Processing math: 1%

CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 2 - MCQExams.com

Range of sin1xcos1x is
  • [3π2,π2]
  • [5π3,π3]
  • [3π2,π]
  • [0,π]
ABC is a triangular park with AB=AC=100 cm. A clock tower is situated at the midpoint of BC. The angles of elevation of the top of the tower from A and B are cot ^{-1}3.2 and cosec ^{-1} 2.6. The height of the tower is
  • 25 mt
  • 50 mt
  • 100 mt
  • 50\sqrt{2} mt
A vertical pole more than 100ft high consists of two portions, the lower being  1/3 of the whole. lf the upper portion subtends an angle \tan^{-1}(1/2) at a point distant 40 ft. from the foot of the pole, the height of the pole is
  • 105
  • 120
  • 135
  • 150
If \theta\equiv sin^{-1}x+cos^{-1}x-tan^{-1}x,\ 0\leq x\leq 1, then the smallest interval in which \theta lies is given by ?
  • \displaystyle \frac{\pi}{4}\leq\theta\leq\frac{\pi}{2}
  • -\displaystyle \frac{\pi}{4}\leq\theta\leq 0
  • 0\displaystyle \leq\theta\leq\frac{\pi}{4}
  • \displaystyle \frac{\pi}{2}\leq\theta\leq\frac{3\pi}{4}
The value of sin \sin \left\{ {{{\tan }^{ - 1}}\left( {\tan \frac{{7\pi }}{6}} \right) + {{\cos }^{ - 1}}\left( {\cos \frac{{7\pi }}{3}} \right)} \right\} is
  • 0
  • 1
  • -1
  • None of these
If \alpha \epsilon \left ( 0,\dfrac{\pi}{2}\right ), then the value of \tan ^{-1}(\cot \alpha )-\cot ^{-1}(\tan \alpha )+\sin ^{-1}(\sin \alpha )-\cos ^{-1}(\cos \alpha ) is equal to
  • 2\alpha
  • \pi +\alpha
  • 0
  • \pi -2\alpha
If \tan ^{-1}\dfrac{\sqrt{1+x^{2}}-1}{x}=4^{\circ},then
  • x=\tan 2^{\circ}
  • x=\tan 4^{\circ}
  • x=\tan (1/4)^{\circ}
  • x=\tan 8^{\circ}
If {\cot ^{ - 1}}x + {\cot ^{ - 1}}y + {\cot ^{ - 1}}z = \dfrac{\pi }{2}  then x+y+z equals
  • xyz
  • xy+yz+zx
  • 2xyz
  • None of these
f(x)=tan^{-1}(sin  x+ cos  x) is an increasing function in
  • \displaystyle (0, \frac{\pi}{4})
  • \displaystyle (0, \frac{\pi}{2})
  • \displaystyle (\frac{-\pi}{4}, \frac{\pi}{4})
  • None of these
If sin\left\{ \sin ^{ -1 }{ \cfrac { 1 }{ 5 }  } +\cos ^{ -1 }{ x }  \right\} =1, then x is equal to
  • 1
  • 0
  • \displaystyle\frac{ 4 }{ 5 }
  • \displaystyle\frac{ 1 }{ 5 }
If 0\le x\le 1, then \tan { \left\{ \cfrac { 1 }{ 2 } \sin ^{ -1 }{ \cfrac { 2x }{ 1+{ x }^{ 2 } } +\cfrac { 1 }{ 2 } \cos ^{ -1 }{ \cfrac { 2x }{ 1+{ x }^{ 2 } }  }  }  \right\}  }
  • 1
  • 0
  • \cfrac { 2x }{ 1+{ x }^{ 2 } }
  • x
\tan { \left( \cot ^{ -1 }{ x }  \right)  } is equal to

  • \cfrac { \pi }{ 2 } -x
  • \cot { \left( \tan ^{ -1 }{ x } \right) }
  • \tan { x }
  • none of these
If \displaystyle x takes negative permissible value, then \displaystyle \sin ^{-1}x is equal to
  • \displaystyle \cos ^{-1}\sqrt{1-x^{2}}
  • \displaystyle -\cos ^{-1}\sqrt{1-x^{2}}
  • \displaystyle \cos ^{-1}\sqrt{x^{2}-1}
  • \displaystyle \pi -\cos ^{-1}\sqrt{1-x^{2}}
\sec ^{ 2 }{ \left( \tan ^{ -1 }{ 2 }  \right) +cosec ^{ 2 }{ \left( \cot ^{ -1 }{ 3 }  \right)  }  } =
  • 5
  • 10
  • 15
  • 20
The range of the function, \displaystyle f\left ( x \right ) = \left ( 1 + \sec^{-1} x \right ) \left ( 1 + \cos^{-1} x \right ) is
  • \displaystyle \left ( -\infty ,\: \infty \right )
  • \displaystyle \left (-\infty, \: 0 \right ] \cup \left [4, \: \infty \right )
  • \displaystyle \left \{ 0, \: \left ( 1 + \pi \right )^{2} \right \}
  • \displaystyle \left [ 1, \: \left ( 1 + \pi \right )^{2} \right ]
Number of real value of x satisfying the equation, \displaystyle \arctan \sqrt{x \left ( x+1 \right )} + \arcsin \sqrt{x \left ( x+1 \right ) + 1} = \frac{\pi}{2} is
  • 0
  • 1
  • 2
  • more than 2
Range of \displaystyle f\left( x \right)=\sin ^{ -1 }{ x } +\tan ^{ -1 }{ x } +\cos ^{ -1 }{ x } is
  • \displaystyle \left[ 0,\pi  \right]
  • \displaystyle \left[ \frac { \pi  }{ 4 } ,\frac { 3\pi  }{ 4 }  \right]
  • \displaystyle \left[ -\pi ,2\pi  \right]
  • None of these
If \displaystyle f\left ( x \right ) = \sin^{-1}x + \sec^{-1} x is defined, then which of the following value/values is/are in its range?
  • \displaystyle \dfrac{- \pi}{ 2}
  • \displaystyle \dfrac{\pi}{ 2}
  • \displaystyle \pi
  • \displaystyle \dfrac{3\pi}{ 2}
\displaystyle \alpha = \sin^{-1} \left ( \cos \left ( \sin^{-1} x \right ) \right ) and \displaystyle \beta = \cos^{-1} \left ( \sin \left ( \cos^{-1} x \right ) \right ) then:
  • \displaystyle \tan \alpha = \cot \beta
  • \displaystyle \tan \alpha = - \cot \beta
  • \displaystyle \tan \alpha = \tan \beta
  • \displaystyle \tan \alpha = - \tan \beta
The value of \displaystyle sin^{-1}(cos(cos^{-1}(cos\:x)+sin^{-1}(sin\:x))), where \displaystyle x\:\epsilon\:\left ( \frac{\pi}{2},\pi \right ), is equal to 
  • \displaystyle \frac{\pi}{2}
  • -\pi
  • \pi
  • \displaystyle -\frac{\pi}{2}
There exists a positive real number x satisfying \displaystyle \cos \left ( \tan^{-1} x \right ) = x. The value of \displaystyle \cos^{-1} \left ( \frac{x^{2}}{2} \right ) is
  • \displaystyle \frac{\pi}{10}
  • \displaystyle \frac{\pi}{5}
  • \displaystyle \frac{2 \pi}{5}
  • \displaystyle \frac{4 \pi}{5}
If \displaystyle \alpha , \: \beta  \left ( \alpha \: < \: \beta \right ) are the roots of the equation \displaystyle 6x^{2} + 11x + 3 = 0 then which of the following are real?
  • \displaystyle \cos^{-1} \alpha
  • \displaystyle \sin^{-1} \beta
  • \displaystyle cosec^{-1} \alpha
  • Both \displaystyle \cot^{-1} \alpha and \displaystyle \cot^{-1} \beta
The value of \sin ^{ -1 }{ \left( \sin { 10 }  \right)  } is

  • 10
  • 10-3\pi
  • 3\pi -10
  • none of these
Which one of the following statement is meaningless?
  • \displaystyle \cos^{-1} \left ( ln \left ( \frac{2e + 4}{3} \right ) \right )
  • \displaystyle cosec^{-1} \left ( \frac{\pi}{3} \right )
  • \displaystyle \cot^{-1} \left ( \frac{\pi}{2} \right )
  • \displaystyle \sec^{-1} \left ( \pi \right )
The value of \displaystyle tan(sin^{-1}(cos(sin^{-1}x)))tan(cos^{-1}(sin(cos^{-1}x))), where x\:\epsilon\:(0,1), is equal to 
  • 0
  • 1
  • -1
  • none\:of\:these
\displaystyle sec^{2}(tan^{-1}2)+cosec^{2}(cot^{-1}3) is equal to 
  • 5
  • 13
  • 15
  • 6
Which of the following is the solution set of the equation \displaystyle 2cos^{-1}x=cot^{-1}\left(\frac{2x^{2}-1}{2x\sqrt{1-x^{2}}}\right)
  • (0,1)
  • (-1,1)-\left\{0\right\}
  • (-1,0)
  • [-1,1]
The value of \displaystyle sin^{-1}\left[x\sqrt{1-x}-\sqrt{x}\sqrt{1-x^{2}}\right] is equal to
  • sin^{-1}x+sin^{-1}\sqrt{x}
  • sin^{-1}x-sin^{-1}\sqrt{x}
  • sin^{-1}\sqrt {x}-sin^{-1}x
  • 0
The number of integer x satisfying \displaystyle sin^{-1}|x-2|+cos^{-1}(1-|3-x|)=\frac{\pi}{2} is
  • 1
  • 2
  • 3
  • 4
If x_{ 1 }=2\: tan^{ -1 }\left( \frac { 1+x }{ 1-x }  \right) ,x_{ 2 }=sin^{ -1 }\left( \frac { 1-x^{ 2 } }{ 1+x^{ 2 } }  \right) , where x_1,x_2\:\epsilon\:(0,1), then 2\left( x_{ 1 }+x_{ 2 } \right)  is equal  to
  • 0
  • 2\pi
  • \pi
  • none\:of\:these
If \displaystyle f\left ( x \right ) = \left ( \sin^{-1} x \right )^{2} + \left ( \cos^{-1} x \right )^{2}, then
  • \displaystyle f\left ( x \right ) has the least value of \displaystyle \frac{\pi^{2}}{8}
  • \displaystyle f\left ( x \right ) has the greatest value of \displaystyle \frac{5 \pi^{2}}{8}
  • \displaystyle f\left ( x \right ) has the least value of \displaystyle \frac{\pi^{2}}{16}
  • \displaystyle f\left ( x \right ) has the greatest value of \displaystyle \frac{5 \pi^{2}}{4}
  • Both the statements are TRUE and STATEMENT 2 is the correct explanation of STATEMENT 1
  • Both the statements are TRUE and STATEMENT 2 is NOT the correct explanation of STATEMENT 1
  • STATEMENT 1 is TRUE and STATEMENT 2 is FALSE
  • STATEMENT 1 is FALSE and STATEMENT 2 is TRUE
\displaystyle \tan^{-1}\left [ \cfrac{\cos\:x}{1+\sin\:x} \right ] is equal to 
  • \displaystyle \frac{\pi}{4}-\frac{x}{2},for\:x\:\epsilon\:\left(-\frac{\pi}{2},\frac{3\pi}{2}\right)
  • \displaystyle \frac{\pi}{4}-\frac{x}{2},for\:x\:\epsilon\:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)
  • \displaystyle \frac{\pi}{4}-\frac{x}{2},for\:x\:\epsilon\:\left(\frac{3\pi}{2},\frac{5\pi}{2}\right)
  • \displaystyle \frac{\pi}{4}-\frac{x}{2},for\:x\:\epsilon\:\left(-\frac{3\pi}{2},-\frac{3\pi}{2}\right)
The value of \displaystyle sin^{-1}(x^{2}-4x+6)+cos^{-1}(x^{2}-4x+6) for all x\:\epsilon\:R is
  • \displaystyle \frac{\pi}{2}
  • \pi
  • 0
  • none of these
Number of solutions of the equation  \sin \left ( \displaystyle \frac{1}{3}\cos^{-1}x \right )=1 are
  • only one
  • no solution
  • only three
  • at least two
The value of \displaystyle \sin ^{-1}\left ( \sin 2 \right ) is?
  • 2+n\pi
  • 2-\pi
  • -2+\pi
  • 2-2n\pi
The equation \displaystyle 3cos^{-1}x-\pi\:x-\frac{\pi}{2}=0 has
  • one negative solution
  • one positive solution
  • no solution
  • more than one solution
If  \sin^{-1}\left ( x^{2}-7x+12 \right )=m\pi ,\:\forall \:n\:\:\in \:I , then x =
  • -4
  • 4
  • 3
  • -3
The value of \tan^{-1}\left (\displaystyle \frac{1}{2}\tan 2A \right )+\tan^{-1}\left ( \cot A\right )+\tan^{-1}\left ( \cot ^{3}A\right ) , for 0< A< \pi /4 , is :
  • \tan^{-1}2
  • \tan^{-1}\left ( \cot A \right )
  • 4\:tan^{-1}\:\left ( 1 \right )
  • 2\tan^{-1}\:\left ( 2 \right )
There exists a positive real number x satisfying \displaystyle \cos(\tan^{-1}x)=x. Then the value of \displaystyle \cos^{-1}\left(\frac{x^{2}}{2}\right) is 
  • \displaystyle \frac{\pi}{10}
  • \displaystyle \frac{\pi}{5}
  • \displaystyle \frac{2\pi}{5}
  • \displaystyle \frac{4\pi}{5}
The number of real solution of the equation \displaystyle \sqrt{1+cos2x}=\sqrt{2}sin^{-1}(sin\:x),-\pi< x\leq \pi, is
  • 0
  • 1
  • 2
  • infinite
The equation \sin ^{-1}x=2\sin ^{-1}a , has a solution for
  • \forall \:R
  • \displaystyle \left | a \right |< \frac{1}{2}
  • \displaystyle \left | a \right |\geq \frac{-1}{2}
  • \displaystyle \frac{-1}{\sqrt{2}}\leq a\leq \frac{1}{\sqrt{2}}
If \displaystyle \sin ^{-1}x-\sin ^{-1}y= \frac{\pi }{2} ,then
  • x^{2}+y^{2}= 1
  • y= -\sqrt{1-x^{2}}, \:0\leq x\leq 1,-1\leq y\leq 0
  • y= \sqrt{1-x^{2}}, \: \left | x \right |< 1
  • None of these
Let f(x) =e^{\displaystyle\cos^{-1}\sin \left ( x+\displaystyle\frac{\pi }{3} \right )}, then f\left (\displaystyle \frac{8\pi }{9} \right )  equals
  • e^{\displaystyle\frac{7\pi }{12}}
  • e^{\displaystyle\frac{13\pi }{18}}
  • e^{\displaystyle\frac{5\pi }{18}}
  • e^{\displaystyle\frac{\pi }{12}}
If \displaystyle \cot ^{-1}\left [ \left ( \cos \alpha  \right )^{1/2} \right ]+\left [ \tan ^{-1}\left ( \cos \alpha  \right )^{1/2} \right ]=x , then \sin x equals 
  • 1
  • \displaystyle \cot ^{2}\left ( \frac{\alpha }{2} \right )
  • \tan \alpha
  • \displaystyle \cot\left ( \frac{\alpha }{2} \right )
\displaystyle \sin ^{-1}\left ( a-\frac{a^{2}}{3}+\frac{a^{3}}{9}\cdots \infty  \right )+\cos ^{-1}\left ( 1+b+b^{2}+b^{3}+\cdots \infty  \right )= \frac{\pi }{2} , when
  • \displaystyle a= 1, b= -\frac{1}{3}
  • \displaystyle a= -\frac{1}{6}, b= \frac{1}{2}
  • \displaystyle a= \frac{1}{6}, b= \frac{1}{2}
  • None of these
The domain of \sin ^{-1}[x], where [x] is greatest integer function, given by
  • \left [ -1,1 \right ]
  • \left [ -1,2 \right )
  • \left \{ -1,0,1 \right \}
  • None of these
If \cos^{-1}x+\cos^{-1}y+\cos^{-1}z= 3\pi , then value of \displaystyle \sum xy equals
  • -3
  • 0
  • 3
  • -1
The domain of f(x) =\displaystyle \frac{\sin ^{-1}x}{x} is
  • \left [ -1,1 \right ]
  • \left \{ 0 \right \}
  • \left [-1,0 \right )
  • None of these
Number of triplets \left ( x, y, z \right ) satisfying \sin ^{-1}x+\sin ^{-1}y+\cos ^{-1}z=2\pi is
  • 1
  • 0
  • 2
  • \infty
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers