Processing math: 4%

CBSE Questions for Class 12 Commerce Maths Integrals Quiz 6 - MCQExams.com

The value of the integral 101+2xdx is 
  • 2
  • 3
  • 4
  • 14
The value of the integral 10x31+x8dx is 
  • π16
  • π4
  • π8
  • none of these
Solve:
π/60cos2x(cosxsinx)2dx
  • log(312)
  • log(3+12)
  • log(3+12)
  • None of these
Solve \displaystyle\int\limits_0^{\pi /2} {{{\sin }^4}x{{\cos }^3}xdx}  
  • \dfrac {6}{35}
  • \dfrac {2}{21}
  • \dfrac {2}{15}
  • \dfrac {2}{35}
Evaluate :
\displaystyle\int {\dfrac{9cosx-sinx}{4sinx+5cosx}dx}
  • x+\ln(4\sin x+\cos x)+c
  • x+\ln(\sin x-5\cos x)+c
  • x+\ln(4\sin x+5\cos x)+c
  • None of these
If \int { \cfrac { \sin { x }  }{ \sin { \left( x-\alpha  \right)  }  }  } dx=Ax+B\log { \sin { \left( x-\alpha  \right)  }  } +c, then the value of (A,B) is-
  • \left( \sin { \alpha } ,\cos { \alpha } \right)
  • \left( \cos { \alpha } ,\sin { \alpha } \right)
  • \left( -\sin { \alpha } ,\cos { \alpha } \right)
  • \left(- \cos { \alpha } ,\sin { \alpha } \right)
Evaluate: \displaystyle\int _ { 0 } ^ { \pi / 2 } \dfrac { \sin x \cos x } { \cos ^ { 2 } x + 3 \cos x + 2 }dx
  • \ln\left(\dfrac {5}{3}\right)
  • \ln\left(\dfrac {4}{3}\right)
  • \ln\left(\dfrac {1}{3}\right)
  • None of these
\displaystyle \int_{0}^{2}\left( \sqrt {\dfrac{4-x}{x} }-  \sqrt {\dfrac{x}{4-x}} \right) dx   is equal to:
  • 0
  • 8
  • 4
  • 16
If f(x)=\int { \left( \dfrac { x^2+\sin^2x }{ 1+x^2 }  \right)  } \sec^2 x dx and f(0)=0,then  f (1) equals:
  • 1-\dfrac { \pi }{ 4 }
  • -\dfrac { \pi }{ 4 }
  • \tan 1-\dfrac { \pi }{ 4 }
  • \tan 1+1
\int _ { - 4 } ^ { - 5 } e ^ { ( x + 5 ) ^ { 2 } } d x + 3 \int _ { 1 / 3 } ^ { 2 / 3 } e ^ { 9 ( x - 2 / 3 ) ^ { 2 } } d x is equal to-
  • e ^ { 5 }
  • e ^ { 4 }
  • 3e ^ { 2 }
  • 0
The integrating factor of the differential equation \dfrac{dy}{dx}\left(x\log _e\:x\right)+y=2\log _e\:x is given by

  • x
  • e^x
  • \log _e\:x
  • \log _e\left(\log _e\:x\right)
If \displaystyle\int {{{{2^x}} \over {\sqrt {1 - {4^x}} }}dx = K{{\sin }^{ - 1}}} ({2^x}) + C, then K is equal to 
  • \ell n2
  • \displaystyle{1 \over 2}\ell n2
  • \displaystyle{1 \over 2}
  • \displaystyle{1 \over {\ell n2}}
\int \{1 + 2 \tan x (\tan x + \sec x)\}^{\dfrac{1}{2}} dx =
  • log (\sec x + \tan x) + c
  • log (\sec x + \tan x)^{\dfrac{1}{2}} + c
  • log \,\sec x (\sec x + \tan x) + c
  • None of these
The value of the defined integral \displaystyle \int^{\pi/2}_{0}(\sin x+\cos x)\sqrt {\dfrac {e^{x}}{\sin x}}dx equals
  • 2\sqrt {e^{\pi/2}}
  • \sqrt {e^{\pi/2}}
  • 2\sqrt {e^{\pi/2}}.\cos 1
  • \dfrac {1}{2}e^{\pi/4}
\int \log _ { 10 } x d x =
  • x \log _ { 10 } x + c
  • x \left( \log _ { 10 } x + \log _ { 10 } e \right) + c
  • \log _ { 10 } x + c
  • x \left( \log _ { 10 } x - \log _ { 10 } e \right) + c
If \int { f\left( x \right)dx=f\left( x \right) } , then \int { \left\{ f\left( x \right) \right\}^2  } dx is equal to :
  • \frac { 1 }{ 2 } \left\{ f\left( x \right) \right\}^2
  • { \left\{ f\left( x \right) \right\}^3 }
  • \dfrac { { \left\{ f\left( x \right) \right\} ^{ 3 } } }{ 3 }
  • { \left\{ f\left( x \right) \right\}^2 }
Evaluate: \displaystyle \int _ { 0 } ^ { \pi / 4 } \sec ^ { 7 } {\theta} \sin ^ { 3 } {\theta} {d \theta} =
  • \dfrac { 1 } { 12 }
  • \dfrac { 3 } { 12 }
  • \dfrac { 5 } { 12 }
  • \dfrac { 7 } { 12 }
\displaystyle \int \frac { 1 - x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) \sqrt { 1 + x ^ { 4 } } } d x is equal to 
  • \sqrt { 2 } \sin ^ { - 1 } \left\{ \frac { \sqrt { 2 } x } { x ^ { 2 } + 1 } \right\} + c
  • \frac { 1 } { \sqrt { 2 } } \sin ^ { - 1 } \left\{ \frac { \sqrt { 2 } x } { x ^ { 2 } + 1 } \right\} + c
  • \frac { 1 } { 2 } \sin ^ { - 1 } \left\{ \frac { \sqrt { 2 } x } { x ^ { 2 } + 1 } \right\} + c
  • \frac { 1 } { \sqrt { 2 } } \sin ^ { - 1 } \left\{ \frac { x ^ { 2 } + 1 } { \sqrt { 2 } x } \right\} + c
Integral of f ( x ) = \sqrt { 1 + x ^ { 2 } } with respect to x ^ { 2 } is

  • \frac { 2 } { 3 } \frac { \left( 1 + x ^ { 2 } \right) ^ { 3 / 2 } } { x } + k
  • \frac { 2 } { 3 } \left( 1 + x ^ { 2 } \right) ^ { 3 / 2 } + k
  • \frac { 2 } { 3 } x \left( 1 + x ^ { 2 } \right) ^ { 3 / 2 } + k
  • None of these
\int { { e }^{ x^{ 3 } }+{ x }^{ 2-1 }(3{ x }^{ 4 }+{ 2x }^{ 3 }+{ 2x }^{ 2 }\quad x=h(x)+c } then the value of h(1)h(-1).
  • 1
  • -1
  • 2
  • -2
\int _{ 0 }^{ 1 }{ \dfrac { dx }{ \left( { x }^{ 2 }+1 \right) \left( { x }^{ 2 }+2 \right)  }  } =
  • \dfrac { \pi }{ 4 } +\dfrac { 1 }{ \sqrt { 2 } } { tan }^{ -1 }\dfrac { 1 }{ \sqrt { 2 } }
  • \dfrac { \pi }{ 2 } -\dfrac { 1 }{ \sqrt { 2 } } { tan }^{ -1 }\dfrac { 1 }{ \sqrt { 2 } }
  • \dfrac { \pi }{ 4 } -\dfrac { 1 }{ \sqrt { 2 } } { tan }^{ -1 }\dfrac { 1 }{ \sqrt { 2 } }
  • \dfrac { \pi }{ 3 } -\dfrac { 1 }{ \sqrt { 2 } } { tan }^{ -1 }\dfrac { 1 }{ \sqrt { 2 } }
The value of the integral \displaystyle \int_{-\pi/2}^{\pi/2} \left(x^{2}+\log \dfrac{\pi-x}{\pi+x}\right) \cos x dx is 
  • 0
  • \dfrac{\pi^{2}}{2}-4
  • \dfrac{\pi^{2}}{2}+4
  • \dfrac{\pi^{2}}{2}
The value of \int _{ -1 }^{ 1 }{ \dfrac { { cot }^{ -1 }x }{ \pi  }  } dx
  • 1
  • 2
  • 3
  • 0
\displaystyle \int _{ 0 }^{ { \pi  }^{ 2 } }{ \dfrac { \sin { \sqrt { x }  }  }{ \sqrt { x }  }  }  dx is equal to
  • 2
  • 1
  • 1/2
  • 4
The integral \displaystyle{\int}_{\pi/12}^{\pi/4}\dfrac{8\cos 2x}{\left(\tan x+\cot x\right)^{3}}dx equals:
  • \dfrac{15}{128}
  • \dfrac{13}{156}
  • \dfrac{15}{64}
  • \dfrac{13}{32}
Solve:\int {\dfrac{{dx}}{{\left( {x - 3} \right)\sqrt {x + 1} }}}
  • \cos { { h }^{ -1 } } \left( \dfrac { 1-x }{ \sqrt { 3 } \left( 1+x \right) } \right) +c
  • \sin { { h }^{ -1 } } \left( \dfrac { 1-x }{ \sqrt { 3 } \left( 1+x \right) } \right) +c
  • -\sin { { h }^{ -1 } } \left( \dfrac { 1-x }{ \sqrt { 3 } \left( 1+x \right) } \right) +c
  • -\cos { { h }^{ -1 } } \left( \dfrac { 1-x }{ \sqrt { 3 } \left( 1+x \right) } \right) +c
The integral \int _{ 2a/4 }^{ a/2 }{ (2\quad cosecx{ ) }^{ 17 } } dx is equal to:
  • \int _{ 0 }^{ log(1+\sqrt { 2 } ) }{ 2({ e }^{ u }+{ e }^{ -u }{ ) }^{ 16 } } du
  • \int _{ 0 }^{ log(1+\sqrt { 2 } ) }{ ({ e }^{ u }+{ e }^{ -u }{ ) }^{ 17 } } du
  • \int _{ 0 }^{ log(1+\sqrt { 2 } ) }{ ({ e }^{ u }-{ e }^{ -u }{ ) }^{ 17 } } du
  • \int _{ 0 }^{ log(1+\sqrt { 2 } ) }{ 2({ e }^{ u }-{ e }^{ -u }{ ) }^{ 16 } } du
\begin{matrix} lim \\ n\rightarrow \infty  \end{matrix}\int _{ 0 }^{ 1 }{ \frac { { nx }^{ { n- }1 } }{ { 1+x }^{ 2 } } dx= }
  • 0
  • 1
  • 2
  • \frac { 1 }{ 2 }
The value of the integral \int _{ -\pi /2 }^{ \pi /2 }{ \left[ { x }^{ 2 }+log\frac { \pi -x }{ \pi +x }  \right]  } cos x dx is 
  • 0
  • \frac { { \pi }^{ 2 } }{ 2 } -4
  • \frac { { \pi }^{ 2 } }{ 2 } +4
  • \frac { { \pi }^{ 2 } }{ 2 }
\int _ { 0 } ^ { 1 } \frac { d x } { \sqrt { x + 1 } + \sqrt { x } } d x =
  • \frac { 4 } { 3 } ( \sqrt { 2 } + 1 )
  • \frac { 4 } { 3 } ( \sqrt { 2 } - 1 )
  • \frac { 3 } { 4 } ( \sqrt { 2 } - 1 )
  • \frac { 3 } { 4 } ( \sqrt { 2 } - 2 )
The value of the definite integral
\overset { { a }_{ 1 } }{ \underset { { a }_{ 2 } }{ \int { \frac { d\theta  }{ 1+tan\theta  }  }  }  } =\frac { 501\pi  }{ K } where \ a _{ 2 }=\quad \frac { 1003\pi  }{ 2008 } and { \ a  }_{ 1 }=\frac { \pi  }{ 2008 } The value of K equalls
  • 2007
  • 2006
  • 2009
  • 2008
For x\in R,\ f(x)=|\log 2-\sin x| and g(x)=f(f(x)), then 
  • g'(0)=\cos (\log 2)
  • g'(0)=-\cos (\log 2)
  • g is differentible at x=0 and g'(0)=-\sin (\log 2)
  • g is not differentiable at x=0
The integral \displaystyle \int { \left( 1+2{ x }^{ 2 }+\frac { 1 }{ x }  \right)  } { e }^{ { x }^{ 2-\frac { 1 }{ x }  } }dx is equal to
  • (2x-1).e^{x^{2-\dfrac {1}{x}}}+c
  • (2x+1).e^{x^{2-\dfrac {1}{x}}}+c
  • xe^{x^{2-\dfrac {1}{x}}}+c
  • -xe^{x^{2-\dfrac {1}{x}}}+c
\displaystyle \int \dfrac {1}{\sqrt {\sin^{3}x\sin(x+a)}}dx is equal to
  • 2\cos ec\alpha \sqrt {\cos \alpha +\sin \alpha \tan x}+c
  • -2\cos ec\alpha \sqrt {\cos \alpha +\sin \alpha \cot x}+c
  • \cos ec\alpha \sqrt {\cos \alpha +\sin \alpha \tan x}+c
  • -\cos ec\alpha \sqrt {\cos \alpha +\sin \alpha \tan x}+c
\int {\dfrac{1}{{9{x^2} - 25}}dx = \_\_\_\_\_\_ + c.}
  • \dfrac{1}{{30}}\log \left| {\dfrac{{3x + 5}}{{3x - 5}}} \right|
  • \log \left| {x + \sqrt {3x - 5} } \right|
  • \dfrac{1}{{30}}\log \left| {\dfrac{{3x - 5}}{{3x + 5}}} \right|
  • \log \left| {x - \sqrt {3x - 5} } \right|
\int {{e^{3{{\log }_e}x}}.{{\left( {{x^4} + 1} \right)}^{ - 1}}dx = \_\_\_\_\_\_\_\_\_ + C.}
  • \log \left( {{x^4} + 1} \right)
  • \frac{1}{4}\log \left( {{x^4} + 1} \right)
  • -\log \left( {{x^4} + 1} \right)
  • \frac{{ - 3}}{{{{\left( {{x^4} + 1} \right)}^3}}}
\int {\sqrt {1 - \cos x} \,dx = \_\_\_\_\_\_\_ + C;\,2\pi < x < 3\pi }
  • - 2\sqrt 2 \cos \dfrac{x}{2}
  • - \sqrt 2 \cos \dfrac{x}{2}
  • 2\sqrt 2 \cos \dfrac{x}{2}
  • \dfrac{{ - 1}}{2}\sqrt 2 \cos \dfrac{x}{2}
\int _{ 0 }^{ 400\pi  }{ \sqrt { 1-\cos { 2x }  }  }
  • 200\sqrt 2
  • 400\sqrt 2
  • 800\sqrt 2
  • none
If g\left( x \right) =\int { { x }^{ x }\log _{ e }{ (ex)dx }  } then  g\left( \pi \right)  equals
  • \pi \log _{ e }{ \pi }
  • { \pi }^{ \pi }\log _{ e }{ (e\pi } )
  • { \pi }^{ \pi }\log _{ e }{ (\pi } )
  • {\pi}^\pi
If f(a-x)=-f(x), then \displaystyle \int_{0}^{a}f(x)dx=0.

  • True
  • False
\displaystyle \int_{0}^{1}\sin^{-1}x dx=\dfrac {\pi}{2}-1
  • True
  • False
\displaystyle\int{{e}^{{\tan}^{-1}{x}}\left(\dfrac{1+x+{x}^{2}}{1+{x}^{2}}\right)dx} is equal to
  • { -e }^{ { tan }^{ -1 }x }+c
  • { e }^{ { tan }^{ -1 }x }+c
  • { -xe }^{ { tan }^{ -1 }x }+c
  • { xe }^{ { tan }^{ -1 }x }+c
Integrate: \displaystyle \int \dfrac{x}{\sqrt{x+4}}dx
  • \dfrac 23(x+4)^{\tfrac 32}-8\sqrt{x+4}
  • \dfrac 23(x+4)^{\tfrac 32}+8\sqrt{x+4}
  • \dfrac 23(x+4)^{\tfrac 32}+4\sqrt{x+4}
  • None of these
\int _{ 0 }^{ 1 }{ \frac { x }{ { \left( { x }^{ 2 }+1 \right)  }^{ \frac { 3 }{ 2 }  } } dx } =........
  • \dfrac{1}{3}
  • \dfrac{2}{3}
  • \dfrac{3}{2}
  • 1-\dfrac{1}{\sqrt{2}}
\int _{ -1 }^{ 1/2 }{ \dfrac { { e }^{ x }\left( 2-{ x }^{ 2 } \right) dx }{ \left( 1-x \right) \sqrt { 1-{ x }^{ 2 } }  }  } is equal to
  • \dfrac { \sqrt { e } }{ 2 } \left( \sqrt { 3 } +1 \right)
  • \dfrac { \sqrt { 3e } }{ 2 }
  • \sqrt { 3e }
  • \sqrt { \dfrac { e }{ 3 } }
If \int _{ log2 }^{ x }{ \dfrac { dx }{ \sqrt { { e }^{ x }-1 }  }  } =\dfrac { \pi  }{ 6 } ,then x is equal to _________.
  • 4
  • in 8
  • in 4
  • None of these
If \displaystyle\int^{\dfrac{\pi}{2}}_0\dfrac{\cot x}{\cot x+cosec x}dx=m(\pi +n), then mn is equal to?
  • -1
  • 1
  • \dfrac{1}{2}
  • -\dfrac{1}{2}
What is \displaystyle \int \dfrac{dx}{2x^2 - 2x + 1} equal to ?
  • \dfrac{\tan^{-1} (2x - 1)}{2} + c
  • 2 \tan^{-1} (2x - 1) += c
  • \dfrac{\tan^{-1} (2x + 1)}{2} + c
  • \tan^{-1} (2x - 1) + c
The value of \displaystyle\int^{2\pi}_{0}\dfrac{x\sin^8x}{\sin^8x+\cos^8x}dx is equal to?
  • 2\pi
  • \pi^2
  • 2\pi^2
  • 4\pi
Select and write the most appropriate answer from the given alternatives for question :
If \displaystyle \int^k_0 4x^3dx=16, then the value of k is _____.
  • 1
  • 2
  • 3
  • 4
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers