Explanation
Step 1 :- Formulating the information from the given question.
Suppose the third angle is p.
So from definition we know that the sum of all total three angles of a triangle is πc.
As 2×3 > 1 So we can write tan−12+tan−13=π+tan−1(2+31−2×3)
[tan−1X+tan−1Y=tan−1X+Y1−(X×Y)]
=π+tan−1(−1)
=π−π4=3π4
Step 2 :- Using formula of sum three angles of a triangle.
So p + 3π4=π
⇒p = π - 3π4=π4
Hence, The correct option is A.
The value of cot−1[√1−sinx+√1+sinx√(1−sinx)−√(1+sinx)] is
y=sec(tan−1x)∴sec(tan−1x)tan(tan−1x)⋅(11+x2)putx=1then(dydx)=sec(tan−11)tan(tan−11)⋅(11+12)=sec(π4)⋅tan(π4)⋅(12)=√2⋅1⋅(12)=(1√2)
sin−1(45)+sin−1(513)+sin−1(1665)=π2
sin−1A+sin−1B=sin−1(A√1−B.2+B√1−B2)
sin−1(45√1−(512)2+513√1−(45)2)
sin−1(6365)
sin−1(6365)+sin−11665
Applying some formula
sin−1(6365√1−(−1665)2+1665√1−(6365)2)
sin−1(1)
sin−1(sinπ/2)
π/2
We have,
cos−123+tan−117
We know that,
tan−1x=cos−1(1√1+x2)
Therefore,
=cos−123+cos−1(1√1+(17)2)
=cos−123+cos−1(7√50)
cos−1x+cos−1y=cos−1{xy−√1−x2√1−y2}
=cos−1{23×7√50−√1−(23)2√1−(7√50)2}
=cos−1{143√50−√59√150}
=cos−1{143√50−√53√50}
=cos−1{14−√53√50}
Hence, this is the answer.
Please disable the adBlock and continue. Thank you.