Loading [MathJax]/extensions/TeX/boldsymbol.js

CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 3 - MCQExams.com

The number of solutions of the equation  2sin1(x2x+1)+cos1(x2x)=3π2 is
  • 0
  • Infinite
  • 2
  • 4
The value of tan1(sin21cos2) is equal to
  • π21
  • 2π2
  • 1π4
  • π41
The value of cos1(cos12)sin1(sin14) is
  • 0
  • 8π26
  • 4π+2
  • None of these
Find the value of x if sin(arcsinx)=24
  • 24
  • 77
  • 22
  • 223
If tan1(ax)+tan1(bx)=π2, then x is equal to :
  • ab
  • ab
  • ba
  • ab
Given 0x12, then the value of tan[sin1{x2+1x22}] is.
  • 1x2+x1x2x
  • 1x2x1x2+x
  • x+1x2x1x2
  • x1x2x+1x2
The trigonometric equation sin1x=2sin12a has a real solution if
  • |a|>12
  • 122<|a|<12
  • |a|>122
  • |a|122
The domain of the function f(x)=cos1(1|x|2) is
  • (3,3)
  • [3,3]
  • (,3)(3,)
  • (,3)(3,)
The trigonometric equation sin1x=2sin12a has a real solution, if
  • |a|>12
  • 122<|a|<12
  • |a|>122
  • |a|122
If θ=sin1x+cos1xtan1x,1x<, then the smallest interval in which θ lies is
  • π2θ3π4
  • 0θπ4
  • π4θ0
  • π4θπ2
tan[3tan1(15),π4] is equal to
  • 1346
  • 1146
  • 746
  • 423
  • 946
If tan1x+tan1y=2π3, then cot1x+cot1y is equal to
  • π2
  • 12
  • π3
  • 32
  • π
If 2sinh1(a1a2)=log(1+X1X) then X=
  • a
  • 1a
  • 1a2
  • 11a2
The value of x satisfying the equation
tan1x+tan1(23)=tan1(74) is equal to
  • 12
  • 12
  • 32
  • 13
  • 13
The value of tan{12cos1(53)} is
  • 3+52
  • 3+5
  • 12(35)
  • None of these
If ab>1,bc>1 and ca>1, then the value of cot1(ab+1ab)+cot1(bc+1bc)+cot1(ca+1ca) is
  • 1
  • cot1(a+b+c)
  • cot1(abc)
  • 0
  • tan1(a+b+c)
If cos1(1x21+x2)+cos1(1y21+y2)=π2, where xy<1, then
  • xyxy=1
  • xy+xy=1
  • x+yxy=1
  • x+y+xy=1
  • yxxy=1
If tan1(x)+cos1(12)=π2, them the value of x is
  • 3
  • 13
  • 13
  • 3
  • 1
cos1(cos(7π5)) is equal to
  • 3π5
  • 2π5
  • 7π5
  • 7π5
  • 2π5
If the non-zero numbers x,y,z are AP and tan1x,tan1y,tan1z are also in AP, then
  • xy=yz
  • z2=xy
  • x=y=z
  • x2=yz
The value of cos(sin1(23)) is equal to :
  • 35
  • 53
  • 53
  • 53
  • 53
If two angles of a triangle are tan1(2) and tan1(3), then the third angle is
  • π4
  • π6
  • π3
  • π2
If sin[cot1(x+1)]=cos[tan1x], then x is equal to
  • 12
  • 12
  • 0
  • 92
The sum of cot12+cot18+cot118....=πλ, then λ is
  • 2
  • 4
  • 6
  • 8
The domain of function f(x)=sin15x is
  • (15,15)
  • [15,15]
  • R
  • (0,15)
tan1(x+1+x2) =
  • π412tan1x
  • 12tan1x
  • π212tan1x
  • π4+12tan1x
If 2sinh1(a1a2)=log(1+x1x), then x=
  • a
  • 1a
  • 1a2
  • 11a2
The value of sec2(tan12)+cosec2(cot13)= ____
  • 6
  • 15
  • 13
  • 25

The value of cot1[1sinx+1+sinx(1sinx)(1+sinx)] is

  • πx
  • 2πx
  • x/2
  • π12x

sin12x=cos1x1 holds for all real x.
  • True
  • False
The value of cos1(1)sin1(1) is
  • π
  • π2
  • 3π2
  • 3π2
Range of the function f(x)=4tan1x+3sin1x+sec1x is
  • {3π2,5π2}
  • {3π2,5π2}
  • {3π2,5π2}
  • {3π2,5π2}
If y=sec(tan1x) then, dydx at x=1 is equal to
  • 12
  • 1
  • 2
  • 12
Number of solution of the equation cos1(1x)2cos1x=π2 is 
  • 3
  • 2
  • 1
  • 0
 tan1x+cot1x=π2,xR
  • True
  • False
The value of k if the equation kx+ sin1(x28x+17)+ cos1(x28x+17)=9π2 has atleast one solution is 
  • 2π
  • π
  • 1
  • π2
The value of cot(π42cot13), is:
  • 1
  • 7
  • 1
  • None of these
tan1(14)+tan1(29) is equal to
  • 12 cos1(35)
  • 12sin1(45)
  • tan1(12)
  • cos1(89)
If sin1x+sin1y+sin1z=π, then the value of x1x2+y1y2+z1z2 will be:
  • 2xyz
  • xyz
  • 12xyz
  • 13xyz
nm=1tan1(2mm4+m2+2) is equal to
  • tan1(n2+n+1)π4
  • tan1(n2+n+1)+π4
  • tan1(n2+n1)π4
  • tan1(n2n1)π4
If asin1xbcos1x=c, then the value of asin1x+bcos1x (whenever exists) is equal to
  • 0
  • πab+c(ba)a+b
  • π2
  • πab+c(ab)a+b
If tan1a+xa+tan1axa=π6, then x2=?
  • 23a
  • 3a
  • 23a2
  • None of these
The value of sin1(1213)+cos1(45)+tan1(6316)
  • 2π3
  • π
  • 2π
  • 3π
Solve: sin145+sin1513+sin11665
  • π2
  • π4
  • π6
  • π8
If sin1(xx22+x34....)+cos1(x2x42+x64....)=π2 and 0<x<2 then x =
  • 12
  • 1
  • 12
  • 1
If x=cos1(23)+tan1(17) then x=
  • cos1{145350}
  • cos1{105350}
  • cos1{1415350}
  • None of these
If sin1x=π6 then find x
  • 32
  • 12
  • 1
  • None of these
If \cos^{ - 1}x + {\cos ^{ - 1}}y = \dfrac{\pi }{2} and \tan^{ - 1}x - \tan^{ - 1}y = 0 then  value of {x^2} + ax + {y^2} is where a= \dfrac{1}{\sqrt{2}} 
  • 0
  • - \dfrac{1}{2}
  • \dfrac{1}{2}
  • \dfrac{3}{2}
\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {\dfrac{{2r}}{{1 - {r^2} + {r^4}}}} \right)} is equal to 
  • \dfrac{\pi} {4}
  • \dfrac{\pi} {2}
  • \dfrac{{3\pi }}{4}
  • none of these
\tan \left[\dfrac{\pi}{4} + \dfrac{1}{2} \cos^{-1} \left(\dfrac{5}{7} \right) \right] + \cot \left[\dfrac{\pi}{4} + \dfrac{1}{2} \cos^{-1} \left(\dfrac{5}{7}\right) \right] is equal to 
  • \dfrac{5}{7}
  • \dfrac{10}{7}
  • \dfrac{14}{5}
  • \dfrac{7}{5}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers