Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 1 - MCQExams.com

Statement I :  The equation (sin1x)3+(cos1x)3aπ3=0 has a solution for all a132.
Statement II : For any xϵR,sin1x+cos1x=π2 and 0(sin1xπ4)29π216.
  • Both statements I and II are true.
  • Both statements I and II are true but I is not an explanation of II
  • Statement I is true and statement II is false
  • Statement I is false and statement II is true.
If cos1xcos1y2=α, then 4x24xycosα+y2 is equal to
  • 2sin2α
  • 4
  • 4sin2α
  • 4sin2α
If sin1(2a1+a2)cos1(1b21+b2)=tan1(2x1x2), then what is the value of x?
  • ab
  • ab
  • ba
  • ab1+ab
The value of tan1(1)+cos1(12)+sin1(12) is equal to 
  • π4
  • 5π12
  • 3π4
  • 13π12
cos1{12x2+1x2.1x24}=cos1x2cos1x holds for

  • |x|1
  • xϵR
  • 0x1
  • 1x0
Solve: tan1(xy)tan1xyx+y is equal to
  • π2
  • π3
  • π4
  • 3π4
Value of tan1{sin21cos2} is
  • π21
  • 1π4
  • 2π2
  • π41
The number of triplets (x,y,z) satisfies the equation f(x,y,z)=sin1x+sin1y+sin1z=3π2 is
  • 1
  • 2
  • 0
  • Infinite
Sin-1 (35)+Sin1(513)=sin1X thenx=
  • (6365)
  • 5665
  • 5663
  • 1663
If sec1x+sec1y+sec1z=3π, then xy+yz+zx= _______.
  • 0
  • 3
  • 3
  • 1
Range of f(x)=tan1[2π(2tan1xsin1x+cot1xcos1x)] contains
  • Only one integer
  • More than 2 integers
  • Only two integers
  • No integer
The value of sin1(223)+sin1(13) is equal to
  • π6
  • π4
  • π2
  • 2π3
  • 0
tan1x+tan1y=tan1x+y1xy,      xy<1
                                    =π+tan1x+y1xy,      xy>1.

 Evaluate:  tan13sin2α5+3cos2α+tan1(tanα4)
                                  where π2<α<π2
  • α
  • 2α
  • 3α
  • 4α
Simplify cot11x21 for x<1
  • cos1x
  • sec1x
  • cosec1x
  • tan1x
Find value of cos1(12).
  • 7π3
  • 2π3
  • 5π3
  • π3
if f(x)=tan1(x)than f(x)+f(y) is equal to:
  • tan1xtan1y=tan1(x+y1xy)
  • tan1x+tan1y=tan1(xy1+xy)
  • tan1x+tan1y=tan1(x+y1xy)
  • None of these
State True or False
sin12+cos12=π2.
  • True
  • False
For x(0,π/2)
sin1(cosx)=?
  • πx
  • π2x
  • πx2
  • π2x
cos1(cos(5π4)) is given by 
  • 5π/4
  • 3π/4
  • π/4
  • None of these
If sin113+sin123=sin1x, then x is equal to-
  • 0
  • 5429
  • 5+429
  • π2
tan112+tan113 equals
  • π4
  • π6
  • π4
  • None of these 
The value of cos1(cos12)sin1(sin12) is 
  • 0
  • π
  • 8π24
  • none of these
If f(x)=sin1(sinx)+cos1(sinx) and ϕ(x)=f(f(f(x))), then ϕ(x)= 
  • 1
  • sin x
  • 0
  • None of these
tan115+tan117+tan113+tan118 is equal to
  • π3
  • π4
  • π2
  • π
If n1cot1(n28)=π. where ab is rational number in its lowest, then correct option is/are 
  • ab=3
  • a+b=11
  • a+b=10
  • ab=4
tan(cot1x) is equal to :
  • π2x
  • cot(tan1x)
  • tanx
  • 1x
If sin(sin115+cos1x)=1, then find the value of x.
  • 1
  • 13
  • 15
  • 12
The value of the expression 2sec12+sin112 is 
  • π6
  • 5π6
  • 7π6
  • 1
Number of solutions of the equation 3tan1x+cot1x=π is
  • Zero
  • 2
  • 3
  • 1
If x,y,z[1,1] such that cos1x+cos1y+cos1z=0, find x+y+z.
  • 0
  • 1
  • 2
  • 3
Find the value of :
sec2(tan12)+csc2(cot13)
  • 11
  • 15
  • 17
  • 21
Find the value of sin1(2cos2x1)+cos1(12sin2x).
  • π2
  • π3
  • π4
  • π6
Find the value of cot(tan1a+cot1a).
  • 0
  • 1
  • 2
  • 1
sin10 is equal to:
  • 0
  • π6
  • π2
  • π3
The value of x for which sin(cot1(1+x))=cos(tan1x) is
  • 12
  • 1
  • 0
  • 12
Assertion (A) : The maximum value of f(x)=sin1x+cos1x+tan1x is 3π4
Reason (R) : sin1x>cos1x for all x in R
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true and R is not correct explanation of A
  • A is true but R is false
  • A is false but R is true
The number of solutions of the equation

2(Sin1x)25Sin1x+2=0 is



  • 0
  • 1
  • 2
  • 3
The number of triplets (x,y,z) satisfying sin1x+sin1y+cos1z=2π is
  • 1
  • 0
  • 2
Assertion (A) lf 0<x<π2 then sin1(cosx)+cos1(sinx)=π2x
Reason (R) cos1x=π2sin1xx[0,1]


  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true but R is not correct explanation of A
  • A is true but Ris false
  • A is false but R is true
The smallest and the largest values of
tan1(1x1+x) , 0x1 are.
  • 0,π
  • 0,π4
  • π4,π4
  • π4,π2
The value of x where x>0 tan(sec11x)=sin(tan12) is
  • 5
  • 53
  • 1
  • 23
The ascending order of A=sin1(log32) , B=cos1(log3(12)) , and C=tan1(log1/32) is
  • C, B, A
  • B, A, C
  • C, A, B
  • B, C, A
The equation 2cos1x+sin1x=11π6 has
  • No solution
  • One solution
  • Two solutions
  • Three solutions
If x takes negative permissible value, then  sin1x=
  • cos11x2
  • cos11x2
  • cos1x21
  • πcos11x2
There is flag-staff at the top of 10 metres high tower. lf the flag-staff makes an angle tan1(1/8) at a point 24 metres away from the tower, then the height of the flag staff in metres is
  • 26/7
  • 27/8
  • 27/6
  • 26/3
If tan(cos1x)=sin(sec1(5)), then x=
  • 53
  • 53
  • 52
  • 52
A tower stands at the top of a hill whose height is three times the height of the tower. The tower is found to subtend an angle of\tan1(1/7) at a point 2km away on the horizontal throught the foot of the hill. Then the height of the tower is
  • 12km or 13km
  • 13km or 23km
  • 23km or 12km
  • 34km or 12km
If θ=sin1x+cos1x+tan1x, 0x1, then the smallest interval in which θ lies is given by
  • π4θπ2
  • π4θ0
  • 0θπ4
  • π2θ3π4
The domain of sin1[log2(x2/2)] is
  • [2,1]
  • [1,2]
  • [2,1][1,2]
  • [2,0]
A vertical pole subtends an angle tan1(12) at a point P on the ground. The angle subtended by the upper half of the pole at P is
  • tan1(14)
  • tan1(18)
  • tan1(23)
  • tan1(29)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers