Explanation
\displaystyle \int_{0}^{\pi/ 4} \dfrac {\sin \theta + \cos \theta}{9 + 16\sin 2\theta} d\theta
Let \sin \theta - \cos \theta = t
\therefore (\cos \theta + \sin \theta) d\theta = dt
= \displaystyle \int_{-1}^{0} \dfrac {dt}{9 + 16(1 – t^{2})} (\because t^{2} = 1 – 2\cdot \sin \theta \cdot \cos \theta)
= \displaystyle \int_{-1}^{0} \dfrac {dt}{25 – 16t^{2}}
= \dfrac {1}{16} \displaystyle \int_{-1}^{0} \dfrac {dt}{\left (\dfrac {5}{4}\right )^{2} – t^{2}}
= \dfrac {1}{16}\times \dfrac {1}{2\times \dfrac {5}{4}}\left [ln \left |\dfrac {\dfrac {5}{4} +t}{\dfrac {5}{4} – t}\right |\right ]_{-1}^{0}
\left (\because \displaystyle \int \dfrac {1}{a^{2} – x^{2}} dx = \dfrac {1}{2a} ln \left |\dfrac {a + x}{a – x}\right | + c\right )
= \dfrac {1}{40} \left [ln |1| - ln \left |\dfrac {\dfrac {1}{4}}{\dfrac {9}{4}}\right |\right ]
= \dfrac {1}{40} ln 9 = \dfrac {ln 3}{20}
\therefore \displaystyle \int_{0}^{\pi/ 4} \dfrac {\sin \theta + \cos \theta}{9 + 16 \sin 2\theta} d\theta = \dfrac {ln 3}{20}.
\int_{0}^{\dfrac{\pi}{2}} \sqrt{cos x}sin^5 x dx \int_{0}^{\dfrac{\pi}{2}}\sqrt{cos x}(sin^4x)sin x dx -\int_{0}^{\dfrac{\pi}{2}}\sqrt{cos x}(1-cos^2 x)^2d cos x -\left [ \int_{0}^{\dfrac{\pi}{2}}\sqrt{cos x} dcos x+\int_{0}^{\dfrac{\pi}{2}}\sqrt{cos x} cos^4 x dx - 2\int_{0}^{\dfrac{\pi}{2}}\sqrt{cos x} cos^2 x dx \right ] -\left [ \dfrac{2}{3} cos^{\dfrac{3}{2}} x \int_{0}^{\dfrac{\pi}{2}}+\dfrac{2}{11} cos^{\dfrac{11}{2}}x\int_{0}^{\dfrac{\pi}{2}}-2(\dfrac{2}{7}) cos^{\dfrac{7}{2}}x \int_{0}^{\dfrac{\pi}{2}} \right ] =-\left [\dfrac{2}{3} (-1)+\dfrac{2}{11}(-1)-2(\dfrac{2}{7})(-1)\right ] =\dfrac{64}{231}
Please disable the adBlock and continue. Thank you.