Explanation
We need to find value of \sin ^{ -1 }{ \left( \dfrac { 2\sqrt { 2 } }{ 3 } \right) } +\sin ^{ -1 }{ \left( \dfrac { 1 }{ 3 } \right) }
Let \sin ^{ -1 }{ \left( \dfrac { 2\sqrt { 2 } }{ 3 } \right) } =t
\Rightarrow \sin { t } =\dfrac { 2\sqrt { 2 } }{ 3 } \\ \sin ^{ 2 }{ t } +\cos ^{ 2 }{ t } =1\\ { \left( \dfrac { 2\sqrt { 2 } }{ 3 } \right) }^{ 2 }+\cos ^{ 2 }{ t } =1\\ \Rightarrow \cos ^{ 2 }{ t } =\dfrac { 1 }{ 9 } \\ \Rightarrow \cos { t } =\dfrac { 1 }{ 3 } \\ \Rightarrow t=\cos ^{ -1 }{ \left( \dfrac { 1 }{ 3 } \right) }
Substituting t
\Rightarrow \cos ^{ -1 }{ \left( \dfrac { 1 }{ 3 } \right) } +\sin ^{ -1 }{ \left( \dfrac { 1 }{ 3 } \right) } \\ =\dfrac { \pi }{ 2 }
So, option C is correct.
Given that ,f\left( x \right)={{\tan }^{-1}}x ….(1)
Put x=y in equation (1) we get
f\left( y \right)={{\tan }^{-1}}y ….(2)
Add equation (1) and (2)
f\left( x \right)+f\left( y \right)={{\tan }^{-1}}x+{{\tan }^{-1}}y
Using inverse trigonometry properties, we get
{{\tan }^{-1}}x+{{\tan }^{-1}}y ={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)
We have,
{{\sin }^{-1}}\left( \cos x \right)
={{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{2}-x \right) \right)
=\dfrac{\pi }{2}-x\,\,\,\,\,\,\,\,\,\,\,\,
Please disable the adBlock and continue. Thank you.