CBSE Questions for Class 12 Commerce Maths Integrals Quiz 8 - MCQExams.com

$$\displaystyle \int_{\frac{5}{2}}^{5}\frac{\sqrt{(25-x^2)^3}}{x^4}\:dx$$ is equal to
  • $$\displaystyle \frac{\pi }{6}$$
  • $$\displaystyle \frac{2\pi }{3}$$
  • $$\displaystyle \frac{5\pi }{6}$$
  • $$\displaystyle \frac{\pi }{3}$$
The minimum value of the function f(x) = $$\int^x_0 \frac{d \theta}{cos \theta} + \int^{\pi/2}_x \frac{d \theta}{sin \theta} $$ where $$x \in [0, \frac{\pi}{2}], $$ is  
  • $$2ln(\sqrt{2} + 1)$$
  • $$ln(2\sqrt{2} + 2)$$
  • $$ln(\sqrt{3} + 2)$$
  • $$ln(\sqrt{2} + 3)$$
If $$ \displaystyle \int_{0}^{1} \frac{\tan^{-1} x}{x}dx$$  is equal to
  • $$\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\sin x}{x}dx$$
  • $$\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{x}{\sin x}dx$$
  • $$\displaystyle \frac{1}{2} \int_{0}^{\frac{\pi}{2}}\frac{\sin x}{x}dx$$
  • $$\displaystyle \frac{1}{2} \int_{0}^{\frac{\pi}{2}}\frac{x}{\sin x}dx$$
The value of the integral $$\displaystyle \int_{0 }^{\log5}\frac{e^x\sqrt{e^x-1}}{e^x+3}\:dx$$ is
  • $$3+2\pi$$
  • $$4-\pi$$
  • $$2+\pi$$
  • none of these
The value of the integral  $$\displaystyle \int_{0}^{\frac{1}{\sqrt{3}}}\frac{dx}{(1+x^2)\sqrt{1-x^2}}$$
  • $$\displaystyle \frac{\pi }{2\sqrt{2}}$$
  • $$\displaystyle \frac{\pi }{4\sqrt{2}}$$
  • $$\displaystyle \frac{\pi }{8\sqrt{2}}$$
  • none of these
Let  $$ \displaystyle I_1=\int_{0}^{1}\frac{e^x dx}{1+x}$$ and $$\displaystyle I_2=\int_{0}^{1}\dfrac{x^2 dx}{e^{x^3}(2-x^3)}$$.
Then $$\dfrac{I_1}{I_2}$$ is equal to?
  • $$\displaystyle \dfrac{3}{e}$$
  • $$\displaystyle \frac{e}{3}$$
  • $$\displaystyle {3}{e}$$
  • $$\displaystyle \dfrac{1}{3e}$$
The value of $$\displaystyle \int_{0}^{\infty} \frac {dx}{1 + x^4}$$ is
  • same as that of $$\displaystyle \int_{0}^{\infty} \frac {x^2 + 1dx}{1 + x^4}$$
  • $$\displaystyle \frac {\pi}{2\sqrt{2}}$$
  • same as that of $$\displaystyle \int_{0}^{\infty} \frac {x^2 \: dx}{1 + x^4}$$
  • $$\displaystyle \frac {\pi}{\sqrt{2}}$$
Evaluate $$\displaystyle\int_0^{\displaystyle\frac{\pi}{4}}{\frac{\sin{x}+\cos{x}}{9+16\{1-{(\sin{x}-\cos{x})}^2\}}dx}$$
  • $$\displaystyle\frac{1}{20}(\log{\sqrt{3}})$$
  • $$\displaystyle\frac{1}{10}(\log{3})$$
  • $$\displaystyle\frac{1}{20}(\log{3})$$
  • $$\displaystyle\frac{1}{20}(\log{3}-\log{2})$$
If $$\displaystyle 2f(x)+f(-x)=\frac{1}{x}\sin{\left(x-\frac{1}{x}\right)}$$, then the value of $$\displaystyle\int_{\frac{1}{e}}^{e}{f(x)dx}$$, is
  • $$1$$
  • $$0$$
  • $$e$$
  • $$-1$$
Let $$\displaystyle I_1 = \int_1^2 \frac{1}{\sqrt{1 + x^2}} dx$$ and $$I_2 \displaystyle = \int_1^2 \frac{1}{x} dx$$. Then
  • $$I_1 > I_2$$
  • $$I_2 > I_1$$
  • $$I_1 = I_2$$
  • $$I_1 > 2 I_2$$
Let $$\displaystyle\frac{d}{dx}(F(x))=\frac{e^{\displaystyle\sin{x}}}{x}$$, $$x>0$$. If $$\displaystyle\int_1^4{\frac{2e^{\displaystyle\sin{x^2}}}{x}dx}=F(k)-F(1)$$, then the possible value of $$k$$ is
  • 10
  • 14
  • 16
  • 18
The evaluation of $$\displaystyle \int \frac{pX^{p+2q-1}-qX^{q-1}}{X^{2p+2q}+2X^{p+q}+1}dx$$ is 
  • $$-\displaystyle \frac{X^p}{X^{p+q}+1}+C$$
  • $$\displaystyle \frac{X^q}{X^{p+q}+1}+C$$
  • $$-\displaystyle \frac{X^q}{X^{p+q}+1}+C$$
  • $$\displaystyle \frac{X^p}{X^{p+q}+1}+C$$
Let $$\displaystyle \frac{df\left ( x \right )}{dx}=\frac{e^{\sin x}}{x}, x> 0$$. If $$\displaystyle \int_{1}^{4}\displaystyle \frac{3e^{\sin x^{3}}}{x}dx=f\left ( k \right )-f\left ( 1 \right )$$ then one of the possible values of $$k$$ is
  • $$16$$
  • $$63$$
  • $$64$$
  • $$15$$
$$\displaystyle \int_{1}^{e^{37}}\frac{\pi \sin \left ( \pi \log _{e}x \right )}{x}dx$$ is equal to
  • $$2$$
  • $$\displaystyle -2$$
  • $$\displaystyle 2/\pi $$
  • $$\displaystyle 2\pi $$
$$\displaystyle \int_{0}^{2}\sqrt{\frac{2+x}{2-x}}dx$$ is equal to
  • $$\displaystyle \pi +1$$
  • $$\displaystyle 1+\pi /2$$
  • $$\displaystyle \pi +3/2$$
  • none of these
$$\displaystyle\int_0^\infty{f\left(x+\frac{1}{x}\right).\frac{\ln{x}}{x}dx}$$ is equal to
  • 0
  • 1
  • $$\displaystyle\frac{1}{2}$$
  • cannot be evaluated
$$ \displaystyle \int_{1}^{\infty }\frac{\log \left ( t-1 \right )}{t^2\log t+\log \left ( \frac{t}{t-1} \right )}\:dt $$ equals
  • $$ \displaystyle \frac{1}{2} $$
  • $$ \displaystyle \frac{1}{3} $$
  • $$ \displaystyle \frac{2}{3} $$
  • None of these
If $$\displaystyle I_{t}=\int_{0}^{\dfrac{\pi }{2}}\frac{\sin^{2}tx}{\sin^{2}x}dx$$ then ,$$I_{1},I_{2},I_{3}$$ are in
  • A.P.
  • H.P.
  • G.P.
  • None of these
The value of $$ \displaystyle \int_{0}^{\pi /2}\sin \theta \log \left ( \sin \theta \right )\:d\theta  $$ equals
  • $$ \displaystyle \log_{e}\left ( \frac{1}{e} \right ) $$
  • $$ \displaystyle \log _{2}e $$
  • $$ \displaystyle \log_{e}{2}-1 $$
  • $$ \displaystyle \log_{e}\left ( \frac{e}{2} \right ) $$
If $$\displaystyle I= \int_{1/\pi }^{\pi }\frac{1}{x}\cdot \sin \left ( x-\frac{1}{x} \right )dx$$ then I is equal to
  • $$0$$
  • $$\displaystyle \pi $$
  • $$\displaystyle \pi -\frac{1}{\pi }$$
  • $$\displaystyle \pi +\frac{1}{\pi }$$
If $$x$$ satisfies the equation $$\displaystyle\left(\int_0^1{\frac{dt}{t^2+2t\cos{\alpha}+1}}\right)x^2-\left(\int_{-3}^3{\frac{t^2\sin{2t}}{t^2+1}dt}\right)x-2=0$$ 
for $$(0<\alpha<\pi)$$
then the value of $$x$$ is?
  • $$\displaystyle\pm\sqrt{\frac{\alpha}{2\sin{\alpha}}}$$
  • $$\displaystyle\pm\sqrt{\frac{2\sin{\alpha}}{\alpha}}$$
  • $$\displaystyle\pm\sqrt{\frac{\alpha}{\sin{\alpha}}}$$
  • $$\displaystyle\pm2\sqrt{\frac{\sin{\alpha}}{\alpha}}$$
Let $$\displaystyle F\left ( x \right )=f\left ( x \right )+f\left ( \frac{1}{x} \right )$$ where $$\displaystyle f\left ( x \right )=\int_{1}^{x}\frac{\log t}{1+t}dt$$ 
Then $$F(e)$$ is equal to?
  • $$1$$
  • $$2$$
  • $$1/2$$
  • $$0$$
The value of $$\displaystyle \int _{ 0 }^{ \pi /2 }{ \frac { d\theta  }{ 5+3\cos { \theta  }  }  }$$ is?
  • $$\displaystyle \tan ^{ -1 }{ \frac { 1 }{ 2 }  } $$
  • $$\displaystyle \tan ^{ -1 }{ \frac { 1 }{ 3 }  } $$
  • $$\displaystyle \frac{1}{2}\tan ^{ -1 }{ \frac { 1 }{ 2 }  } $$
  • $$\displaystyle \frac{1}{3}\tan ^{ -1 }{ \frac { 1 }{ 3 }  } $$
$$\displaystyle \int_{0}^{\infty}\frac{1}{1+x^{n}}dx,\:\forall\:n\:> 1$$ is equal to?
  • $$\displaystyle2 \int_{0}^{\infty}\frac{1}{1+x}dx$$
  • $$\displaystyle \int_{-\infty}^{\infty}\frac{1}{1+x^{n}}dx$$
  • $$\displaystyle \int_{1}^{\infty}\frac{dx}{(x^{n}-1)^{1/n}}$$
  • $$\displaystyle \int_{0}^{1}\frac{1}{(1-x^{n})^{1/n}}$$
If $$\displaystyle I_1=\int_{0}^{\pi /2}\frac{x}{\sin x}dx $$ and $$\displaystyle I_2=\int_{0}^{\pi /2}\frac{\tan ^{-1}x}{x}dx, $$ then $$\displaystyle \frac{I_{1}}{I_{2}}= $$ 

  • $$\displaystyle \frac{1}{2} $$
  • 1
  • 2
  • $$\displaystyle \frac{\pi }{2} $$
$$\displaystyle If \int_{-1}^{1}\frac{g\left ( x \right )}{1+t^{2}}dt= f\left ( x \right ) , where,  g\left ( x \right )= \sin x$$ , then $$ {f}'\left ( \frac{\pi }{3} \right )$$ equals

  • $$\displaystyle\frac{\pi }{4}$$
  • does not exist
  • $$ \displaystyle \frac{\pi \sqrt{3}}{4} $$
  • None of these
If $$\displaystyle I_{n} =\int_{0}^{\frac{\pi }{4}}\tan ^{n}xdx$$ 

then $$\displaystyle \frac{1}{I_{2}+I_{4}},\frac{1}{I_{3}+I_{5}},\frac{1}{I_{4}+I_{6}}$$ are in?
  • $$A.P$$
  • $$H.P$$
  • $$G.P$$
  • None of these
$$\displaystyle\int_{0}^{a}x^{4}\left ( a^{2}-x^{2} \right )^{1/2} dx$$ equals
  • $$\displaystyle\frac{\pi a^{5}}{32}$$
  • $$\displaystyle\frac{\pi a^{6}}{32}$$
  • $$\displaystyle \frac{\pi a^{2}}{32}$$
  • None of these
The value of $$\displaystyle \int_{1/e}^{\tan x}\displaystyle \frac{t}{1+t^{2}}\, dt\, +\, \displaystyle \int_{1/e}^{\cot x}\displaystyle \frac{dt}{t\left ( 1+t^{2} \right )}$$ is
  • $$1/2$$
  • $$1$$
  • $$\pi /4$$
  • none of these
$$\displaystyle \int_{0}^{\pi /2}\sin x\log \left ( \sin x \right )dx= $$
  • $$\displaystyle \log _{e}e$$
  • $$\displaystyle \log _{e}2$$
  • $$\displaystyle \log _{e}\left ( e/2 \right )$$
  • $$\displaystyle \log _{e}\left ( 2/e \right )$$
Evaluate : $$\displaystyle \int_{-\frac{1}{\sqrt2}}^{\frac{1}{\sqrt2}}\frac{x^{8}}{1-x^{4}}\times \left [ \sin ^{-1}\left ( 1-2x^{2} \right ) +\cos ^{-1}\left ( 2x\sqrt{1-x^{2}} \right )\right ]dx$$
  • $$\displaystyle \pi \left [ \frac{1}{2}\log \frac{\sqrt{2}+1}{\sqrt{2}-1}+\tan ^{-1} \frac{1}{\sqrt{2}}-\frac{21}{10\sqrt{2}}\right ]$$
  • $$\displaystyle \pi \left [ \frac{1}{2}\log \frac{\sqrt{2}+1}{\sqrt{2}-1}+\tan ^{-1} \frac{1}{\sqrt{2}}+\frac{21}{10\sqrt{2}}\right ]$$
  • $$\displaystyle \pi \left [ \frac{1}{2}\log \frac{\sqrt{2}-1}{\sqrt{2}-1}+\tan ^{-1} \frac{1}{\sqrt{2}}-\frac{21}{10\sqrt{2}}\right ]$$
  • $$\displaystyle \pi \left [ \frac{1}{2}\log \frac{\sqrt{2}-1}{\sqrt{2}-1}+\tan ^{-1} \frac{1}{\sqrt{2}}+\frac{21}{10\sqrt{2}}\right ]$$
If $$\displaystyle \int_{\log 2}^{x}\displaystyle \frac{dx}{\sqrt{e^{x}-1}}= \displaystyle \frac{\pi }{6}$$, the value of $$x$$ is
  • $$4$$
  • $$\log 8$$
  • $$\log 4$$
  • none of these
$$\displaystyle \int_{0}^{\pi /3}\frac{\cos \theta }{3+4\sin \theta }d\theta =\lambda \log \frac{3+2\sqrt{3}}{3}$$ then $$\displaystyle \lambda $$ equals
  • $$\dfrac{1}{2}$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{4}$$
  • $$\dfrac{1}{8}$$
The value of $$\displaystyle \int ^{\tan x}_{1/e}\displaystyle \frac{t\, dt}{1+t^{2}}+\displaystyle \int ^{\cot x}_{1/e}\displaystyle \frac{dt}{t\left ( 1+t^{2} \right )}$$ is
  • $$\displaystyle \frac{1}{2+tan^{2}x}$$
  • $$1$$
  • $$\pi /4$$
  • $$\displaystyle \frac{2}{\pi }\displaystyle \int ^{1}_{-1}\displaystyle \frac{dt}{1+t^{2}}$$
The value of the integral $$\displaystyle \int_{\alpha }^{\beta }\displaystyle \dfrac{dx}{\sqrt{\left ( x-\alpha  \right )\left ( \beta -x \right )}}$$ for $$\beta > \alpha $$, is
  • $$\sin ^{-1}\: \alpha /\beta $$
  • $$\pi /2$$
  • $$\sin ^{-1}\beta /2\alpha $$
  • $$\pi $$
$$\displaystyle \int_{\pi /6}^{\pi /4}\frac{dx}{\sin 2x}$$is equal to
  • $$\displaystyle \frac{1}{2}\log \left ( -1 \right )$$
  • $$\displaystyle \log \left ( -1 \right )$$
  • $$\displaystyle \log 3$$
  • $$\displaystyle \frac {1}{2} \log \sqrt{3}$$
Value of $$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{\left ( 1+x^{2} \right )\sqrt{1-x^{2}}}$$ is?
  • $$\dfrac{\pi}{2\sqrt{2}}$$
  • $$\dfrac{\pi}{\sqrt{2}}$$
  • $$\sqrt{2}\pi $$
  • $$2\sqrt{2\pi }$$
The value of $$\displaystyle \int_{1/2}^{1}\displaystyle \frac{dx}{x\sqrt{3x^{2}+2x-1}}$$ is?
  • $$\pi /2$$
  • $$\pi /3$$
  • $$\pi /6$$
  • $$\pi /\sqrt{2}$$
If $$I= \displaystyle \int_{1}^{\infty }\displaystyle \frac{x^{2}-2}{x^{3}\sqrt{x^{2}-1}}\: dx$$, then $$I$$ equals
  • $$-1$$
  • $$0$$
  • $$\pi /2$$
  • $$\pi -\sqrt{3}$$
If $$0< \alpha < \pi /2$$ then the value of $$\displaystyle \int_{0}^{\alpha }\displaystyle \frac{dx}{1-\cos x\cos \alpha }$$ is
  • $$\pi /\alpha $$
  • $$\pi /2\sin \alpha $$
  • $$\pi /2\cos \alpha $$
  • $$\pi /2\alpha $$
Value of $$\displaystyle \int_{a}^{\infty }\displaystyle \frac{dx}{x^{4}\sqrt{a^{2}+x^{2}}}$$ is
  • $$\displaystyle \frac{2+\sqrt{2}}{3a^{4}}$$
  • $$\displaystyle \frac{2-\sqrt{2}}{3a^{2}}$$
  • $$\displaystyle \frac{2-\sqrt{2}}{3a^{4}}$$
  • $$\displaystyle \frac{\sqrt{2}+1}{3a^{2}}$$
The value of $$\displaystyle \int_{-4}^{-5}e^{\left ( x+5 \right )^{2}}dx+3\displaystyle \int_{1/3}^{2/3}e^{9\left ( x-2/3 \right )^{2}}dx$$ is
  • $$2/5$$
  • $$1/5$$
  • $$1/2$$
  • none of these
If $$\displaystyle \int _{ 0 }^{ 1 }{ \frac { \sin { t }  }{ 1+t } dt } =\alpha $$, then the value of the integral $$\displaystyle \int _{ 4\pi -2 }^{ 4\pi  }{ \frac { \sin { t/2 }  }{ 4\pi +2-t } dt } $$ in terms of $$\alpha$$ is given by
  • $$2\alpha$$
  • $$-2\alpha$$
  • $$\alpha$$
  • $$-\alpha$$
Value of $$\displaystyle \int_{0}^{16}\displaystyle \frac{x^{1/4}}{1+x^{1/2}}\: dx$$ is
  • $$\displaystyle \frac{8}{3}$$
  • $$\displaystyle \frac{4}{3}\tan ^{-1}\: 2$$
  • $$4\displaystyle \left ( \displaystyle \frac{2}{3}+\tan ^{-1}\: 2 \right )$$
  • $$4\displaystyle \left ( \displaystyle \frac{2}{3}-\tan ^{-1}\: 2 \right )$$
If $$I_{1}= \displaystyle \int_{x}^{1}\displaystyle \frac{dt}{1+t^{2}}$$ and $$I_{2}= \displaystyle \int_{1}^{1/x}\displaystyle \frac{dt}{1+t^{2}}$$ for $$x> 0$$, then
  • $$I_{1}= I_{2}$$
  • $$I_{1}> I_{2}$$
  • $$I_{2}> I_{1}$$
  • $$I_{2}= \left ( \pi /2 \right )-\tan ^{-1}x$$
If $$I_{1}= \displaystyle \int_{0}^{\infty }\displaystyle \frac{dx}{1+x^{4}}$$ and $$I_{2}= \displaystyle \int_{0}^{\infty }\displaystyle \frac{x^{2}}{1+x^{4}}\: dx$$, then
  • $$I_{1}= I_{2}$$
  • $$I_{1}=2 I_{2}$$
  • $$2I_{1}= I_{2}$$
  • none of these
If $$\displaystyle \int_{0}^{\infty }\displaystyle \frac{\log \left ( 1+x^{2} \right )}{1+x^{2}}\: dx= \lambda \displaystyle \int_{0}^{1}\displaystyle \frac{\log \left ( 1+x \right )}{1+x^{2}}\: dx$$ then $$\lambda $$ equals
  • $$4$$
  • $$\pi $$
  • $$8$$
  • $$2\pi $$
 If $$\displaystyle I=\int _{8}^{15} \frac{dx}{(x-3)\sqrt{x+1} }$$ then$$ I$$ equals
  • $$ \displaystyle \frac{1}{2}\log \frac {5}{3} $$
  • $$\displaystyle 2 \log \frac{1}{3}$$
  • $$ \displaystyle \frac{1}{2}-\log \frac {1}{5} $$
  • $$\displaystyle 2 \log \frac{5}{3}$$
37 If $$ n > 1,$$ and $$ \displaystyle I=\int _{0}^{\infty} \frac{dx}{(x+\sqrt{1+x^{2}})^{n}}$$ then $$ I$$  equals
  • $$ \displaystyle \frac{n}{n^{2}-1}$$
  • $$ \displaystyle \frac{2n}{n^{2}-1}$$
  • $$ \displaystyle \frac{n}{2(n^{2}-1)}$$
  • $$ \displaystyle \sqrt{ n^{2}-1}$$
A function $$f $$ is defined by $$\displaystyle f(x)=\frac{1}{2^{r-1}},\frac{1}{2r}<x\leq \frac{1}{2^{r-1}},r=1,2,3,.....$$ then the value of $$ \displaystyle \int _{0}^{1}f(x)dx $$ is equal
  • $$\cfrac 13$$
  • $$\cfrac 14$$
  • $$\cfrac 23$$
  • $$\cfrac 12$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers