Explanation
We need to find value of sin−1(2√23)+sin−1(13)
Let sin−1(2√23)=t
⇒sint=2√23sin2t+cos2t=1(2√23)2+cos2t=1⇒cos2t=19⇒cost=13⇒t=cos−1(13)
Substituting t
⇒cos−1(13)+sin−1(13)=π2
So, option C is correct.
Given that ,f(x)=tan−1x ….(1)
Put x=y in equation (1) we get
f(y)=tan−1y ….(2)
Add equation (1) and (2)
f(x)+f(y)=tan−1x+tan−1y
Using inverse trigonometry properties, we get
tan−1x+tan−1y =tan−1(x+y1−xy)
We have,
sin−1(cosx)
=sin−1(sin(π2−x))
=π2−x
Please disable the adBlock and continue. Thank you.