Explanation
\mathbf{{\text{Step - 1: Writing co}}{{\text{t}}^{{\text{ - 1}}}}{\text{x in terms of si}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}}}
{\text{Let co}}{{\text{t}}^{{\text{ - 1}}}}{\text{x = }}\theta
\Rightarrow {\text{ x = cot }}\theta
{\text{We know that, 1 + co}}{{\text{t}}^{\text{2}}}\theta {\text{ = cose}}{{\text{c}}^{\text{2}}}\theta
\therefore {\text{ 1 + }}{{\text{x}}^{\text{2}}}{\text{ = }}\dfrac{1}{{{\text{si}}{{\text{n}}^{\text{2}}}\theta }}
\Rightarrow {\text{ si}}{{\text{n}}^{\text{2}}}\theta {\text{ = }}\dfrac{{\text{1}}}{{{\text{1 + }}{{\text{x}}^{\text{2}}}}}
\Rightarrow {\text{ sin }}\theta {\text{ = }}\sqrt {\dfrac{{\text{1}}}{{{\text{1 + }}{{\text{x}}^{\text{2}}}}}}
\Rightarrow {\text{ }}\theta {\text{ = si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\sqrt {\dfrac{{\text{1}}}{{{\text{1 + }}{{\text{x}}^{\text{2}}}}}} } \right)
\Rightarrow {\text{ co}}{{\text{t}}^{{\text{ - 1}}}}{\text{x = si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\sqrt {\dfrac{{\text{1}}}{{{\text{1 + }}{{\text{x}}^{\text{2}}}}}} } \right)
\mathbf{{\text{Step - 2: Equating it to si}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}}}
{\text{si}}{{\text{n}}^{{\text{ - 1}}}}{\text{x = si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\sqrt {\dfrac{{\text{1}}}{{{\text{1 + }}{{\text{x}}^{\text{2}}}}}} } \right)
\Rightarrow {\text{ x = }}\left( {\sqrt {\dfrac{{\text{1}}}{{{\text{1 + }}{{\text{x}}^{\text{2}}}}}} } \right)
\Rightarrow {\text{ }}{{\text{x}}^{\text{2}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{1 + }}{{\text{x}}^{\text{2}}}}}
\Rightarrow {\text{ }}{{\text{x}}^{\text{4}}}{\text{ + }}{{\text{x}}^{\text{2}}}{\text{ - 1 = 0}}
\Rightarrow {\text{ }}{{\text{x}}^{\text{2}}}{\text{ = }}\dfrac{{{\text{ - 1 }} \pm {\text{ }}\sqrt {{\text{1 + 4}}} }}{{\text{2}}}
\because {\text{ }}{{\text{x}}^{\text{2}}}{\text{ cannot be negative}}
\Rightarrow {\text{ }}{{\text{x}}^{\text{2}}}{\text{ = }}\dfrac{{\sqrt {\text{5}} {\text{ - 1}}}}{{\text{2}}}
\mathbf{{\text{Hence, If si}}{{\text{n}}^{{\text{ - 1}}}}{\text{x = co}}{{\text{t}}^{{\text{ - 1}}}}{\text{x then }}{{\text{x}}^{\text{2}}}{\text{ = }}\dfrac{{\sqrt {\text{5}} {\text{ - 1}}}}{{\text{2}}}}
Please disable the adBlock and continue. Thank you.