Explanation
Given, \tan^{-1}\left (\displaystyle \frac{1}{2}\tan 2A \right )+\tan^{-1}\left ( \cot A\right )+\tan^{-1}\left ( \cot ^{3}A\right )
=\tan^{-1}\left(\dfrac{\tan A}{1-\tan^{2}A}\right)+\tan^{-1}\left(\dfrac{\cot A+\cot^{3}A}{1-\cot^{4}A}\right)
=\tan^{-1}\left(\dfrac{\tan A}{1-\tan^{2}A}\right)+\tan^{-1}\left(\dfrac{\cot A}{1-\cot^{2}A}\right)
=\tan^{-1}\left(\dfrac{\tan A}{1-\tan^{2}A}\right)+\tan^{-1}\left(\dfrac{\tan A}{\tan^{2}-1}\right)
=\tan^{-1}\left(\dfrac{\tan A}{1-\tan^{2}A}\right)-\tan^{-1}\left(\dfrac{\tan A}{1-\tan^{2}A}\right)
=0
=\pi
=4\left(\dfrac{\pi}{4}\right)
=4\tan^{-1}\left(1\right)
Please disable the adBlock and continue. Thank you.