Processing math: 11%

CBSE Questions for Class 12 Commerce Maths Integrals Quiz 9 - MCQExams.com

If π4<α<π2, value of π/2π/2sin2x1+sin2αsinx is
  • 43tanαsecα
  • 43cotαcosecα
  • 43tanαcosecα
  • 43cotαsecα
eeeeeeedxxlnxln(lnx)ln(ln(lnx)) equals
  • 1
  • 1/e
  • e-1
  • 1+e
Value of π/20sin4ΘsinΘdΘ is
  • 1/3
  • 2/3
  • 1
  • 4/3
Evaluate 10(tx+1x)ndx, where n is a positive integer and t is a parameter independent of x. Hence 10xk(1x)nkdx=P[nCk(n+1)]fork=0,1,......n, then P=
  • 2
  • 1
  • 3
  • None of these
Let u=0dxx4+7x2+1&v=0x2dxx4+7x2+1 then:
  • v > u
  • 6v = π
  • 3u+2v=5π/6
  • u+v=π/3
x21x4+x2+1dx is equal to
  • log(x4+x2+1)+c
  • logx2x+1x2+x+1+c
  • 12logx2x+1x2+x+1+c
  • 12logx2+x+1x2x+1+c
Evaluate \displaystyle \int_{0}^{\pi /4}\frac{\cos x-\sin x}{10+\sin 2x}dx
  • \displaystyle \frac{1}{3}\left (\tan^{-1} \frac{\sqrt{2}}{3}+\tan^{-1} \frac{1}{3} \right )
  • \displaystyle \frac{1}{3}\left (\tan^{-1} \frac{\sqrt{1}}{3}-\cot^{-1} \frac{2}{3} \right )
  • \displaystyle \frac{1}{3}\left ( \tan^{-1} \frac{\sqrt{2}}{3}-\tan^{-1} \frac{1}{3} \right )
  • \displaystyle \frac{1}{3}\left ( \tan^{-1} \frac{\sqrt{1}}{3}-\cot^{-1} \frac{1}{3} \right )
Let f(x) be a positive function. Let
I_{1} = \int_{1 - k}^{k} xf\left \{x(1 - x)\right \} dx,
I_{2} = \int_{1 - k}^{k} f\left \{x(1 - x) \right \} dx,
where 2k - 1 > 0, then \dfrac {I_{1}}{I_{2}} is
  • 2
  • k
  • \dfrac {1}{2}
  • 1
The value of \displaystyle \int_{3}^{4}\sqrt {(4 - x)(x - 3)}dx is
  • \dfrac {\pi}{16}
  • \dfrac {\pi}{8}
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{2}
The value of the integral \displaystyle \int_{\frac {1}{3}}^1\frac {(x-x^3)^{\frac {1}{3}}}{x^4}dx
  • 6
  • 0
  • 3
  • 4
\displaystyle\int^{\pi /3}_0\frac{\cos \theta}{5-4\sin \theta}d\theta equal to.
  • \displaystyle\frac{1}{4}log\left(\displaystyle\frac{5}{5+2\sqrt{3}}\right)
  • \displaystyle\frac{1}{4}log\left(\displaystyle\frac{5}{5-2\sqrt{3}}\right)
  • \displaystyle\frac{1}{4}log\left(\displaystyle\frac{5+2\sqrt{3}}{5}\right)
  • \displaystyle\frac{1}{4}log\left(\displaystyle\frac{5-2\sqrt{3}}{5}\right)
Consider I=\displaystyle \int^{\pi}_{0}\displaystyle\frac{xdx}{1+\sin x}What is I equal to?
  • -\pi
  • 0
  • \pi
  • 2\pi
\int { { x }^{ 4 }{ e }^{ 2x } } dx=
  • \cfrac { { e }^{ 2x } }{ 4 } \left( 2{ x }^{ 4 }-4{ x }^{ 3 }+6{ x }^{ 2 }-6x+3 \right) +C
  • \cfrac { { e }^{ 2x } }{ 2 } \left( 2{ x }^{ 4 }-4{ x }^{ 3 }+6{ x }^{ 2 }-6x+3 \right) +C
  • \cfrac { { e }^{ 2x } }{ 8 } \left( 2{ x }^{ 4 }+4{ x }^{ 3 }+6{ x }^{ 2 }+6x+3 \right) +C
  • \cfrac { { e }^{ 2x } }{ 4 } \left( 2{ x }^{ 4 }+4{ x }^{ 3 }+6{ x }^{ 2 }+6x+3 \right) +C
The value of \int _{ 1/3 }^{ 3 }{ \cfrac { \tan { \left( { x }^{ 2 }+\cfrac { 1 }{ { x }^{ 2 } }  \right)  }  }{ \sin { \left( x+\cfrac { 1 }{ x }  \right)  }  }  } \cfrac { dx }{ x } is 
  • 0
  • 3/2
  • 1/2
  • 4/3
Let I_{1} =\displaystyle  \int_{0}^{1}\dfrac {e^{x}dx}{1 + x} and I_{2} = \displaystyle \int_{0}^{1} \dfrac {x^{2}dx}{e^{x^{3}}(2 - x^{3})}, then \dfrac {I_{1}}{I_{2}} is
  • 3/e
  • e/3
  • 3e
  • 1/3e
The value of \int^3_{1/3}\dfrac{tan(x^2-\dfrac{1}{x^2})}{sin(x+\dfrac{1}{x}) }\dfrac{dx}{x} is 
  • 0
  • \dfrac{3}{2}
  • \dfrac{1}{2}
  • \dfrac{4}{3}
The value of the integral \displaystyle \int_0^1 \dfrac{x^{\alpha}-1}{\log x}dx is
  • \log (\alpha+1)
  • 2\log (\alpha+1)
  • 3\log \alpha
  • none of these
The value of the definite integral \displaystyle\int^{\pi/2}_{0}\left(\cos ^{10}x\cdot \sin 12x\right)dx, is equal to.
  • \displaystyle\frac{1}{10}
  • \displaystyle\frac{1}{11}
  • \displaystyle\frac{1}{12}
  • \displaystyle\frac{1}{22}
If I=\int _{ 0 }^{ \pi  }{ \frac { x\sin { x }  }{ 1+{ cos }^{ 2 }x } dx } , then the value of \sin { \sqrt { I }  } , is
  • \frac { 1 }{ 2 }
  • 0
  • \frac { \sqrt { 2 } }{ 2 }
  • 1
If \displaystyle I=\int _{ { -\pi  }/{ 6 } }^{ { \pi  }/{ 6 } }{ \dfrac { \pi +4{ x }^{ 5 } }{ 1-\sin { \left( \left| x \right| +\dfrac { \pi  }{ 6 }  \right)  }  }  } dx, then I equals to
  • 4\pi
  • 2\pi +\dfrac { 1 }{ \sqrt { 3 } }
  • 2\pi -\dfrac { 1 }{ \sqrt { 3 } }
  • 4\pi +\sqrt { 3 } -\dfrac { 1 }{ \sqrt { 3 } }
If, \int^{\frac{\pi}{2}} _0 \frac{sin^2x}{(1 + cosx^2)} dx = 0
  • \frac{4 - \pi}{2}
  • \frac{\pi - 4}{2}
  • $$4 - frac{\pi}{2}$
  • \frac{4 + \pi}{2}
{I}_{n}=\int_{1}^{e}{\left(logx\right)^{n}dx} and {I}_{n}=A+{BI}_{n-1} then
A=........., B=............
  • e,-n
  • 1/e,n
  • -e,n
  • -e-n
\displaystyle \int _{ 0 }^{ x }{ \cfrac { \sin { x }  }{ 1+\cos ^{ 2 }{ x }  }  } dx=\pi \cfrac { \cos { \alpha  }  }{ 1-\sin ^{ 2 }{ \alpha  }  }
  • for no value of \alpha
  • for exactly two values of \alpha in \left( 0,\pi \right)
  • for atleast one \alpha in \left( \pi /2,\pi \right)
  • for exactly one \alpha in \left( 0,\pi /2 \right)
\int _{ 0 }^{ \pi /2 }{ \sin ^{ 8 }{ x } \cos ^{ 2 }{ x } dx } is equal to
  • \cfrac { \pi }{ 512 }
  • \cfrac {3 \pi }{ 512 }
  • \cfrac { 5\pi }{ 512 }
  • \cfrac {7 \pi }{ 512 }
Let y = y(x), y(1)=1\ and\ y(e) ={e^2} . Consider
J = \int {{{x + y} \over {xy}}} dyI = \int {{{x + y} \over {{x^2}}}} dxJ - I = g\left( x \right) and g(1) = 1, then the value of g(e) is
  • 2e+1
  • e+1
  • {e^2}-e+1
  • {e^2}+e-1
If I_{1} = \int_{0}^{1} 2^{x^{3}} dx, I_{2} = \int_{0}^{1}2^{x^{2}}dx, I_{3} = \int_{1}^{2}2^{x^{2}}dx and I_{4} = \int_{1}^{2}2^{x^{3}}dx, then
  • I_{1} > I_{2}
  • I_{2} > I_{1}
  • I_{3} > I_{4}
  • I_{1} > I_{3}
Value of the definite integral \displaystyle \int _{ 0 }^{ 1 }{ \cot ^{ -1 }{ \left( 1-x+{ x }^{ 2 } \right)  } dx } is:
  • \pi -\log { 2 }
  • \dfrac{\pi}{2} -\log { 2 }
  • \pi +\log { 2 }
  • \dfrac{\pi}{2} +\log { 2 }
if\,{l_n} = \int\limits_0^1 {{x^m}} {\left( {\ln x} \right)^n}dx,\,and\,{l_n} = \frac{1}{{m + 1}}{l_{n - 1}} then k is equal to
  • n
  • -n
  • m-1
  • None of these
Evaluate the integral, \int _{ 0 }^{ 1 }{ \cos { \left( 2\cot ^{ -1 }{ \sqrt { \dfrac { 1-x }{ 1+x }  }  }  \right)  }  } dx=
  • -1/2
  • 1/2
  • 0
  • 1
\displaystyle\int^{1}_0\sqrt{x(1-x)}dx=.
  • \dfrac{\pi}{8}
  • \dfrac{3\pi}{8}
  • \dfrac{5\pi}{4}
  • \dfrac{\pi}{2}
Solve \displaystyle \int _{ 0 }^{ 1/2 }{ \dfrac { x\sin ^{ -1 }{ x }  }{ \sqrt { 1-{ x }^{ 2 } }  } dx= }
  • \dfrac { 1 }{ 2 } +\dfrac { \sqrt { 3 } \pi }{ 12 }
  • \dfrac { 1 }{ 2 } -\dfrac { \sqrt { 3 } \pi }{ 12 }
  • \dfrac { 1 }{ 2 } -\dfrac { \sqrt { 2 } \pi }{ 12 }
  • None\ of\ these
One of the roots of the equation 2000x^6+100x^5+10x^3+x-2=0 is of the form \dfrac{m+\sqrt{n}}{r}. When 'm' is non zero integer and n and r relatively prime natural numbers. Then \dfrac{m+n+r}{100}=?
  • 100
  • 2
  • 3
  • 0
\int _{ -\pi /4 }^{ \pi /4 }{ ln\sqrt { 1+\sin { 2x }  } dx } has the value equal to:
  • -\dfrac {\pi}{4}l\ n2
  • -\dfrac {\pi}{2}l\ n2
  • -\dfrac {\pi}{8}l\ n2
  • -\dfrac {\pi}{16}l\ n2
The value of the integer I=\int_{1}^{\infty} \dfrac{(x^{2}-x)}{x^{3}\sqrt{(x^{2}-1)}}dx is
  • 0
  • 2/3
  • 4/3
  • none\ of\ these
\int _{ 0 }^{ 2\pi  }{ \sqrt { 1+\sin { \dfrac { x }{ 2 }  }  } dx } =
  • 0
  • 2
  • 8
  • 4
The integral \int _{ \tfrac { \pi  }{ 12 }  }^{ \tfrac { \pi  }{ 4 }  }{ \dfrac { 8\cos { 2x }  }{ { \left( \tan { x } +\cot { x }  \right)  }^{ 3 } } dx } equals:
  • \dfrac {15}{128}
  • \dfrac {5}{64}
  • \dfrac {13}{32}
  • \dfrac {13}{256}
Solve \displaystyle\int_{0}^{\infty}\dfrac {x \tan^{-1}x}{(1+x^{2})^{2}}dx
  • \pi/2
  • \pi/6
  • \pi/4
  • \pi/8
\displaystyle \int_{0}^{100 \pi}\sqrt {1-\cos 2x}dx is
  • 200\sqrt {2}
  • 100\sqrt {2}
  • 0
  • none\ of\ these
\displaystyle \overset{\pi/2}{\underset{0}{\int}} \dfrac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} equals-
  • \pi/ab
  • 2\pi/ab
  • ab/ \pi
  • \pi/2ab
The value of \int_{-1}^{1}\dfrac {dx}{(2-x)\sqrt {1-x^{2}}} is
  • 0
  • \dfrac {\pi}{\sqrt {3}}
  • \dfrac {2\pi}{\sqrt {3}}
  • cannot\ be\ evaluated
\displaystyle \int^{\pi/2}_{-\pi/2}\sqrt {\cos x-\cos^{3}x}dx=
  • 1
  • 4/3
  • -1/3
  • 0
If f(x) =\displaystyle  \underset{1}{\overset{x}{\int}} \dfrac{\tan^{-1} t}{t} dt \, \, \forall \in R, then the value of f(e^2) - f \left (\dfrac{1}{e^2}\right) is 
  • 0
  • \dfrac{\pi}{2}
  • \pi
  • 2 \pi
Let f:R\rightarrow R^{+} and I_{I}=\int^{k}_{1-k}\,xf(x(1-x))\,dx,I_2=\int^{k}_{1-k}f(x(1-x))\,dx where 2k-1>0. Then \dfrac{I_I}{I_2} is 
  • 2
  • k
  • 1/2
  • 1
\int {x\left( {\frac{{\ln {a^{{a^{\frac{x}{2}}}}}}}{{3{a^{\frac{{5x}}{2}}}{b^{3x}}}} + \frac{{\ln {b^{{b^{\frac{x}{2}}}}}}}{{2{a^{2x}}{b^{4x}}}}} \right)} dx\left( {where\,a,b \in R} \right) is equal to
  • \frac{1}{{6\ln {a^2}{b^3}}}{a^{2x}}{b^{3x}}\ln \frac{{{a^{2x}}{b^{3x}}}}{e} + k
  • \frac{1}{{6\ln {a^2}{b^3}}}{a^{2x}}{b^{3x}}\ln \frac{1}{{e{a^{2x}}{b^{3x}}}} + k
  • \frac{1}{{6\ln {a^2}{b^3}}}\frac{1}{{{a^{2x}}{b^{3x}}}}\ln \left( {e{a^{2x}}{b^{3x}}} \right) + k
  • - \frac{1}{{6\ln {a^2}{b^3}}}\frac{1}{{{a^{2x}}{b^{3x}}}}\ln \left( {e{a^{2x}}{b^{3x}}} \right) + k
\displaystyle \int_{-1}^{1} \cot^{-1} \left(\dfrac{x+x^{3}}{1+x^{4}}\right)dx is equal to 
  • 2\pi
  • \dfrac{\pi}{2}
  • 0
  • \pi
I=\int { \left\{ \log _{ e }( \log _{ e }{ x }) +\cfrac { 1 }{ { \left( \log _{ e }{ x }  \right)  }^{ 2 } }  \right\}  } dx is equal to 
  • x\log _{ e }( \log _{ e }{ x } )+c
  • x\log _{ e }( \log _{ e }{ x })-\cfrac { x }{ { \left( \log _{ e }{ x } \right) }^{ } } +c
  • x\log _{ e }{ x } \log _{ e }{ x } +\cfrac { x }{ { \left( \log _{ e }{ x } \right) }^{ } } +c
  • none of these
\int (1+x-x^{-1})e^{x+x^{1}}dx=
  • (x+1)e^{x+x^{-1}}+c
  • (x-1)e^{x+x^{-1}}+c
  • -xe^{x+x^{-1}}+c
  • xe^{x+x^{-1}}+c
Solve: \int\dfrac{sin^32x}{cos^52x}dx
  • \dfrac{{{{\tan }^4}2x}}{8} + C
  • \dfrac{{{{\cos}^4}2x}}{8} + C
  • \dfrac{{{{\sin}^4}2x}}{8} + C
  • \dfrac{{{{\sec}^4}2x}}{8} + C
\int^{\pi/4}_{0}\dfrac {\sin^{2}x\cos^{2}x}{(\sin^{3}x+\cos^{3}x)^{2}}dx is
  • 1/3
  • 1/2
  • 1/6
  • 1/4
\int _{ 1/2 }^{ 2 }{ \dfrac { 1 }{ x } \csc { ^{ 101 }\left( x-\dfrac { 1 }{ x }  \right) dx } \\  } is equal to 
  • 1/4
  • 1
  • 0
  • \dfrac{101}{2}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers