Processing math: 1%

CBSE Questions for Class 12 Commerce Maths Integrals Quiz 7 - MCQExams.com

Evaluate 41xxdx
  • 12.8
  • 12.4
  • 7
  • None of these
Evaluate \displaystyle\int^{\pi/4}_0\tan^2xdx
  • \left(1-\dfrac{\pi}{4}\right)
  • \left(1+\dfrac{\pi}{4}\right)
  • \left(1-\dfrac{\pi}{2}\right)
  • \left(1+\dfrac{\pi}{2}\right)
Evaluate : \displaystyle\int^1_0\dfrac{dx}{\sqrt{5x+3}}
  • \dfrac{2}{5}(\sqrt{8}-\sqrt{3})
  • \dfrac{2}{5}(\sqrt{8}+\sqrt{3})
  • \dfrac{2}{5}\sqrt{8}
  • None of these
Evaluate : \displaystyle\int^2_0\sqrt{6x+4}dx
  • \dfrac{64}{9}
  • 7
  • \dfrac{56}{9}
  • \dfrac{60}{9}
Evaluate \displaystyle\int^2_0\dfrac{dx}{\sqrt{4-x^2}}
  • 1
  • \sin^{-1}\dfrac{1}{2}
  • \dfrac{\pi}{4}
  • None of these
Evaluate \displaystyle\int^1_0\dfrac{x^3}{(1+x^8)}dx
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{4}
  • \dfrac{\pi}{8}
  • \dfrac{\pi}{16}
Evaluate \displaystyle\int^{\pi/2}_{\pi/3} cosec xdx
  • \dfrac{1}{2} log 2
  • \dfrac{1}{2} log 3
  • -log 2
  • None of these
Evaluate \displaystyle\int^{\pi/2}_{\pi/4}\cot xdx
  • log 2
  • 2 log 2
  • \dfrac{1}{2}log 2
  • None of these
Evaluate \displaystyle\int^{\pi/2}_0\dfrac{\cos x}{(1+\sin^2x)}dx
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{4}
  • \pi
  • None of these
Evaluate \displaystyle\int^{\sqrt{8}}_{\sqrt{3}}x\sqrt{1+x^2}dx
  • \dfrac{19}{3}
  • \dfrac{19}{6}
  • \dfrac{38}{3}
  • \dfrac{9}{4}
Evaluate \displaystyle\int^{\pi/2}_0\cos^3xdx
  • 1
  • \dfrac{3}{4}
  • \dfrac{2}{3}
  • None of these
Evaluate : \displaystyle\int^1_0\sqrt{\dfrac{1-x}{1+x}}dx
  • \dfrac{\pi}{2}
  • \left(\dfrac{\pi}{2}-1\right)
  • \left(\dfrac{\pi}{2}+1\right)
  • None of these
Evaluate : \displaystyle\int^1_0\dfrac{dx}{(1+x+x^2)}
  • \dfrac{\pi}{\sqrt{3}}
  • \dfrac{\pi}{3}
  • \dfrac{\pi}{3\sqrt{3}}
  • None of these
Evaluate : \displaystyle\int^a_{-a}\sqrt{\dfrac{a-x}{a+x}}dx
  • a\pi
  • \dfrac{a\pi}{2}
  • 2a\pi
  • None of these
Evaluate\displaystyle\int^{\pi/2}_0e^x\left(\dfrac{1+\sin x}{1+\cos x}\right)dx
  • 0
  • \dfrac{\pi}{4}
  • e^{\pi/2}
  • (e^{\pi/2}-1)
Evaluate \displaystyle\int^{\pi}_0\dfrac{dx}{(1+\sin x)}
  • \dfrac{1}{2}
  • 1
  • 2
  • 0
Evaluate : \displaystyle\int^{\sqrt{2}}_0\sqrt{2-x^2}dx
  • \pi
  • 2\pi
  • \dfrac{\pi}{2}
  • None of these
Evaluate : \displaystyle\int^1_0\dfrac{(1-x)}{(1+x)}dx
  • (\log 2+1)
  • (\log 2-1)
  • (2 \log 2-1)
  • (2 \log 2+1)
Evaluate : \displaystyle\int^9_0\dfrac{dx}{(1+\sqrt{x})}
  • (3-2 log 2)
  • (3+2 log 2)
  • (6-2 log 4)
  • (6+2 log 4)
Evaluate \displaystyle\int^1_0\dfrac{xe^x}{(1+x)^2}dx
  • \left(\dfrac{e}{2}-1\right)
  • (e-1)
  • e(e-1)
  • None of these
Evaluate \displaystyle\int^{1}_0\dfrac{(1-x)}{(1+x)}dx
  • \dfrac{1}{2}log 2
  • (2log 2+1)
  • (2log 2-1)
  • \left(\dfrac{1}{2}log 2-1\right)
The value of \displaystyle\int^{199\pi/2}_{-\pi/2}\sqrt{(1+\cos 2x)}dx is?
  • 50\sqrt{2}
  • 100\sqrt{2}
  • 150\sqrt{2}
  • 200\sqrt{2}
Evaluate : \displaystyle\int^2_1|x^2-3x+2|dx
  • \dfrac{-1}{6}
  • \dfrac{1}{6}
  • \dfrac{1}{3}
  • \dfrac{2}{3}
\displaystyle\int^a_{-a}x|x|dx=?
  • 0
  • 2a
  • \dfrac{2a^3}{3}
  • None of these
\displaystyle\int^1_{-2}\dfrac{|x|}{2}dx=?
  • 3
  • 2.5
  • 1.5
  • None of these
Let \displaystyle\dfrac{x^{1/2}}{\sqrt{1-x^{3}}}dx=\dfrac{2}{3}gof(x)+c then
  • f(x)=\sqrt{x}
  • f(x)=x^{3/2}
  • f(x)=x^{2/3}
  • g(x)=\sin^{-1}x
Evaluate : \displaystyle\int^1_0|2x-1|dx
  • 2
  • \dfrac{1}{2}
  • 1
  • 0
Evaluate : \displaystyle\int^2_{-2}|x|dx
  • 4
  • 3.5
  • 2
  • 0
The value of \int_{1}^{e} \dfrac{1+x^{2} \ln x}{x+x^{2} \ln x} d x is
  • e
  • \ln (1+e)
  • e+\ln (1+e)
  • e-\ln (1+e)
I_{1}=\int_{0}^{\frac{\pi}{2}} \dfrac{\sin x-\cos x}{1+\sin x \cos x} d x, I_{2}=\int_{0}^{2 \pi} \cos ^{6} x d xI_{3}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{3} x d x, I_{4}=\int_{0}^{1} \ln \left(\dfrac{1}{x}-1\right) d x, then
  • I_{2}=I_{3}=I_{4}=0, I_{1} \neq 0
  • I_{1}=I_{2}=I_{3}=0, I_{4} \neq 0
  • I_{1}=I_{3}=I_{4}=0, I_{2} \neq 0
  • I_{1}=I_{2}=I_{3}=0, I_{4} \neq 0
Evaluate : \displaystyle\int^1_{-2}|2x+1|dx
  • \dfrac{5}{2}
  • \dfrac{7}{2}
  • \dfrac{9}{2}
  • 4
Let f : R \rightarrow R be a function as f(x) = (x - 1)(x + 2)(x - 3)(x - 6) - 100. If g(x) is a polynomial of degree \leq 3 such that \displaystyle \int \frac{g(x)}{f(x)} dx does not contain any logarithm function and g(-2) = 10. Then

\displaystyle \int \frac{g(x)}{f(x)} dx, equals
  • \tan^{-1} \left ( \frac{x - 2}{2} \right ) + c
  • \tan^{-1} \left ( \frac{x - 1}{1} \right ) + c
  • \tan^{-1} (x) + c
  • None of these
The value of the definite integral \displaystyle \int_{0}^{\pi/2}sinx\space sin2x\space sin3xdx is equal to  
  • \dfrac{1}{3}
  • -\dfrac{2}{3}
  • -\dfrac{1}{3}
  • \dfrac{1}{6}
If \displaystyle \int f(x) dx = F(x), then \displaystyle \int x^3 f(x^2) dx is equal to
  • \frac{1}{2} [x^2 {F(x)}^2 - \displaystyle \int {F(x)}^2 dx]
  • \frac{1}{2} [x^2 F(x^2) - \displaystyle \int F(x^2) d (x^2)]
  • \frac{1}{2} [x^2 F(x^2) - \frac{1}{2} \displaystyle \int {F(x)}^2 dx]
  • None of the above
Observe the following Lists
List-IList-II
A: \displaystyle \int_{-2}^{2}\frac{1}{4+x^{2}}dx1) \displaystyle \frac{\pi}{3}
B: \displaystyle \int_{1}^{2}\frac{1}{x\sqrt{x^{2}-1}}dx2) 0
C: \displaystyle \int_{0}^{\pi}\cos 3x.\cos 2xdx3) \displaystyle \frac{\pi}{4}
4) \displaystyle \frac{\pi}{2}
  • A-3, B-1, C-4
  • A-3, B-1, C-2
  • A-1, B-3, C-2
  • A-4, B-1, C-2
\int_{0}^{log 5} \displaystyle \frac{e^{x}\sqrt{e^{x}-1}}{e^{x}+3}  dx =
  • 3+ 2 \pi
  • 4 - \pi
  • 2 + \pi
  • \pi -4
If  \displaystyle I_n=\int_{0}^{\tfrac{\pi}{4}} \tan^nx\sec^2xdx, then  I_1,   I_2,  I_3.. are  in
  • A.P.
  • G.P.
  • H.P.
  • A.G.P.
Evaluate the integral
\displaystyle \int_{0}^{\pi/4}\frac{ {s}i {n}\theta+ {c} {o} {s}\theta}{9+16 {s}i {n}2\theta} \ {d}\theta
  • \displaystyle \frac{1}{20} \log 2 
  • \displaystyle \frac{1}{20} \log 3 
  • \log 3
  • \log 2
Evaluate: \displaystyle \int_{0}^{\pi}\frac{dx}{5+4\cos x}
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{6}
  • \dfrac{\pi}{3}
  • -\pi

\displaystyle \int_{0}^{a}\frac{dx}{x+\sqrt{a^{2}-x^{2}}}=
  • \pi
  • \dfrac{\pi}{3}
  • -\pi
  • \dfrac{\pi}{4}

\displaystyle \int_{0}^{\pi/2}\sqrt{\cos x}\sin^{5}xdx=
  • \displaystyle \frac{34}{231}
  • \displaystyle \frac{64}{231}
  • \displaystyle \frac{30}{321}
  • \displaystyle \frac{128}{231}
\displaystyle \int_{0}^{\pi/2}\frac{1}{a+bcosx}dx=, where a>|b|
  • \displaystyle \frac{2}{\sqrt{a^{2}-b^{2}}}\tan^{{-1}}\sqrt{\frac{a+b}{a-b}}
  • \displaystyle \frac{2}{\sqrt{a^{2}-b^{2}}}cot^{-l} \sqrt{\frac{a-b}{a+b}}
  • \displaystyle \frac{2}{\sqrt{a^{2}-b^{2}}}\tan^{{-1}}\sqrt{\frac{a-b}{a+b}}
  • \displaystyle \frac{\pi}{\sqrt{a^{2}-b^{2}}}
\displaystyle \int_{1}^{2}\mathrm{x}^{2\mathrm{x}}[1+\log \mathrm{x}]\mathrm{d}\mathrm{x}=
  • \displaystyle \frac{9}{2}
  • \displaystyle \frac{11}{2}
  • \displaystyle \frac{13}{2}
  • \displaystyle \frac{15}{2}
lf \displaystyle \int_{0}^{\infty}e^{-\mathrm{x}^{2}}\mathrm{d}\mathrm{x}=\frac{\sqrt{\pi}}{2}, then \displaystyle \int_{0}^{\infty}e^{-ax^{2}}dx,\ \mathrm{a}>0 is
  • \displaystyle \frac{\sqrt{\pi}}{2}
  • \displaystyle \frac{\sqrt{\pi}}{2a}
  • 2 \displaystyle \frac{\sqrt{\pi}}{a}
  • \displaystyle \frac{1}{2}\sqrt{\frac{\pi}{a}}
If \displaystyle \int_{0}^{\pi/3}\frac{\cos x}{3+4\sin x}dx=k\log(\frac{3+2\sqrt{3}}{3}), then \mathrm{k} is equal to
  • \dfrac{1}{2}
  • \dfrac{1}{3}
  • \dfrac{1}{4}
  • \dfrac{1}{8}
The value of the integral 
\displaystyle \int_{0}^{3\alpha}\text{cosec}(x -\alpha)\text{cosec}(x-2\alpha) dx is
  • 2\displaystyle \sec\alpha\log(\frac{1}{2}\text{cosec}\alpha)
  • 2\displaystyle \sec\alpha\log(\frac{1}{2}\sec\alpha)
  • 2 \text{cosec}\alpha\log(\sec\alpha)
  • 2 \displaystyle \text{cosec}\alpha\log(\frac{1}{2}\sec\alpha)
If I_{n}=\displaystyle \int_{0}^{\frac{\pi}{4}}\tan^{n} dx, then \dfrac{1}{I_{2}+I_{4}},\dfrac{1}{I_{3}+I_{5}},\dfrac{1}{I_{4}+I_{6}}\cdots form
  • an A.P
  • a G.P
  • a H.P
  • an AGP
\displaystyle \int_{0}^{1}\frac{3^{x+1}-4^{x-1}}{12^{x}}dx=

  • \displaystyle \frac{9}{4}log_{4}\, e
  • \displaystyle \frac{9}{4}log_{4}\, e-\frac{1}{6}log_{3}e
  • \displaystyle log_{4}3
  • None of these
Let f be a function defined for every x, such that f'' = -f ,f(0)=0, f' (0) = 1, then f(x) is equal to
  • tanx
  • e^{x}-1
  • sinx
  • 2sinx
Let \displaystyle \frac{d}{dx}F(x)=\frac{e^{{s}{m}{x}}}{x} , x>0lf \displaystyle \int_{1}^{4}\frac{3}{x}e^{{s}{m}{x}^{3}}dx=F(k)-F(1)then one of the possible values of {k} is
  • 16
  • 62
  • 64
  • 15
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers