CBSE Questions for Class 12 Commerce Maths Integrals Quiz 4 - MCQExams.com

The value of $$\displaystyle \int_{0}^{\pi }\displaystyle \frac{dx}{1-2\alpha \cos x+\alpha ^{2}}$$ is
  • $$\displaystyle \frac{\pi }{1+\alpha ^{2}}$$ if $$\alpha > 1$$
  • $$\displaystyle \frac{\pi }{\alpha ^{2}-1}$$ if $$\alpha > 1$$
  • $$\displaystyle \frac{\pi }{1+\alpha ^{2}}$$ if $$\alpha < 1$$
  • $$\displaystyle \frac{\pi }{\alpha ^{2}-1}$$ if $$\alpha < 1$$
Given $$\displaystyle \int _{ 1 }^{ 2 }{ { e }^{ { x }^{ 2 } } } dx=a,$$ the value of $$\displaystyle \int _{ e }^{ { e }^{ 4 } }{ \sqrt { \ln { \left( x \right)  }  } dx } $$ is?
  • $${ e }^{ 4 }-e$$
  • $${ e }^{ 4 }-a$$
  • $$2{ e }^{ 4 }-a$$
  • $$2{ e }^{ 4 }-e-a$$
The value of $$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{\left ( x+1 \right )\sqrt{x^{2}+2x}}$$ is
  • $$\pi /6$$
  • $$\pi /3$$
  • $$\pi /2$$
  • $$\pi $$
Value of $$\displaystyle \int_{0}^{\pi /4}\left ( \sqrt{\tan x}-\sqrt{\cot x} \right )\: dx$$ is
  • $$\sqrt{2}\log \left ( \sqrt{2}-1 \right )$$
  • $$\sqrt{2}\log \left ( \sqrt{2}+1 \right )$$
  • $$\log \left ( \sqrt{2}+1 \right )$$
  • $$\log \left ( \sqrt{2}-1 \right )$$
Value of $$\displaystyle \int_{0}^{2a}\dfrac{x^{3/2}}{\sqrt{2a-x}} dx$$ is
  • $$\displaystyle \frac{3\pi a^{2}}{2}$$
  • $$\pi a^{3}$$
  • $$\sqrt{2}\pi a^{3}$$
  • $$2\pi a^{3}$$
The value of $$\displaystyle \int_{a}^{b}\displaystyle \frac{\log x}{x}\: dx$$ is
  • $$\log \left ( ab \right )\log \displaystyle \left ( \frac{b}{a} \right )$$
  • $$\displaystyle \frac{1}{2}\log \left ( ab \right )\log \displaystyle \left ( \frac{b}{a} \right )$$
  • $$\log \left ( a^{2}-b^{2} \right )$$
  • $$\left ( a+b \right )\log \left ( a+b \right )$$
Value of $$\displaystyle \int_{0}^{25}\displaystyle \frac{1}{\sqrt{4+\sqrt{x}}}\: dx$$ is
  • $$2\left ( \sqrt{29}-1 \right )$$
  • $$2\left ( \sqrt{29}-5 \right )$$
  • $$3 \sqrt{29}-1 $$
  • none of these
$$\displaystyle \int_{0}^{\infty }f\left ( x+\frac{1}{x} \right )\frac{\ln x}{x}dx$$
  • is equal to zero
  • is equal to one
  • is equal to $$\displaystyle \frac{1}{2}$$
  • can not be evaluated
If$$\displaystyle \int_{0}^{\pi /3}\frac{\cos }{3+4\sin x}dx=K\log \frac{\left ( 3+2\sqrt{3} \right )}{3}$$ then K is
  • $$\displaystyle \frac{1}{2}$$
  • $$\displaystyle \frac{1}{3}$$
  • $$\displaystyle \frac{1}{4}$$
  • $$\displaystyle \frac{1}{8}$$
Suppose that F(x) is an antiderivative of f(x)$$\displaystyle =\frac{\sin x}{x},x> 0$$ then $$\displaystyle \int_{1}^{3}\frac{\sin 2x}{x}$$ can be expressed as
  • $$F(6) - F(2)$$
  • $$\displaystyle \frac{1}{2}\left ( F\left ( 6 \right )-F\left ( 2 \right ) \right )$$
  • $$\displaystyle \frac{1}{2}\left ( F\left ( 3 \right )-F\left ( 1 \right ) \right )$$
  • $$\displaystyle 2\left ( F\left ( 6 \right )-F\left ( 2 \right ) \right )$$
The value of $$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{e^{x}+e^{-x}}$$ is
  • $$\tan ^{-1}e$$
  • $$\tan ^{-1}\left ( e \right )-\pi /4$$
  • $$\tan ^{-1}\left ( e \right )-\tan ^{-1}\left ( 1/e \right )$$
  • $$\tan ^{-1}\left ( 1/e \right )+\pi /4$$
$$\displaystyle \int_{1/2}^{2}\frac{1}{x}\sin \left ( x-\frac{1}{x} \right )dx$$ has the value equal to 
  • $$0$$
  • $$\displaystyle \frac{3}{4}$$
  • $$\displaystyle \frac{5}{4}$$
  • $$2$$
If $$\displaystyle f\left ( x \right )=\int_{1}^{x}\frac{\ln t}{1+t}dt$$ where $$x > 0$$, then the value(s) of $$x$$ satisfying the equation, $$f(x) +f(1/x)=2$$ is
  • $$2$$
  • $$e$$
  • $$\displaystyle e^{-2}$$
  • $$\displaystyle e^{2}$$
Solve $$\displaystyle \int_{2}^{-13}\frac{dx}{\sqrt[5]{\left ( 3-x \right )^{4}}}$$
  • $$\displaystyle -5\left ( \sqrt[5]{16}-1 \right )$$
  • $$\displaystyle 5\left ( \sqrt[5]{16}-1 \right )$$
  • $$\displaystyle -5\left ( \sqrt[5]{16}+1 \right )$$
  • None of these
Choose a function $$f(x)$$ such that it is integrable over every interval on the real line
  • $$f(x) = [x]$$
  • $$f(x)=x|x|$$
  • $$f(x)=[sinx]$$
  • $$f(x)=\dfrac{|x-1|}{x-1}$$
$$\displaystyle \int_{0}^{\infty }\frac{x}{\left ( 1+x \right )\left ( 1+x^{2} \right )}dx$$
  • $$\displaystyle \frac{\pi }{4}$$
  • $$\displaystyle \frac{\pi }{2}$$
  • is sme as $$\displaystyle \int_{0}^{\infty }\frac{dx}{\left ( 1+x \right )\left ( 1+x^{2} \right )}$$
  • cannot be evaluated
State true or false:
The average value of the function $$f(x) = sin^2xcos^3x$$ on the interval $$[ -\pi ,\pi ]$$ is 0.
  • True
  • False
$$I_{1}$$ is equal to
  • $$\displaystyle \frac {2}{3} \int_{0}^{\pi/2}(sin^{2}\theta)(cos\theta)^{-1/3}d\theta$$
  • $$\displaystyle \frac {3}{2} \int_{0}^{\pi/2}(sin^{2}\theta)(cos\theta)^{-1/3}d\theta$$
  • $$\displaystyle \frac {2}{3} \int_{0}^{\pi/2}(sin\theta)^{2/3}(cos\theta)^{-1/3}d\theta$$
  • $$\displaystyle \frac {3}{2} \int_{0}^{\pi/2}(sin\theta)^{2/3}(cos\theta)^{-1/3}d\theta$$
Evaluate $$\displaystyle \int_{0}^{\pi /2} \frac{dx}{2+\sin 2x}$$
  • $$\displaystyle \frac{2\pi }{{3}}$$
  • $$\displaystyle \frac{\pi }{{3}}$$
  • $$\displaystyle \frac{2\pi }{{5}}$$
  • None of these
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Both Assertion and Reason are incorrect
$$\displaystyle \int_{\tfrac{1}{\sqrt{3}}}^{0}\dfrac{dx}{\left ( 2x^{2}+1 \right )\sqrt{x^{2}+1}}$$
  • $$\displaystyle - \tan^{-1} \dfrac{1}{2}$$
  • $$\displaystyle \tan^{-1} 1$$
  • $$\displaystyle - \tan^{-1} \dfrac{1}{3}$$
  • $$\displaystyle \tan^{-1} \dfrac{1}{\sqrt 2}$$
The value of definite integral $$\displaystyle \int_{\infty }^{0}\frac{Ze^{-z}}{\sqrt{1-e^{-2z}}}dz$$
  • $$\displaystyle -\frac{\pi }{2}ln2$$
  • $$\displaystyle \frac{\pi }{2}ln2$$
  • $$\displaystyle -\pi ln2$$
  • $$\displaystyle \pi ln\frac{1}{\sqrt{2}}$$
If $$\displaystyle \int _{ 0 }^{ 1 }{ { e }^{ { x }^{ 2 } }\left( x-\alpha  \right)  } dx=0$$, then
  • $$1<\alpha <2$$
  • $$\alpha <2$$
  • $$0<\alpha<1$$
  • $$\alpha=0$$
$$\displaystyle \int _{ 0 }^{ a }{ \frac { dx }{ a+\sqrt { { a }^{ 2 }-{ x }^{ 2 } }  }  } $$ is equal to
  • $$\displaystyle \frac { \pi  }{ 2 } +1$$
  • $$\displaystyle \frac { \pi  }{ 2 } -1$$
  • $$\displaystyle 1-\frac { \pi  }{ 2 } $$
  • none of these
What is $$\displaystyle\int _{ 1 }^{ 2 }{ \ln { x } dx } $$ equal to?
  • $$\ln { 2 } $$
  • $$1$$
  • $$\ln { \left( \dfrac { 4 }{ e } \right) } $$
  • $$\ln { \left( \dfrac { e }{ 4 } \right) } $$
$$\displaystyle\int_0^\pi \frac{1}{1\, +\,\sin x}\ dx$$ is equal to
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
The value of $$\displaystyle\int _{ 0 }^{ { x }/{ 4 } }{ \dfrac { \sec { x }  }{ { \left( \sec { x } +\tan { x }  \right)  }^{ 2 } } dx } $$ is
  • $$1+\sqrt{2}$$
  • $$-11+\sqrt{2}$$
  • $$-\sqrt{2}$$
  • None of these
If $$\quad f(x)=\begin{cases} 2{ x }^{ 2 }+1,x\le 1 \\ 4{ x }^{ 2 }-1,x>1 \end{cases}$$, then $$\int _{ 0 }^{ 2 }{ f(x)dx } $$ is
  • $$10$$
  • $$50/3$$
  • $$1/3$$
  • $$47/2$$
What is $$\displaystyle \int_0^1 {\frac{\tan^{-1}x}{1 + x^2} dx}$$ equal to ?
  • $$\dfrac{\pi}{4}$$
  • $$\dfrac{\pi}{8}$$
  • $$\dfrac{\pi^2}{8}$$
  • $$\dfrac{\pi^2}{32}$$
If $$\dfrac {dy}{dt} = ky$$ and $$k\neq 0$$, which of the following could be the equation of $$y$$?
  • $$y = kx - 7$$
  • $$y = 95e^{kt}$$
  • $$y = 5 + ln\ k$$
  • $$y = (x - k)^{2}$$
  • $$y = \sqrt [k]{x}$$
Solve $$\int_{0}^{\dfrac {\pi}{2}}\sqrt {\sin \phi}\cos^{5}\phi d\phi$$.
  • $$\dfrac{64}{231}$$
  • $$\dfrac{24}{231}$$
  • $$\dfrac{54}{231}$$
  • None of these
$$\displaystyle\int _{ 0 }^{ { \sqrt { \pi  }  }/{ 2 } }{ 2{ x }^{ 3 }\sin { \left( { x }^{ 2 } \right)  } dx } $$ is equal to
  • $$\dfrac { 1 }{ \sqrt { 2 } } \left( 1+\dfrac { \pi }{ 4 } \right) $$
  • $$\dfrac { 1 }{ \sqrt { 2 } } \left( 1-\dfrac { \pi }{ 4 } \right) $$
  • $$\dfrac { 1 }{ \sqrt { 2 } } \left( \dfrac { \pi }{ 2 } -1 \right) $$
  • $$\dfrac { 1 }{ \sqrt { 2 } } \left( 1-\dfrac { \pi }{ 2 } \right) $$
  • $$\dfrac { 1 }{ \sqrt { 2 } } \left( \dfrac { \pi }{ 4 } -1 \right) $$
$$\displaystyle\int { \cfrac { 1 }{ 7 } \sin { \left( \cfrac { x }{ 7 } +10 \right)  } dx } $$ is equal to
  • $$\cfrac { 1 }{ 7 } \cos { \left( \cfrac { x }{ 7 } +10 \right) } +C$$
  • $$-\cfrac { 1 }{ 7 } \cos { \left( \cfrac { x }{ 7 } +10 \right) } +C$$
  • $$-\cos { \left( \cfrac { x }{ 7 } +10 \right) } +C$$
  • $$-7\cos { \left( \cfrac { x }{ 7 } +10 \right) } +C$$
  • $$\cos { \left( x+70 \right) } +C$$
If $$ \int _0^1 xdx = \dfrac {\pi}{4} - \dfrac {1}{2} ln 2 $$ then the value of definite integral $$ \int _0^1 \tan^{-1} (1-x+x^2) dx $$ equals :
  • $$ ln2 $$
  • $$ \dfrac {\pi}{4} + ln 2 $$
  • $$ \dfrac {\pi}{4} - ln2 $$
  • $$ 2 ln 2 $$
The value of $$\int_{0}^{1} \dfrac {8\log (1 + x)}{1 + x^{2}} dx$$ is
  • $$\dfrac {\pi}{2}\log 2$$
  • $$\pi\log 2$$
  • $$2\pi\log 2$$
  • None of these
If $$\displaystyle\int { \sqrt { 1+\sin { x }  } \cdot f\left( x \right) dx } =\dfrac { 2 }{ 3 } { \left( 1+\sin { x }  \right)  }^{ { 3 }/{ 2 } }+C$$, then $$f\left( x \right) $$ is equal to
  • $$\cos { x } $$
  • $$\sin { x } $$
  • $$\tan { x } $$
  • $$1$$
$$\displaystyle \int _0^{\pi /2} f(\sin 2x)\sin x\, dx = K\int_0^{\pi/2} f(\cos 2x) \cos x\,dx$$ where $$k$$ equals to
  • $$2$$
  • $$4$$
  • $$\sqrt{2}$$
  • $$2\sqrt{2}$$
$$\int_{0}^{1}{\frac{dx}{x\sqrt{x}}}$$
  • $$2$$
  • $$-2$$
  • $$1$$
  • $$3$$
What is $$\displaystyle \int_{0}^{2\pi}\sqrt {1 + \sin \dfrac {x}{2}}dx$$ equal to?
  • $$8$$
  • $$4$$
  • $$2$$
  • $$0$$
Let $$I=\displaystyle \int _{ \pi /4 }^{ \pi /3 }{ \cfrac { \sin { x }  }{ x }  } dx$$. Then?
  • $$\cfrac { 1 }{ 2 } \le I\le 1\quad $$
  • $$4\le I\le 2\sqrt { 30 } $$
  • $$\cfrac { \sqrt { 3 } }{ 8 } \le I\le \cfrac { \sqrt { 2 } }{ 6 } $$
  • $$1\le I\le \cfrac { 2\sqrt { 3 } }{ \sqrt { 2 } } $$
$$\int { { \left( ex \right)  }^{ x }\left( 2+\log { x }  \right)  } dx=....+c,x\in { R }^{ + }-\left\{ 1 \right\} $$
  • $${ x }^{ x }$$
  • $${ \left( ex \right) }^{ x }\quad $$
  • $${ e }^{ x }$$
  • $$\left( 1+\log { x } \right) { \left( ex \right) }^{ x }$$
If $$I=\displaystyle\overset{1}{\underset{0}{\displaystyle\int}}x(1-x)^{1/2}dx$$ and $$60I+k=25$$ then $$k=$$ _________. $$(k\in R)$$.
  • $$9$$
  • $$25$$
  • $$60$$
  • $$41$$
$$\displaystyle \int_1^{32}\dfrac{dx}{x^{1/5}\sqrt{1+x^{4/5}}}$$
  • $$\dfrac{2}{5}(\sqrt{17}+\sqrt{2})$$
  • $$\dfrac{2}{5}(\sqrt{17}-\sqrt{2})$$
  • $$\dfrac{5}{2}(\sqrt{17}-\sqrt{2})$$
  • $$\dfrac{5}{2}(\sqrt{17}+\sqrt{2})$$
$$\int _{ 0 }^{ \pi /2 }{ \sin { 2x } .\sin { x }  } dx=.....$$
  • $$\cfrac{1}{3}$$
  • $$\cfrac{2}{3}$$
  • $$-\cfrac{2}{3}$$
  • $$\cfrac{4}{3}$$
Evaluate $$\displaystyle \int_{-2\pi}^{5\pi} \cot^{-1} (\tan x) dx$$.
  • $$0$$
  • $$-1$$
  • $$1$$
  • $$2$$
$$\int {\left( 3.{ x }^{ 2 }.\tan ^{ -1 }{ x } +\cfrac { { x }^{ 3 } }{ 1+{ x }^{ 2 } }  \right) } dx=....+c$$.
  • $${ x }^{ 3 }\tan ^{ -1 }{ x } $$
  • $$\cfrac { { x }^{ 3 } }{ 3 } \tan ^{ -1 }{ x } $$
  • $${ x }^{ 2 }\tan ^{ -1 }{ x } $$
  • $$\cfrac { { x }^{ 2 } }{ 2 } \tan ^{ -1 }{ x } $$
If $$\displaystyle \int _0^{\pi/2} \sin x \cos x dx $$ is equal to:
  • $$\dfrac 1 2$$
  • $$\dfrac 14$$
  • $$2$$
  • $$1$$
$$I= \int \frac{x+2}{(x+1)^2}dx;$$ then I is equal to 
  • $$\log (x+1)+\dfrac{1}{x+1}+c$$
  • $$\log (x+2)-\dfrac{1}{x+1}+c$$
  • $$\log (1+x)-\dfrac{1}{x+1}+c$$
  • $$\log (x+2)+\dfrac{1}{x+1}+c$$
If $$\int _{ 0 }^{ \pi /3 }{ \dfrac { \cos { x }  }{ 3+4\sin { x }  } dx } =k\log { \left( \dfrac { 3+2\sqrt { 3 }  }{ 3 }  \right)  }$$, then, $$k$$ is equal to ?
  • $$\dfrac{1}{2}$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{4}$$
  • $$\dfrac{1}{8}$$
Find proper substitution
$$\int _{ 0 }^{ 1 }{ \dfrac { { e }^{ -x } }{ 1+{ e }^{ -x } } dx }$$
  • $$1+{ e }^{ -x }\rightarrow t$$
  • $$-{ e }^{ -x }dx\rightarrow dt$$
  • $$-\int _{ 0 }^{ 1 }{ \dfrac { dt }{ t } }$$
  • $$-\int _{ 0 }^{ 1 }{ ln\left| t \right| }$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers