Processing math: 0%

CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 1 - MCQExams.com

Statement I :  The equation (sin1x)3+(cos1x)3aπ3=0 has a solution for all a
Statement II : For any x\epsilon R, sin^{-1}x+cos^{-1}x=\dfrac {\pi}{2} and 0\leq (sin^{-1}x-\dfrac {\pi}{4})^2\leq \dfrac {9\pi^2}{16}.
  • Both statements I and II are true.
  • Both statements I and II are true but I is not an explanation of II
  • Statement I is true and statement II is false
  • Statement I is false and statement II is true.
If \cos ^{ -1 }{ x } -\cos ^{ -1 }{ \cfrac { y }{ 2 }  } =\alpha , then 4{ x }^{ 2 }-4xy\cos { \alpha  } +{ y }^{ 2 }\quad is equal to
  • 2\sin { 2\alpha }
  • 4
  • 4\sin ^{ 2 }{ \alpha }
  • -4\sin ^{ 2 }{ \alpha }
If \sin^{-1}\left (\dfrac {2a}{1 + a^{2}}\right ) - \cos^{1}\left (\dfrac {1 - b^{2}}{1 + b^{2}}\right ) = \tan^{-1}\left (\dfrac {2x}{1 - x^{2}}\right ), then what is the value of x?
  • \dfrac {a}{ b}
  • ab
  • \dfrac {b}{a}
  • \dfrac {a - b}{1 + ab}
The value of \tan^{-1}(1)+\cos^{-1}\left(\dfrac{-1}{2}\right)+\sin^{-1}\left(\dfrac{-1}{2}\right) is equal to 
  • \dfrac{\pi}{4}
  • \dfrac{5\pi}{12}
  • \dfrac{3\pi}{4}
  • \dfrac{13\pi}{12}
{cos}^{-1}\left \{ \frac{1}{2}x^2+\sqrt{1-x^2}.\sqrt{1-\frac{x^2}{4}} \right \}={cos}^{-1}\frac{x}{2}-{cos}^{-1}x holds for

  • |x|\leq 1
  • x\epsilon R
  • 0\leq x\leq 1
  • -1\leq x\leq 0
Solve: \displaystyle { \tan }^{ -1 }\left( \frac { x }{ y }  \right) -{ \tan }^{ -1 }\frac { x-y }{ x+y }  is equal to
  • \displaystyle \frac { \pi }{ 2 }
  • \displaystyle \frac { \pi }{ 3 }
  • \displaystyle \frac { \pi }{ 4 }
  • \displaystyle \frac { -3\pi }{ 4 }
Value of \tan^{-1}\begin{Bmatrix}\dfrac{\sin\,2-1}{\cos\,2}\end{Bmatrix} is
  • \dfrac{\pi}{2}-1
  • 1-\dfrac{\pi}{4}
  • 2-\dfrac{\pi}{2}
  • \dfrac{\pi}{4}-1
The number of triplets \left ( x,y,z \right ) satisfies the equation \displaystyle f\left ( x,y,z \right )= \sin ^{-1}x+\sin ^{-1}y+\sin ^{-1}z= \dfrac{3\pi }{2} is
  • 1
  • 2
  • 0
  • Infinite
Sin-1 (\displaystyle \frac{3}{5})+\mathrm{S}\mathrm{i}\mathrm{n}^{-1}(\frac{5}{13})=\sin_{X}^{-1} then\mathrm{x}=
  • (^{\frac{63}{65})}
  • \displaystyle \frac{56}{65}
  • \displaystyle \frac{56}{63}
  • \displaystyle \frac{16}{63}
If \sec^{-1} x+ \sec^{-1}y + \sec^{-1}z = 3\pi, then xy + yz + zx = _______.
  • 0
  • -3
  • 3
  • 1
Range of f(x)=\tan^{-1}\Bigg[\dfrac{2}{\pi}(2\tan^{-1}x-\sin^{-1}x+\cot^{-1}x-\cos^{-1}x)\Bigg] contains
  • Only one integer
  • More than 2 integers
  • Only two integers
  • No integer
The value of \sin^{-1} \left( \dfrac{2 \sqrt 2}{3} \right ) + \sin^{-1} \left( \dfrac{1}{3}\right ) is equal to
  • \dfrac {\pi}{ 6}
  • \dfrac {\pi}{ 4}
  • \dfrac {\pi}{ 2}
  • \dfrac {2\pi}{ 3}
  • 0
{ tan }^{ -1 }x+{ tan }^{ -1 }y={ tan }^{ -1 }\dfrac { x+y }{ 1-xy } ,      xy<1
                                    =\pi +{ tan }^{ -1 }\dfrac { x+y }{ 1-xy } ,      xy>1.

 Evaluate:  { tan }^{ -1 }\dfrac { 3sin2\alpha  }{ 5+3cos2\alpha  } +{ tan }^{ -1 }\left( \dfrac { tan\alpha  }{ 4 }  \right)
                                  where -\dfrac { \pi  }{ 2 } <\alpha <\dfrac { \pi  }{ 2 }
  • \alpha
  • 2\alpha
  • 3\alpha
  • 4\alpha
Simplify {\cot ^{ - 1}}\dfrac{1}{{\sqrt {{x^2} - 1} }} for x <  - 1
  • \cos ^{-1}x
  • \sec^{-1}x
  • \text{cosec}^{-1}x
  • \tan ^{-1}x
Find value of \cos^{-1}\left(-\dfrac {1}{2}\right).
  • \dfrac {7\pi}{3}
  • \dfrac {2\pi}{3}
  • \dfrac {5\pi}{3}
  • \dfrac {\pi}{3}
if f(x)={\tan ^{ - 1}}(x)than f(x)+f(y) is equal to:
  • {{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)
  • {{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)
  • {{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)
  • None of these
State True or False
\sin^{-1}2+\cos^{-1} 2=\dfrac{\pi}{2}.
  • True
  • False
For x\in(0,\pi/2)
{\sin ^{ - 1}}(\cos x)=?
  • \pi-x
  • \dfrac {\pi}{2}-x
  • \pi-\dfrac{x}{2}
  • \pi-2x
\cos ^{-1}\left ( \cos \left ( \frac{5\pi}{4} \right ) \right ) is given by 
  • 5\pi/4
  • 3\pi/4
  • -\pi/4
  • None of these
If \sin^{-1}\dfrac{1}{3} + \sin^{-1}\dfrac{2}{3} = \sin^{-1}x, then x is equal to-
  • 0
  • \dfrac{\sqrt{5} - 4\sqrt{2}}{9}
  • \dfrac{\sqrt{5} + 4\sqrt{2}}{9}
  • \dfrac{\pi}{2}
\tan^{-1} \dfrac{1}{2} + \tan^{-1} \dfrac{1}{3} equals
  • -\cfrac{\pi }{4}
  • \cfrac{\pi }{6}
  • \cfrac{\pi }{4}
  • None of these 
The value of \cos^{-1} (\cos 12) - \sin^{-1} (\sin 12) is 
  • 0
  • \pi
  • 8 \pi - 24
  • none of these
If f(x)=sin^{-1}(sinx)+cos^{-1}(sinx) and \phi (x)=f(f(f(x))), then \phi '(x)= 
  • 1
  • sin x
  • 0
  • None of these
\tan^{-1}\dfrac {1}{5}+\tan^{-1}\dfrac {1}{7}+\tan^{-1}\dfrac {1}{3}+\tan^{-1}\dfrac {1}{8} is equal to
  • \dfrac {\pi}{3}
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{2 }
  • \pi
If n - 1\sum\limits_{}^\infty  {{{\cot }^{ - 1}}\left( {{{{n^2}} \over 8}} \right) = \pi .} where {a \over b} is rational number in its lowest, then correct option is/are 
  • a - b = 3
  • a + b = 11
  • a + b = 10
  • a - b = 4
\tan(\cot^{-1}x) is equal to :
  • \dfrac{\pi}{2}-x
  • \cot(\tan^{-1}x)
  • \tan x
  • \dfrac1x
If \sin (\sin^{-1}\dfrac{1}{5}+\cos ^{-1}x)=1, then find the value of x.
  • -1
  • \dfrac { 1 }{ 3 }
  • \dfrac { 1 }{ 5 }
  • \dfrac { 1 }{ 2 }
The value of the expression 2\sec^{-1} 2 +\sin^{-1} \dfrac{1}{2} is 
  • \dfrac{\pi}{6}
  • \dfrac{5\pi}{6}
  • \dfrac{7\pi}{6}
  • 1
Number of solutions of the equation 3{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \pi is
  • Zero
  • 2
  • 3
  • 1
If x,y,z \in [-1,1] such that \cos^{-1}x +\cos^{-1}y +\cos^{-1}z=0, find x+y+z.
  • 0
  • 1
  • 2
  • 3
Find the value of :
\sec^2 (\tan^{-1} 2) +\csc^2 (\cot^{-1} 3)
  • 11
  • 15
  • 17
  • 21
Find the value of \sin^{-1}(2\cos^{2}x-1)+\cos^{-1}(1-2\sin^{2}x).
  • \dfrac {\pi}{2}
  • \dfrac {\pi}{3}
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{6}
Find the value of \cot (\tan^{-1} a +\cot^{-1} a).
  • 0
  • -1
  • 2
  • 1
\sin^{-1}{0} is equal to:
  • 0
  • \dfrac{\pi }{6}
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{3}
The value of x for which \sin { \left( \cot ^{ -1 }{ \left( 1+x \right)  }  \right)  } =\cos { \left( \tan ^{ -1 }{ x }  \right)  } is
  • \displaystyle \frac{1}{2}
  • 1
  • 0
  • \displaystyle -\frac{1}{2}
Assertion (A) : The maximum value of f(x)=\sin^{-1}x+\cos^{-1}x+\tan^{-1}x is \displaystyle \frac{3\pi}{4}
Reason (R) : \sin ^{-1} x>\cos^{-1}x for all x in R
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true and R is not correct explanation of A
  • A is true but R is false
  • A is false but R is true
The number of solutions of the equation

2(Sin^{-1}x)^{2}-5Sin^{-1}x+2=0 is



  • 0
  • 1
  • 2
  • 3
The number of triplets (x,y,z) satisfying \sin^{-1}x+\sin^{-1}y+\cos^{-1}z=2\pi is
  • 1
  • 0
  • 2
  • \infty
Assertion (A) lf 0<\displaystyle x<\frac{\pi}{2} then \sin^{-1}(cosx)+\cos^{-1}(sinx)=\pi-2x
Reason (R) \displaystyle \cos^{-1}x=\frac{\pi}{2}-\sin^{-1}x\forall x\in[0,1]


  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true but R is not correct explanation of A
  • A is true but Ris false
  • A is false but R is true
The smallest and the largest values of
\displaystyle \tan^{-1}\left (\dfrac{1-x}{1+x}\right) , 0\leq x\leq 1 are.
  • 0,\pi
  • 0,\displaystyle \dfrac{\pi}{4}
  • {-\dfrac{\pi}{4},\dfrac{\pi}{4}}
  • \displaystyle \dfrac{\pi}{4},\dfrac{\pi}{2}
The value of x where x>0 \displaystyle \tan(\sec^{-1}\frac{1}{x})=\sin(\tan^{-1}2) is
  • \sqrt{5}
  • \displaystyle \frac{\sqrt{5}}{3}
  • 1
  • \displaystyle \frac{2}{3}
The ascending order of A=\sin^{-1}(\log_{3}{2}) , B=\displaystyle \cos^{-1}\left(\log_{3}\left(\frac{1}{2}\right)\right) , and C=\tan^{-1}\left(\log_{1/3} 2 \right) is
  • \text{C, B, A}
  • \text{B, A, C}
  • \text{C, A, B}
  • \text {B, C, A}
The equation 2\displaystyle \cos^{-1}x+\sin^{-1}x=\frac{11\pi}{6} has
  • No solution
  • One solution
  • Two solutions
  • Three solutions
If x takes negative permissible value, then  \sin^{-1}x=
  • \cos^{-1}\sqrt{1-x^{2}}
  • {-\cos^{-1}}\sqrt{1-x^{2}}
  • {\cos^{-1}}\sqrt{x^{2}-1}
  • {\pi-\cos^{-1}}\sqrt{1-x^{2}}
There is flag-staff at the top of 10 metres high tower. lf the flag-staff makes an angle \tan ^{ -1 }{ \left( 1/8 \right)  } at a point 24 metres away from the tower, then the height of the flag staff in metres is
  • 26/7
  • 27/8
  • 27/6
  • 26/3
If \tan(cos^{-1}x)=\sin (\sec^{-1} (\sqrt{5}) ), then x=
  • \sqrt{\dfrac{5}{3}}
  • \displaystyle \dfrac{\sqrt{5}}{3}
  • \sqrt{\dfrac{5}{2}}
  • \displaystyle \dfrac{\sqrt{5}}{2}
A tower stands at the top of a hill whose height is three times the height of the tower. The tower is found to subtend an angle of\\tan ^{ -1 }{ \left( { 1 }/{ 7 } \right)  }  at a point 2km away on the horizontal throught the foot of the hill. Then the height of the tower is
  • \displaystyle \frac{1}{2}km or \displaystyle \frac{1}{3}km
  • \displaystyle \frac{1}{3}km \space or \space \frac{2}{3}km
  • \displaystyle \frac{2}{3}km \space or \space\frac{1}{2}km
  • \displaystyle \frac{3}{4}km \space or \space  \frac{1}{2}km
If \theta = sin^{-1}x+cos^{-1}x+tan^{-1}x,\ 0\leq x\leq 1, then the smallest interval in which \theta lies is given by
  • \displaystyle \frac{\pi}{4}\leq\theta\leq\frac{\pi}{2}
  • -\displaystyle \frac{\pi}{4}\leq\theta\leq 0
  • 0\displaystyle \leq\theta\leq\frac{\pi}{4}
  • \displaystyle \frac{\pi}{2}\leq\theta\leq\frac{3\pi}{4}
The domain of \sin^{-1}[\log_{2}(x^{2}/2)] is
  • [2, 1]
  • [1, 2]
  • [-2,-1]\cup [1,2]
  • [-2,0]
A vertical pole subtends an angle \displaystyle \tan^{-1}(\frac{1}{2}) at a point P on the ground. The angle subtended by the upper half of the pole at P is
  • \displaystyle \tan^{-1}(\frac{1}{4})
  • \displaystyle \tan^{-1}(\frac{1}{8})
  • \displaystyle \tan^{-1}(\frac{2}{3})
  • \displaystyle \tan^{-1}(\frac{2}{9})
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers