MCQExams
0:0:2
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 11 - MCQExams.com
CBSE
Class 12 Commerce Maths
Inverse Trigonometric Functions
Quiz 11
The value of
t
a
n
2
(
s
e
c
−
1
3
)
+
c
o
t
2
(
c
o
s
e
c
−
1
4
)
t
a
n
2
(
s
e
c
−
1
3
)
+
c
o
t
2
(
c
o
s
e
c
−
1
4
)
is -
Report Question
0%
9
0%
16
0%
25
0%
23
c
o
s
−
1
[
2
c
o
t
−
1
(
√
2
−
1
)
]
c
o
s
−
1
[
2
c
o
t
−
1
(
√
2
−
1
)
]
is equal to
Report Question
0%
√
2
−
1
√
2
−
1
0%
1
−
√
2
1
−
√
2
0%
π
/
4
π
/
4
0%
3
π
/
4
3
π
/
4
If
cot
−
1
(
√
cos
a
)
−
tan
−
1
(
√
cos
a
)
=
x
,
cot
−
1
(
√
cos
a
)
−
tan
−
1
(
√
cos
a
)
=
x
,
then
sin
x
sin
x
is equal to
Report Question
0%
cot
a
2
cot
a
2
0%
cot
2
a
2
cot
2
a
2
0%
tan
2
a
2
tan
2
a
2
0%
tan
a
tan
a
t
a
n
−
1
(
√
1
+
x
2
+
√
1
+
−
x
2
√
1
+
x
2
−
√
1
−
x
2
)
,
[
x
]
≤
1
√
2
,
i
s
e
q
u
a
l
t
o
t
a
n
−
1
(
√
1
+
x
2
+
√
1
+
−
x
2
√
1
+
x
2
−
√
1
−
x
2
)
,
[
x
]
≤
1
√
2
,
i
s
e
q
u
a
l
t
o
Report Question
0%
1
2
c
o
s
−
1
x
2
1
2
c
o
s
−
1
x
2
0%
π
4
−
1
2
c
o
s
−
1
x
2
π
4
−
1
2
c
o
s
−
1
x
2
0%
π
4
+
1
2
c
o
s
−
1
x
2
π
4
+
1
2
c
o
s
−
1
x
2
0%
π
2
−
1
2
c
o
s
−
1
x
2
π
2
−
1
2
c
o
s
−
1
x
2
If
s
i
n
−
1
x
+
s
i
n
−
1
y
=
2
π
3
s
i
n
−
1
x
+
s
i
n
−
1
y
=
2
π
3
, then cos^{-1}x+cos^{-1}y$$ equal to
Report Question
0%
2
π
3
2
π
3
0%
π
3
π
3
0%
π
6
π
6
0%
π
π
t
a
n
−
1
(
1
−
x
2
−
1
x
2
)
+
s
i
n
−
1
(
x
2
+
1
x
2
−
1
)
t
a
n
−
1
(
1
−
x
2
−
1
x
2
)
+
s
i
n
−
1
(
x
2
+
1
x
2
−
1
)
is equal to
Report Question
0%
π
2
π
2
0%
π
4
π
4
0%
3
π
4
3
π
4
0%
π
π
If
c
o
t
1
1
x
+
c
o
t
−
1
1
y
+
c
o
t
−
1
1
z
=
π
2
c
o
t
1
1
x
+
c
o
t
−
1
1
y
+
c
o
t
−
1
1
z
=
π
2
then.....
Report Question
0%
x+y+z=xyz
0%
xy+yz+zx=1
0%
x+y+z=1
0%
x
2
+
y
2
+
z
2
=
1
x
2
+
y
2
+
z
2
=
1
If
cos
−
1
(
2
x
2
−
1
)
=
2
π
−
2
cos
−
1
x
,
cos
−
1
(
2
x
2
−
1
)
=
2
π
−
2
cos
−
1
x
,
then
Report Question
0%
x
∈
[
−
1
,
0
]
x
∈
[
−
1
,
0
]
0%
x
∈
[
0
,
1
]
x
∈
[
0
,
1
]
0%
x
∈
[
0
,
1
√
2
]
x
∈
[
0
,
1
√
2
]
0%
x
∈
[
−
1
√
2
,
1
√
2
]
x
∈
[
−
1
√
2
,
1
√
2
]
4
s
i
n
−
1
x
+
c
o
s
−
1
x
=
π
4
s
i
n
−
1
x
+
c
o
s
−
1
x
=
π
then x=
Report Question
0%
−
1
4
−
1
4
0%
1
4
1
4
0%
−
1
2
−
1
2
0%
1
2
1
2
Evaluate :
sin
(
1
2
cos
−
1
4
5
)
sin
(
1
2
cos
−
1
4
5
)
Report Question
0%
1
√
5
1
√
5
0%
2
√
5
2
√
5
0%
1
√
10
1
√
10
0%
2
√
10
2
√
10
If
α
=
2
tan
−
1
(
√
3
−
2
√
2
)
+
sin
−
1
(
1
√
6
−
√
2
)
,
β
=
cot
−
1
(
√
3
−
2
)
+
1
8
sec
−
1
(
−
2
)
α
=
2
tan
−
1
(
√
3
−
2
√
2
)
+
sin
−
1
(
1
√
6
−
√
2
)
,
β
=
cot
−
1
(
√
3
−
2
)
+
1
8
sec
−
1
(
−
2
)
&
γ
=
tan
−
1
1
√
2
+
cos
−
1
1
√
3
γ
=
tan
−
1
1
√
2
+
cos
−
1
1
√
3
, then?
Report Question
0%
α
=
β
α
=
β
0%
α
+
β
=
3
γ
α
+
β
=
3
γ
0%
4
(
β
−
γ
)
=
α
4
(
β
−
γ
)
=
α
0%
β
=
γ
β
=
γ
If
cos
−
1
x
>
sin
−
1
x
cos
−
1
x
>
sin
−
1
x
, then find the range of x
Report Question
0%
−
1
≤
x
<
1
√
2
−
1
≤
x
<
1
√
2
0%
0
≤<
1
√
2
0
≤
<
1
√
2
0%
1
√
2
<
x
≤
1
1
√
2
<
x
≤
1
0%
x
>
0
x
>
0
Explanation
We have
cos
−
1
x
>
sin
−
1
x
cos
−
1
x
>
sin
−
1
x
⇒
π
2
−
sin
−
1
x
>
sin
−
1
x
⇒
π
2
−
sin
−
1
x
>
sin
−
1
x
⇒
π
2
>
2
sin
−
1
x
⇒
π
2
>
2
sin
−
1
x
⇒
π
4
>
sin
−
1
x
⇒
π
4
>
sin
−
1
x
⇒
sin
−
1
x
<
π
4
⇒
sin
−
1
x
<
π
4
.......
(
1
)
(
1
)
But
−
π
2
≤
sin
−
1
x
<
π
2
−
π
2
≤
sin
−
1
x
<
π
2
........
(
2
)
(
2
)
From
(
1
)
(
1
)
and
(
2
)
(
2
)
we have
−
π
2
≤
sin
−
1
x
<
π
4
−
π
2
≤
sin
−
1
x
<
π
4
⇒
sin
(
−
π
2
)
≤
x
<
sin
π
4
⇒
sin
(
−
π
2
)
≤
x
<
sin
π
4
⇒
−
1
≤
x
<
1
√
2
⇒
−
1
≤
x
<
1
√
2
If
cot
−
1
(
−
1
5
)
=
x
cot
−
1
(
−
1
5
)
=
x
then
sin
x
=
sin
x
=
?
Report Question
0%
1
√
26
1
√
26
0%
5
√
26
5
√
26
0%
1
√
24
1
√
24
0%
n
o
n
e
o
f
t
h
e
s
e
n
o
n
e
o
f
t
h
e
s
e
The value of
tan
−
1
(
x
cos
θ
1
−
x
sin
θ
)
−
cot
−
1
(
cos
θ
x
−
sin
θ
)
tan
−
1
(
x
cos
θ
1
−
x
sin
θ
)
−
cot
−
1
(
cos
θ
x
−
sin
θ
)
is
Report Question
0%
2
θ
2
θ
0%
θ
θ
0%
θ
2
θ
2
0%
independent of
θ
θ
t
a
n
−
1
(
c
1
x
−
y
c
1
y
+
x
)
+
t
a
n
−
1
(
c
2
−
c
1
1
+
c
2
c
1
)
+
t
a
n
−
1
(
c
3
−
c
2
1
+
c
3
c
2
)
+
t
a
n
−
1
(
c
1
x
−
y
c
1
y
+
x
)
+
t
a
n
−
1
(
c
2
−
c
1
1
+
c
2
c
1
)
+
t
a
n
−
1
(
c
3
−
c
2
1
+
c
3
c
2
)
+
.....
+
t
a
n
−
1
(
1
c
n
)
=
+
t
a
n
−
1
(
1
c
n
)
=
Report Question
0%
t
a
n
−
1
(
y
/
x
)
t
a
n
−
1
(
y
/
x
)
0%
t
a
n
−
1
x
y
t
a
n
−
1
x
y
0%
−
t
a
n
−
1
(
x
y
)
−
t
a
n
−
1
(
x
y
)
0%
none of these
Let
|
t
a
n
−
1
x
t
a
n
−
1
2
x
t
a
n
−
1
3
x
t
a
n
−
1
3
x
t
a
n
−
1
x
t
a
n
−
1
2
x
t
a
n
−
1
2
x
t
a
n
−
1
3
x
t
a
n
−
1
x
|
= 0, then the number of values of x satisfying the equation is
Report Question
0%
1
0%
2
0%
3
0%
4
Choose the correct answer :
tan
−
1
√
3
−
cot
−
1
(
−
√
3
)
is equal to
Report Question
0%
π
0%
−
π
2
0%
0
0%
2
√
3
0:0:2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
0
Answered
1
Not Answered
16
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page