5}{2}\sqrt{\left ( \frac{5}{2} \right )}-\frac{8}{5}\sqrt{2}
  • \displaystyle \sqrt{\left ( \frac{5}{2} \right )}-\frac{8}{5}\sqrt{2}
  • \displaystyle \frac{3}{2}\sqrt{\left ( \frac{3}{2} \right )}-\frac{8}{5}\sqrt{2}
The value of\displaystyle \int_{1}^{2}\frac{\cos \left ( \log x \right )}{x}dx  is equal to
  • 2\sin \left ( \log 2 \right )
  • \sin \left ( \log 2 \right )
  • \displaystyle\sin \log \left ( \frac{1}{2} \right )
  • None of these
If \displaystyle f\left ( \frac{1}{x} \right )+x^{2}f\left ( x \right )=0 for x> 0, 
and \displaystyle I=\int_{1/x}^{x}f\left ( z \right )dz, \frac{1}{2}\leq x\leq 2 
then \displaystyle I is?
  • \displaystyle f\left ( 2 \right )-f\left ( 1/2 \right )
  • \displaystyle f\left ( 1/2 \right )-f\left ( 2 \right )
  • 0
  • None of these
If \displaystyle I_{1}= \int_{-4}^{-5}e^{\left ( x +5 \right )^{2}}dx and \displaystyle I_{2}= 3\int_{{1}/{3}}^{{2}/{3}}e^{\left ( 3x -2 \right )^{2}}dx 

then I_{1}+I_{2} equals?
  • \displaystyle \frac{1}{3}
  • \displaystyle -\frac{1}{3}
  • 0
  • None of these
If f\left ( a+x \right )= f\left ( x \right ) , then \forall a> 0,  n\epsilon  N the value of \displaystyle \int_{0}^{n a}f\left ( x \right )dx  equals ?
  • \displaystyle \left ( n-1 \right )\int_{0}^{a}f\left ( x \right )dx
  • \displaystyle \left ( 1-n \right )\int_{0}^{a}f\left ( x \right )dx
  • \displaystyle n\int_{0}^{a}f\left ( x \right )dx
  • None of the above
If f\left ( x \right )= A\sin \left ( \dfrac {\pi x}{2} \right )\: +\: B,f{}'\left ( \dfrac 12  \right )= \sqrt{2} and \displaystyle \int_{0}^{1}f\left ( x \right )dx= \displaystyle \frac{2A}{\pi }
then the constants A and B are
  • A=\dfrac {\pi}{2}, B=\dfrac {\pi}{2}
  • A=\dfrac {2}{\pi}, B=3\pi
  • A=0, B=-4\pi
  • A=\dfrac {4}{\pi}, B=0
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers