Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 4 - MCQExams.com

The value of sin1{cot{sin1234+cos124+sec12}} is equal to
  • π4
  • π6
  • 0
  • π2
tan13cot1(3) is equal to
  • π
  • π2
  • 0
  • 23
cos1{12(cos9π10sin9π10)}=
  • 23π20
  • 7π10
  • 7π20
  • 17π20
The solution set of the equation sin11x2+cos1x=cot11x2xsin1x is?
  • [1,1]{0}
  • (0,1]{1}
  • [1,0){1}
  • [1,1]
Given that 0x12 the value of tan[sin1(x2+1x22)sin1x] is
  • 1
  • 1
  • 13
  • 3
the value of cos2(cos10) is
  • 4π+10
  • 4π10
  • 2π+10
  • 2π10
2cot17+cos135 is equal to 
  • cot1(44117)
  • cosec1(125117)
  • tan1(4117)
  • tan1(44125)
The value of tan1(2sin(sec1(2))) is
  • π6
  • π4
  • π3
  • π2
tan1(12tan2A)+tan1cotA+tan1cot3A=
  • 0;ifπ/4<A<π/2
  • 0;if0<A<π/4
  • π;ifπ/4<A<π/2
  • π;if0<A<π/2
The value of cos1{1sinx+1+sinx(1sinx)(1+sinx)} is (0<x<2π)
  • πx2
  • 2πx
  • x2
  • 2πX2
Annual expenses of  A and B are in the ratio  5:3. The  saving  of Aand B are in the ratio 1:2. Find the expenses of A. given that the income of A is Rs.8000  and that of B is Rs.9000.
  • 3000
  • 4000
  • 4500
  • 5000
cos1(3+5cosx5+3cosx)=
  • tan1(12tanx2)
  • 2tan1(12tanx2)
  • 12tan1(2tanx2)
  • 2tan1(12tanx2)
If sin1(xx22+x34...)+cos1(x2x42+x64...)=π2 for 0<|x|<2,then x equal
  • 12
  • 1
  • 12
  • 1
cos1(cosαcosβ1+cosαcosβ)=2tan1(tanα2tanβ2).
  • True
  • False
If sin1x+sin1y+sin1z=π, then x1x2+y1y2+z1z2=2xyz
  • True
  • False
State true or false.
tan1(13)+tan1(15)+tan1(18)+tan1(17)=π2
  • True
  • False
The value of cos{tan1(tan15π4)} is?
  • 12
  • 12
  • 1
  • None of these
If the number 93215x2 is completely divisible by 11, then x is equal to  
  • 2
  • 3
  • 1
  • 4
Find the values of cos1(cos7π6) is equal to
  • 7π6
  • 5π6
  • π3
  • π6
The value of 3tan112+2tan115+sin1142655 is
  • π4
  • π2
  • π
  • none of these
Find the approximate value of sin1(0.51) given that 3=1.7321
  • π6+0.011541
  • π3+0.011541
  • π6+0.011547
  • π3+0.011547
\cot ^{ -1 }{ \left( \dfrac { \sqrt { 1-\sin { x }  } +\sqrt { 1+\sin { x }  }  }{ \sqrt { 1-\sin { x }  } -\sqrt { 1+\sin { x }  }  }  \right)  }=....\left( 0<x<\dfrac { \pi  }{ 2 }  \right)
  • \dfrac { x }{ 2 }
  • \dfrac { \pi }{ 2 } -2x
  • 2\pi -x
  • \pi -\dfrac { x }{ 2 }
The value of \tan^{-1}\dfrac {1}{2}+\tan^{-1}\dfrac {1}{3} is
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{6}
  • \dfrac {\pi}{3}
  • 0
Let in \Delta ABC, \, \angle A = \dfrac{\pi}{2}. Then value of \tan^{-1} \dfrac{b}{a + c} + \tan^{-1} \dfrac{c}{a + b} equals 
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{4}
  • \dfrac{\pi}{3}
  • None of these
{\sin ^{ - 1}}(\cos \left( {{{\sin }^{ - 1}}x} \right)) + {\cos ^{ - 1}}(\sin \left( {{{\cos }^{ - 1}}x} \right)){\text{is}}\;{\text{equal}}\;{\text{to}}{\text{.}}
  • \frac{\pi }{2}
  • \frac{\pi }{4}
  • \frac{{3\pi }}{4}
  • 0
If {\tan ^{ - 1}}\dfrac{1}{{a - 1}} = {\tan ^{ - 1}}\dfrac{1}{x} + {\tan ^{ - 1}}\dfrac{1}{{{a^2} - x + 1}},\,then\,x\,is\,
  • a
  • {a^{3\,}}
  • {a^2} - a + 1\,
  • {a^2} + a - 1
{\cot ^{ - 1}}\left( {2 + \sqrt 3 } \right) =
  • \frac{\pi }{{12}}
  • \frac{\pi }{{15}}
  • \frac{\pi }{5}
  • \frac{{3\pi }}{{10}}
If minimum value of {\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2} = \frac{{{\pi ^2}}}{K} then the value of K is 
  • 4
  • 8
  • 6
  • 16
The value of {\sin ^{ - 1}}\left( {\cos \dfrac{{33\pi }}{5}} \right) is 
  • \dfrac{{3\pi }}{5}
  • \dfrac{{7\pi }}{5}
  • \dfrac{\pi }{{10}}
  • - \dfrac{\pi }{{10}}
The value of \cos(\tan^{-1}(\tan2))
  • \dfrac{1}{\sqrt{5}}
  • -\dfrac{1}{\sqrt{5}}
  • \cos 2
  • -\cos 2
cot^{-1}(\sqrt{cos\alpha })-tan^{-1}(\sqrt{cos\alpha })=x , then sin x is equal to
  • \tan^{2}\dfrac{\alpha }{2}
  • \cot^{2}\dfrac{\alpha }{2}
  • \tan \alpha
  • \cot\dfrac{\alpha }{2}
{\cos ^{ - 1}}\dfrac{3}{5} - {\sin ^{ - 1}}\dfrac{4}{5} = {\cos ^{ - 1}}x then x is equal to:
  • 0
  • 1
  • -1
  • none of these
If \sin ^{ -1 }{ x } =\cot ^{ -1 }{ x } then
  • { x }^{ 2 }=\cfrac { \sqrt { 5 } -1 }{ 2 }
  • { x }^{ 2 }=\cfrac { \sqrt { 5 } +1 }{ 2 }
  • { x }^{ }=\cfrac { \sqrt { 5 } +1 }{ 2 }
  • { x }^{ }=\cfrac { \sqrt { 5 } -1 }{ 2 }
Sin^{-1}(2x(1-x^2)) = 2sin^{-1}x is true if.
  • x\in [0,1]
  • [-\dfrac{1}{2} ,\dfrac{1}{2}]
  • [\dfrac{1}{2},- \dfrac{1}{2}]
  • [\dfrac{3}{2}, -\dfrac{3}{2}]
The greatest and least value of  {\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2} are respectively 
  • \dfrac{{{\pi ^2}}}{4}and0
  • \dfrac{\pi }{2}and\, - \dfrac{\pi }{2}
  • \dfrac{{5{\pi ^2}}}{4}and\dfrac{{{\pi ^2}}}{8}
  • \dfrac{{{\pi ^2}}}{4}\,and\,\dfrac{{ - \pi }}{4}
The number of elements in the range of
f(x)=\sin ^{ -1 }{ x } +\cos ^{ -1 }{ x } +\sec ^{ -1 }{ x } is
  • 1
  • 2
  • 3
  • 4
The principal value of tan^{-1}[cot\dfrac{3\pi}{4}] is :
  • \dfrac{-3\pi}{4}
  • \dfrac{3\pi}{4}
  • \dfrac{-\pi}{4}
  • \dfrac{\pi}{4}
The algebraic expression for \tan \left(\sin^{-1}\cos\ \tan^{-1}\dfrac {x}{2}\right) is
  • \dfrac {2}{x}
  • \dfrac {x}{2}
  • \dfrac {1}{x}
  • \dfrac {2}{|x|}
If \sin ^{-1}x + \sin ^{-1}y + \sin ^{-1}z = \dfrac{3\pi}{2}, then (x^{500} + y^{500} + z^{500}) - (x^{501} + y^{501} + z^{501}) is
  • 0
  • 1
  • 2
  • 4
The value of \sin \left(\dfrac {1}{4}\sin^{-1}\dfrac {\sqrt {63}}{8}\right) is
  • \dfrac {1}{2}
  • \dfrac {1}{3}
  • \dfrac {1}{2\sqrt {2}}
  • \dfrac {1}{5}
If \tan^{-1}\left(\dfrac{x+1}{x-1}\right)+\tan^{-1}\left(\dfrac{x-1}{x}\right)=\pi +\tan^{-1}(-7), then x=
  • 2
  • -2
  • 1
  • No solution
The number of real solutions of \cos ^ { - 1 } x + \cos ^ { - 1 } 2 x = - \pi is

  • 0
  • 1
  • 2
  • None
The value of \sin (\cot^{-1}x) is 
  • \sqrt{1+x^2}
  • x
  • (1+x^2)^{-3/2}
  • (1+x^2)^{-1/2}
\cos ^ { - 1 } \left( \cos \left( \dfrac { - 17 \pi } { 5 } \right) \right) is equal to

  • - \dfrac { 17 \pi } { 5 }
  • \dfrac { 3 \pi } { 5 }
  • \dfrac { 2 \pi } { 5 }
  • none of these
\sinh { \left( \cosh ^{ -1 }{ x }  \right)  } =
  • \sqrt{x^{2}+1}
  • \dfrac{1}{\sqrt{x^{2}+1}}
  • \sqrt{x^{2}-1}
  • \dfrac{1}{\sqrt{x^{2}-1}}
\sin\ h^{-1}{\left(2^{3/2}\right)}=
  • \log \left(2+\sqrt{8}\right)
  • \log \left(3+\sqrt{8}\right)
  • \log \left(2-\sqrt{8}\right)
  • \log \left(\sqrt{8}+\sqrt{7}\right)
The value of \tan ^{-1} \left (\dfrac{1}{3}\right) +\tan ^{-1} \left (\dfrac{2}{9}\right) + \tan ^{-1}\left  (\dfrac{4}{33}\right) + \tan ^{-1} \left (\dfrac{8}{129}\right) +.......n terms is
  • \tan^{-1} 2^n - \dfrac{\pi}{4}
  • \tan^{-1} 2^n
  • \cot^{-1} 2^n
  • \dfrac{\sin^{-1} 2^n}{\cos^{-1} 2^n}
If \cot^{-1} [\sqrt{\cos \alpha}] - \tan^{-1} [\sqrt{\cos \alpha}] = x, then \sin x is equal to
  • \tan^2 \left (\dfrac{\alpha}{2}\right)
  • \cot^2 \left (\dfrac{\alpha}{2}\right)
  • \tan \alpha
  • \cot \dfrac{\alpha}{2}
\sec\ h^{-1}\left(\dfrac{1}{5}\right)=
  • \log( {\sqrt{24}+5})
  • \log {5+\sqrt{27}}
  • \log {26+\sqrt{5}}
  • \log {27+\sqrt{5}}
If \cot \dfrac {2x}{3}+\tan \dfrac {x}{3}=\csc \dfrac {x}{3} then value of \tan^{-1(\tan k)} equals
  • 2
  • 2-\pi
  • \pi-2
  • 2\pi-2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers