Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 12 Commerce Maths Integrals Quiz 4 - MCQExams.com

The value of π0dx12αcosx+α2 is
  • π1+α2 if α>1
  • πα21 if α>1
  • π1+α2 if α<1
  • πα21 if α<1
Given 21ex2dx=a, the value of e4eln(x)dx is?
  • e4e
  • e4a
  • 2e4a
  • 2e4ea
The value of 10dx(x+1)x2+2x is
  • π/6
  • π/3
  • π/2
  • π
Value of π/40(tanxcotx)dx is
  • 2log(21)
  • 2log(2+1)
  • log(2+1)
  • log(21)
Value of 2a0x3/22axdx is
  • 3πa22
  • πa3
  • 2πa3
  • 2πa3
The value of balogxxdx is
  • log(ab)log(ba)
  • 12log(ab)log(ba)
  • log(a2b2)
  • (a+b)log(a+b)
Value of 25014+xdx is
  • 2(291)
  • 2(295)
  • 3291
  • none of these
0f(x+1x)lnxxdx
  • is equal to zero
  • is equal to one
  • is equal to 12
  • can not be evaluated
Ifπ/30cos3+4sinxdx=Klog(3+23)3 then K is
  • 12
  • 13
  • 14
  • 18
Suppose that F(x) is an antiderivative of f(x)=sinxx,x>0 then 31sin2xx can be expressed as
  • F(6)F(2)
  • 12(F(6)F(2))
  • 12(F(3)F(1))
  • 2(F(6)F(2))
The value of 10dxex+ex is
  • tan1e
  • tan1(e)π/4
  • tan1(e)tan1(1/e)
  • tan1(1/e)+π/4
21/21xsin(x1x)dx has the value equal to 
  • 0
  • 34
  • 54
  • 2
If f(x)=x1lnt1+tdt where x>0, then the value(s) of x satisfying the equation, f(x)+f(1/x)=2 is
  • 2
  • e
  • e2
  • e2
Solve 132dx5(3x)4
  • 5(5161)
  • 5(5161)
  • 5(516+1)
  • None of these
Choose a function f(x) such that it is integrable over every interval on the real line
  • f(x)=[x]
  • f(x)=x|x|
  • f(x)=[sinx]
  • f(x)=|x1|x1
0x(1+x)(1+x2)dx
  • π4
  • π2
  • is sme as 0dx(1+x)(1+x2)
  • cannot be evaluated
State true or false:
The average value of the function f(x) = sin^2xcos^3x on the interval [ -\pi ,\pi ] is 0.
  • True
  • False
I_{1} is equal to
  • \displaystyle \frac {2}{3} \int_{0}^{\pi/2}(sin^{2}\theta)(cos\theta)^{-1/3}d\theta
  • \displaystyle \frac {3}{2} \int_{0}^{\pi/2}(sin^{2}\theta)(cos\theta)^{-1/3}d\theta
  • \displaystyle \frac {2}{3} \int_{0}^{\pi/2}(sin\theta)^{2/3}(cos\theta)^{-1/3}d\theta
  • \displaystyle \frac {3}{2} \int_{0}^{\pi/2}(sin\theta)^{2/3}(cos\theta)^{-1/3}d\theta
Evaluate \displaystyle \int_{0}^{\pi /2} \frac{dx}{2+\sin 2x}
  • \displaystyle \frac{2\pi }{{3}}
  • \displaystyle \frac{\pi }{{3}}
  • \displaystyle \frac{2\pi }{{5}}
  • None of these
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Both Assertion and Reason are incorrect
\displaystyle \int_{\tfrac{1}{\sqrt{3}}}^{0}\dfrac{dx}{\left ( 2x^{2}+1 \right )\sqrt{x^{2}+1}}
  • \displaystyle - \tan^{-1} \dfrac{1}{2}
  • \displaystyle \tan^{-1} 1
  • \displaystyle - \tan^{-1} \dfrac{1}{3}
  • \displaystyle \tan^{-1} \dfrac{1}{\sqrt 2}
The value of definite integral \displaystyle \int_{\infty }^{0}\frac{Ze^{-z}}{\sqrt{1-e^{-2z}}}dz
  • \displaystyle -\frac{\pi }{2}ln2
  • \displaystyle \frac{\pi }{2}ln2
  • \displaystyle -\pi ln2
  • \displaystyle \pi ln\frac{1}{\sqrt{2}}
If \displaystyle \int _{ 0 }^{ 1 }{ { e }^{ { x }^{ 2 } }\left( x-\alpha  \right)  } dx=0, then
  • 1<\alpha <2
  • \alpha <2
  • 0<\alpha<1
  • \alpha=0
\displaystyle \int _{ 0 }^{ a }{ \frac { dx }{ a+\sqrt { { a }^{ 2 }-{ x }^{ 2 } }  }  } is equal to
  • \displaystyle \frac { \pi  }{ 2 } +1
  • \displaystyle \frac { \pi  }{ 2 } -1
  • \displaystyle 1-\frac { \pi  }{ 2 }
  • none of these
What is \displaystyle\int _{ 1 }^{ 2 }{ \ln { x } dx } equal to?
  • \ln { 2 }
  • 1
  • \ln { \left( \dfrac { 4 }{ e } \right) }
  • \ln { \left( \dfrac { e }{ 4 } \right) }
\displaystyle\int_0^\pi \frac{1}{1\, +\,\sin x}\ dx is equal to
  • 1
  • 2
  • 3
  • 4
The value of \displaystyle\int _{ 0 }^{ { x }/{ 4 } }{ \dfrac { \sec { x }  }{ { \left( \sec { x } +\tan { x }  \right)  }^{ 2 } } dx } is
  • 1+\sqrt{2}
  • -11+\sqrt{2}
  • -\sqrt{2}
  • None of these
If \quad f(x)=\begin{cases} 2{ x }^{ 2 }+1,x\le 1 \\ 4{ x }^{ 2 }-1,x>1 \end{cases}, then \int _{ 0 }^{ 2 }{ f(x)dx } is
  • 10
  • 50/3
  • 1/3
  • 47/2
What is \displaystyle \int_0^1 {\frac{\tan^{-1}x}{1 + x^2} dx} equal to ?
  • \dfrac{\pi}{4}
  • \dfrac{\pi}{8}
  • \dfrac{\pi^2}{8}
  • \dfrac{\pi^2}{32}
If \dfrac {dy}{dt} = ky and k\neq 0, which of the following could be the equation of y?
  • y = kx - 7
  • y = 95e^{kt}
  • y = 5 + ln\ k
  • y = (x - k)^{2}
  • y = \sqrt [k]{x}
Solve \int_{0}^{\dfrac {\pi}{2}}\sqrt {\sin \phi}\cos^{5}\phi d\phi.
  • \dfrac{64}{231}
  • \dfrac{24}{231}
  • \dfrac{54}{231}
  • None of these
\displaystyle\int _{ 0 }^{ { \sqrt { \pi  }  }/{ 2 } }{ 2{ x }^{ 3 }\sin { \left( { x }^{ 2 } \right)  } dx } is equal to
  • \dfrac { 1 }{ \sqrt { 2 } } \left( 1+\dfrac { \pi }{ 4 } \right)
  • \dfrac { 1 }{ \sqrt { 2 } } \left( 1-\dfrac { \pi }{ 4 } \right)
  • \dfrac { 1 }{ \sqrt { 2 } } \left( \dfrac { \pi }{ 2 } -1 \right)
  • \dfrac { 1 }{ \sqrt { 2 } } \left( 1-\dfrac { \pi }{ 2 } \right)
  • \dfrac { 1 }{ \sqrt { 2 } } \left( \dfrac { \pi }{ 4 } -1 \right)
\displaystyle\int { \cfrac { 1 }{ 7 } \sin { \left( \cfrac { x }{ 7 } +10 \right)  } dx } is equal to
  • \cfrac { 1 }{ 7 } \cos { \left( \cfrac { x }{ 7 } +10 \right) } +C
  • -\cfrac { 1 }{ 7 } \cos { \left( \cfrac { x }{ 7 } +10 \right) } +C
  • -\cos { \left( \cfrac { x }{ 7 } +10 \right) } +C
  • -7\cos { \left( \cfrac { x }{ 7 } +10 \right) } +C
  • \cos { \left( x+70 \right) } +C
If \int _0^1 xdx = \dfrac {\pi}{4} - \dfrac {1}{2} ln 2 then the value of definite integral \int _0^1 \tan^{-1} (1-x+x^2) dx equals :
  • ln2
  • \dfrac {\pi}{4} + ln 2
  • \dfrac {\pi}{4} - ln2
  • 2 ln 2
The value of \int_{0}^{1} \dfrac {8\log (1 + x)}{1 + x^{2}} dx is
  • \dfrac {\pi}{2}\log 2
  • \pi\log 2
  • 2\pi\log 2
  • None of these
If \displaystyle\int { \sqrt { 1+\sin { x }  } \cdot f\left( x \right) dx } =\dfrac { 2 }{ 3 } { \left( 1+\sin { x }  \right)  }^{ { 3 }/{ 2 } }+C, then f\left( x \right) is equal to
  • \cos { x }
  • \sin { x }
  • \tan { x }
  • 1
\displaystyle \int _0^{\pi /2} f(\sin 2x)\sin x\, dx = K\int_0^{\pi/2} f(\cos 2x) \cos x\,dx where k equals to
  • 2
  • 4
  • \sqrt{2}
  • 2\sqrt{2}
\int_{0}^{1}{\frac{dx}{x\sqrt{x}}}
  • 2
  • -2
  • 1
  • 3
What is \displaystyle \int_{0}^{2\pi}\sqrt {1 + \sin \dfrac {x}{2}}dx equal to?
  • 8
  • 4
  • 2
  • 0
Let I=\displaystyle \int _{ \pi /4 }^{ \pi /3 }{ \cfrac { \sin { x }  }{ x }  } dx. Then?
  • \cfrac { 1 }{ 2 } \le I\le 1\quad
  • 4\le I\le 2\sqrt { 30 }
  • \cfrac { \sqrt { 3 } }{ 8 } \le I\le \cfrac { \sqrt { 2 } }{ 6 }
  • 1\le I\le \cfrac { 2\sqrt { 3 } }{ \sqrt { 2 } }
\int { { \left( ex \right)  }^{ x }\left( 2+\log { x }  \right)  } dx=....+c,x\in { R }^{ + }-\left\{ 1 \right\}
  • { x }^{ x }
  • { \left( ex \right) }^{ x }\quad
  • { e }^{ x }
  • \left( 1+\log { x } \right) { \left( ex \right) }^{ x }
If I=\displaystyle\overset{1}{\underset{0}{\displaystyle\int}}x(1-x)^{1/2}dx and 60I+k=25 then k= _________. (k\in R).
  • 9
  • 25
  • 60
  • 41
\displaystyle \int_1^{32}\dfrac{dx}{x^{1/5}\sqrt{1+x^{4/5}}}
  • \dfrac{2}{5}(\sqrt{17}+\sqrt{2})
  • \dfrac{2}{5}(\sqrt{17}-\sqrt{2})
  • \dfrac{5}{2}(\sqrt{17}-\sqrt{2})
  • \dfrac{5}{2}(\sqrt{17}+\sqrt{2})
\int _{ 0 }^{ \pi /2 }{ \sin { 2x } .\sin { x }  } dx=.....
  • \cfrac{1}{3}
  • \cfrac{2}{3}
  • -\cfrac{2}{3}
  • \cfrac{4}{3}
Evaluate \displaystyle \int_{-2\pi}^{5\pi} \cot^{-1} (\tan x) dx.
  • 0
  • -1
  • 1
  • 2
\int {\left( 3.{ x }^{ 2 }.\tan ^{ -1 }{ x } +\cfrac { { x }^{ 3 } }{ 1+{ x }^{ 2 } }  \right) } dx=....+c.
  • { x }^{ 3 }\tan ^{ -1 }{ x }
  • \cfrac { { x }^{ 3 } }{ 3 } \tan ^{ -1 }{ x }
  • { x }^{ 2 }\tan ^{ -1 }{ x }
  • \cfrac { { x }^{ 2 } }{ 2 } \tan ^{ -1 }{ x }
If \displaystyle \int _0^{\pi/2} \sin x \cos x dx is equal to:
  • \dfrac 1 2
  • \dfrac 14
  • 2
  • 1
I= \int \frac{x+2}{(x+1)^2}dx; then I is equal to 
  • \log (x+1)+\dfrac{1}{x+1}+c
  • \log (x+2)-\dfrac{1}{x+1}+c
  • \log (1+x)-\dfrac{1}{x+1}+c
  • \log (x+2)+\dfrac{1}{x+1}+c
If \int _{ 0 }^{ \pi /3 }{ \dfrac { \cos { x }  }{ 3+4\sin { x }  } dx } =k\log { \left( \dfrac { 3+2\sqrt { 3 }  }{ 3 }  \right)  }, then, k is equal to ?
  • \dfrac{1}{2}
  • \dfrac{1}{3}
  • \dfrac{1}{4}
  • \dfrac{1}{8}
Find proper substitution
\int _{ 0 }^{ 1 }{ \dfrac { { e }^{ -x } }{ 1+{ e }^{ -x } } dx }
  • 1+{ e }^{ -x }\rightarrow t
  • -{ e }^{ -x }dx\rightarrow dt
  • -\int _{ 0 }^{ 1 }{ \dfrac { dt }{ t } }
  • -\int _{ 0 }^{ 1 }{ ln\left| t \right| }
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers