Processing math: 1%

CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 3 - MCQExams.com

The number of solutions of the equation  2sin1(x2x+1)+cos1(x2x)=3π2 is
  • 0
  • Infinite
  • 2
  • 4
The value of \displaystyle \tan^{-1} \left( \frac{\sin{  2} - 1}{\cos {2}} \right ) is equal to
  • \displaystyle \frac{\pi}{2} - 1
  • \displaystyle 2 - \frac{\pi}{2}
  • \displaystyle 1- \frac{\pi}{4}
  • \displaystyle \frac{\pi}{4} - 1
The value of \cos^{-1} (\cos  12) - \sin^{-1} (\sin  14) is
  • 0
  • 8 \pi - 26
  • 4 \pi + 2
  • None of these
Find the value of x if \sin (arc \sin x) = \dfrac {\sqrt {2}}{4}
  • \dfrac {\sqrt {2}}{4}
  • \dfrac {\sqrt {7}}{7}
  • \dfrac {\sqrt {2}}{2}
  • \dfrac {2\sqrt {2}}{3}
If \displaystyle \tan^{-1}{\left(\frac{a}{x}\right)}+\tan^{-1}{\left(\frac{b}{x}\right)}=\frac{\pi}{2}, then x is equal to :
  • ab
  • \dfrac{a}{b}
  • \dfrac{b}{a}
  • \sqrt{ab}
Given 0 \leq x \leq \frac{1}{2}, then the value of \tan\left [ \sin^{-1}\left \{ \dfrac{x}{\sqrt{2}}+\dfrac{\sqrt{1-x^2}}{\sqrt{2}} \right \} \right ] is.
  • \dfrac{\sqrt{1-x^2}+x}{\sqrt{1-x^2}-x}
  • \dfrac{\sqrt{1-x^2}-x}{\sqrt{1-x^2}+x}
  • \dfrac{x+\sqrt{1-x^2}}{x-\sqrt{1-x^2}}
  • \dfrac{x-\sqrt{1-x^2}}{x+\sqrt{1-x^2}}
The trigonometric equation \sin^{-1}x = 2\sin^{-1}2a has a real solution if
  • |a| > \dfrac {1}{\sqrt {2}}
  • \dfrac {1}{2\sqrt {2}} < |a| < \dfrac {1}{\sqrt {2}}
  • |a| > \dfrac {1}{2\sqrt {2}}
  • |a| \leq \dfrac {1}{2\sqrt {2}}
The domain of the function f(x)=\sqrt{cos^{-1}\begin{pmatrix}\dfrac{1-|x|}{2}\end{pmatrix}} is
  • (-3,\,3)
  • [-3,\,3]
  • (-\infty,\,-3)\cup(-3,\,\infty)
  • (-\infty,\,-3)\cup(3,\,\infty)
The trigonometric equation \sin^{-1}x=2\, \sin^{-1}2a has a real solution, if
  • |a| > \dfrac{1}{\sqrt{2}}
  • \dfrac{1}{2\sqrt{2}} < |a| < \dfrac{1}{\sqrt{2}}
  • |a| > \dfrac{1}{2\sqrt{2}}
  • |a| \le \dfrac{1}{2\sqrt{2}}
If \theta =\sin ^{ -1 }{ x } +\cos ^{ -1 }{ x } -\tan ^{ -1 }{ x } ,1\le x<\infty , then the smallest interval in which \theta lies is
  • \cfrac { \pi }{ 2 } \le \theta \le \cfrac { 3\pi }{ 4 }
  • 0\le \theta \le \cfrac { \pi }{ 4 }
  • -\cfrac { \pi }{ 4 } \le \theta \le 0
  • \cfrac { \pi }{ 4 } \le \theta \le \cfrac { \pi }{ 2 }
\tan \left [3\tan^{-1}\left (\dfrac {1}{5}\right ), -\dfrac {\pi}{4}\right ] is equal to
  • -\dfrac {13}{46}
  • -\dfrac {11}{46}
  • -\dfrac {7}{46}
  • -\dfrac {4}{23}
  • -\dfrac {9}{46}
If \tan ^{ -1 }{ x } +\tan ^{ -1 }{ y } =\cfrac { 2\pi  }{ 3 } , then \cot ^{ -1 }{ x } +\cot ^{ -1 }{ y } is equal to
  • \cfrac { \pi }{ 2 }
  • \cfrac { 1 }{ 2 }
  • \cfrac { \pi }{ 3 }
  • \cfrac { \sqrt { 3 } }{ 2 }
  • \pi
If 2 sin h^{-1}\left ( \dfrac{a}{\sqrt{1-a^{2}}} \right ) = log\left ( \dfrac{1+X}{1-X} \right ) then X=
  • a
  • \dfrac{1}{a}
  • \sqrt{1-a^{2}}
  • \dfrac{1}{\sqrt{1-a^{2}}}
The value of x satisfying the equation
\tan ^{ -1 }{ x } +\tan ^{ -1 }{ \left( \cfrac { 2 }{ 3 }  \right)  } =\tan ^{ -1 }{ \left( \cfrac { 7 }{ 4 }  \right)  } is equal to
  • \cfrac { 1 }{ 2 }
  • -\cfrac { 1 }{ 2 }
  • \cfrac { 3 }{ 2 }
  • -\cfrac { 1 }{ 3 }
  • \cfrac { 1 }{ 3 }
The value of \tan { \left\{ \dfrac { 1 }{ 2 } \cos ^{ -1 }{ \left( \dfrac { \sqrt { 5 }  }{ 3 }  \right)  }  \right\}  } is
  • \dfrac { 3+\sqrt { 5 } }{ 2 }
  • 3+\sqrt { 5 }
  • \dfrac { 1 }{ 2 } \left( 3-\sqrt { 5 } \right)
  • None of these
If ab > -1, bc > -1 and ca > -1, then the value of \cot^{-1}\left (\dfrac {ab + 1}{a - b}\right ) + \cot^{-1}\left (\dfrac {bc + 1}{b - c}\right ) + \cot^{-1}\left (\dfrac {ca + 1}{c - a}\right ) is
  • -1
  • \cot^{-1}(a + b + c)
  • \cot^{-1}(abc)
  • 0
  • \tan^{-1}(a + b + c)
If \cos^{-1}\left (\dfrac {1 - x^{2}}{1 + x^{2}}\right ) + \cos^{-1}\left (\dfrac {1 - y^{2}}{1 + y^{2}}\right ) = \dfrac {\pi}{2}, where xy < 1, then
  • x - y - xy = 1
  • x - y + xy = 1
  • x + y - xy = 1
  • x + y + xy = 1
  • y - x - xy = 1
If \tan^{-1} (-x) + \cos^{-1}\left (\dfrac {-1}{2}\right ) = \dfrac {\pi}{2}, them the value of x is
  • \sqrt {3}
  • \dfrac {-1}{\sqrt {3}}
  • \dfrac {1}{\sqrt {3}}
  • -\sqrt {3}
  • 1
\cos^{-1}\left (\cos \left (\dfrac  {7\pi}{5}\right)\right) is equal to
  • \dfrac{3 \pi}{5}
  • \dfrac{2 \pi}{5}
  • \dfrac{-7 \pi}{5}
  • \dfrac{7 \pi}{5}
  • \dfrac{-2 \pi}{5}
If the non-zero numbers x,y,z are AP and \tan ^{ -1 }{ x } ,\tan ^{ -1 }{ y } ,\tan ^{ -1 }{ z } are also in AP, then
  • xy=yz
  • {z}^{2}=xy
  • x=y=z
  • { x }^{ 2 }=yz
The value of \cos \left( \sin^{-1} \left( \dfrac {2}{3} \right) \right) is equal to :
  • \dfrac {\sqrt3}{5}
  • \dfrac {5}{3}
  • \dfrac {5}{\sqrt3}
  • \sqrt { \dfrac {5}{3} }
  • \dfrac {\sqrt5}{3}
If two angles of a triangle are \tan ^{ -1 }{ (2) } and \tan ^{ -1 }{ (3) } , then the third angle is
  • \cfrac { \pi }{ 4 }
  • \cfrac { \pi }{ 6 }
  • \cfrac { \pi }{ 3 }
  • \cfrac { \pi }{ 2 }
If \sin { \left[ \cot ^{ -1 }{ (x+1) }  \right]  } =\cos { \left[ \tan ^{ -1 }{ x }  \right]  } , then x is equal to
  • \cfrac { -1 }{ 2 }
  • \cfrac { 1 }{ 2 }
  • 0
  • \cfrac { 9 }{ 2 }
The sum of \cot ^{ -1 }{ 2 } +\cot ^{ -1 }{ 8 } +\cot ^{ -1 }{ 18 } ....\infty =\cfrac { \pi  }{ \lambda  } , then \lambda is
  • 2
  • 4
  • 6
  • 8
The domain of function f\left( x \right) =\sin ^{ -1 }{ 5x } is
  • \left( -\dfrac { 1 }{ 5 } ,\dfrac { 1 }{ 5 } \right)
  • \left[ -\dfrac { 1 }{ 5 } ,\dfrac { 1 }{ 5 } \right]
  • R
  • \left( 0,\dfrac { 1 }{ 5 } \right)
\tan^{-1}(x + \sqrt{1 + x^{2}}) =
  • \dfrac{\pi}{4} - \dfrac{1}{2} \tan^{-1} x
  • \dfrac{1}{2} \tan^{-1} x
  • \dfrac{\pi}{2} - \dfrac{1}{2} \tan^{-1} x
  • \dfrac{\pi}{4} + \dfrac{1}{2} \tan^{-1} x
If 2\sinh ^{ -1 }{ \left( \dfrac { a }{ \sqrt { 1-{ a }^{ 2 } }  }  \right)  } =\log { \left( \dfrac { 1+x }{ 1-x }  \right)  }, then x=
  • a
  • \dfrac { 1 }{ a }
  • \sqrt { 1-{ a }^{ 2 } }
  • \dfrac { 1 }{ \sqrt { 1-{ a }^{ 2 } } }
The value of \sec ^{ 2 }{ \left( \tan ^{ -1 }{ 2 }  \right)  } +\text{cosec} ^{ 2 }{ \left( \cot ^{ -1 }{ 3 }  \right)  }= ____
  • 6
  • 15
  • 13
  • 25

The value of \cot^{-1} \left[ \dfrac{\sqrt{1 - \sin x} +\sqrt{1 + \sin x}}{\sqrt{(1 - \sin x)} - \sqrt{(1 + \sin x)}} \right] is

  • \pi - x
  • 2 \pi - x
  • x/2
  • \pi - \dfrac{1}{2} x

\sin^{-1} \sqrt{2 - x} = \cos^{-1} \sqrt{x-1} holds for all real x.
  • True
  • False
The value of \cos^{-1} (-1) - \sin^{-1} (1) is
  • \pi
  • \dfrac{\pi}{2}
  • \dfrac{3 \pi}{2}
  • - \dfrac{3 \pi}{2}
Range of the function f(x)=4{ tan }^{ -1 }x+3{ sin }^{ -1 }x+{ sec }^{ -1 }x is
  • \left\{ \frac { -3\pi }{ 2 } ,\frac { -5\pi }{ 2 } \right\}
  • \left\{ \frac { 3\pi }{ 2 } ,\frac { 5\pi }{ 2 } \right\}
  • \left\{ \frac { 3\pi }{ 2 } ,\frac { -5\pi }{ 2 } \right\}
  • \left\{ \frac { -3\pi }{ 2 } ,\frac { 5\pi }{ 2 } \right\}
If y= \sec(\tan^{-1} x) then, \dfrac{dy}{dx} at x=1 is equal to
  • \dfrac{1}{2}
  • 1
  • \sqrt2
  • \frac{1}{\sqrt2}
Number of solution of the equation \cos^{-1}(1-x)-2\cos^{-1}x=\dfrac{\pi}{2} is 
  • 3
  • 2
  • 1
  • 0
 {\tan ^{ - 1}}x + {\cot ^{ - 1}}x = {\pi  \over 2},x \in \mathop R\limits^ \bullet 
  • True
  • False
The value of k if the equation kx + \ \sin^{-1}(x^2-8x+17) + \ \cos^{-1}(x^2-8x+17) = \frac{9\pi}{2} has atleast one solution is 
  • 2\pi
  • \pi
  • 1
  • \frac{\pi}{2}
The value of \cot \left( \dfrac{\pi}{4} - 2 \cot^{-1} 3\right), is:
  • 1
  • 7
  • -1
  • None of these
\tan^{-1}(\dfrac{1}{4}) + \tan^{-1}(\dfrac{2}{9}) is equal to
  • \dfrac{1}{2} \ \cos^{-1}(\dfrac{3}{5})
  • \dfrac{1}{2} \sin^{-1}(\dfrac{4}{5})
  • \tan^{-1}(\dfrac{1}{2})
  • \cos^{-1}(\dfrac{8}{9})
If \sin^{-1} x + \sin ^{-1} y + \sin ^{-1} z = \pi , then the value of x\sqrt{1-x^2}+ y\sqrt{1-y^2}+ z\sqrt{1- z^2} will be:
  • 2 xyz
  • xyz
  • \dfrac{1}{2} xyz
  • \dfrac{1}{3} xyz
\sum^n_{m = 1} \tan^{-1} \left(\dfrac{2m}{m^4 + m^2 + 2} \right) is equal to
  • \tan^{-1} \left({n^2 + n + 1}\right)-\dfrac {\pi}{4}
  • \tan^{-1} \left({n^2 + n + 1}\right)+\dfrac {\pi}{4}
  • \tan^{-1} \left({n^2 + n - 1}\right)-\dfrac {\pi}{4}
  • \tan^{-1} \left({n^2 - n - 1}\right)-\dfrac {\pi}{4}
If a sin^{-1} x -b cos^{-1}x =c, then the value of a sin ^{-1} x + b cos^{-1} x (whenever exists) is equal to
  • 0
  • \frac{\pi ab + c(b-a)}{a+b}
  • \frac{\pi}{2}
  • \frac{\pi ab + c(a-b)}{a+b}
If \tan^{-1}\dfrac{a+x}{a}+\tan^{-1}\dfrac{a-x}{a}=\dfrac{\pi}{6}, then x^2=?
  • 2\sqrt{3}a
  • \sqrt{3}a
  • 2\sqrt{3}a^2
  • None of these
The value of \displaystyle {\sin ^{ - 1}}\left( {\frac{{12}}{{13}}} \right)+ {\cos ^{ - 1}}\left( {\frac{4}{5}} \right) + {\tan ^{ - 1}}\left( {\frac{{63}}{{16}}} \right)
  • \dfrac {2\pi }{3}
  • \pi
  • 2\pi
  • 3\pi
Solve: {\sin ^{ - 1}}\dfrac{4}{5} + {\sin ^{ - 1}}\dfrac{5}{{13}} + {\sin ^{-1}}\dfrac{{16}}{{65}}
  • \dfrac {\pi}{2}
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{6}
  • \dfrac {\pi}{8}
If \sin ^{ -1 }{ \left( x-\displaystyle\frac { { x }^{ 2 } }{ 2 } +\displaystyle\frac { { x }^{ 3 } }{ 4 } -....\infty  \right)  } +\cos ^{ -1 }{ \left( { x }^{ 2 }-\displaystyle\frac { { x }^{ 4 } }{ 2 } +\displaystyle\frac { { x }^{ 6 } }{ 4 } -....\infty  \right)  } =\displaystyle\frac { \pi  }{ 2 }  and 0<x<\sqrt { 2 }  then x =
  • \displaystyle\frac { 1 }{ 2 }
  • 1
  • \displaystyle\frac{- 1 }{ 2 }
  • -1
If x=\cos^{ - 1}\left( \dfrac{2}{3} \right) + \tan^{ - 1}\left( \dfrac{1}{7} \right) then x=
  • {{\cos }^{-1}}\left\{ \dfrac{14-\sqrt{5}}{3\sqrt{50}} \right\}
  • {{\cos }^{-1}}\left\{ \dfrac{10-\sqrt{5}}{3\sqrt{50}} \right\}
  • {{\cos }^{-1}}\left\{ \dfrac{14-\sqrt{15}}{3\sqrt{50}} \right\}
  • None of these
If \sin ^{ -1 }{ x } =\cfrac { \pi  }{ 6 } then find 'x'
  • \dfrac {\sqrt 3}{2}
  • \dfrac {1}{2}
  • 1
  • None of these
If \cos^{ - 1}x + {\cos ^{ - 1}}y = \dfrac{\pi }{2} and \tan^{ - 1}x - \tan^{ - 1}y = 0 then  value of {x^2} + ax + {y^2} is where a= \dfrac{1}{\sqrt{2}} 
  • 0
  • - \dfrac{1}{2}
  • \dfrac{1}{2}
  • \dfrac{3}{2}
\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {\dfrac{{2r}}{{1 - {r^2} + {r^4}}}} \right)} is equal to 
  • \dfrac{\pi} {4}
  • \dfrac{\pi} {2}
  • \dfrac{{3\pi }}{4}
  • none of these
\tan \left[\dfrac{\pi}{4} + \dfrac{1}{2} \cos^{-1} \left(\dfrac{5}{7} \right) \right] + \cot \left[\dfrac{\pi}{4} + \dfrac{1}{2} \cos^{-1} \left(\dfrac{5}{7}\right) \right] is equal to 
  • \dfrac{5}{7}
  • \dfrac{10}{7}
  • \dfrac{14}{5}
  • \dfrac{7}{5}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers