Processing math: 2%

CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 4 - MCQExams.com

The value of sin1{cot{sin1234+cos124+sec12}} is equal to
  • π4
  • π6
  • 0
  • π2
tan13cot1(3) is equal to
  • π
  • π2
  • 0
  • 23
{\cos ^{ - 1}}\left\{ {\dfrac{1}{{\sqrt 2 }}\left( {\cos \dfrac{{9\pi }}{{10}} - \sin \dfrac{{9\pi }}{{10}}} \right)} \right\} =
  • \frac{{23\pi }}{{20}}
  • \frac{{7\pi }}{{10}}
  • \frac{{7\pi }}{{20}}
  • \frac{{17\pi }}{{20}}
The solution set of the equation \sin^{-1}\sqrt{1-x^2}+\cos^{-1}x=\cot^{-1}\dfrac{\sqrt{1-x^2}}{x}-\sin^{-1}x is?
  • [-1, 1]-\{0\}
  • (0, 1] \cup \{-1\}
  • [-1, 0)\cup \{1\}
  • [-1, 1]
Given that 0 \le x\le \dfrac 12 the value of \tan \left[ { sin }^{ -1 }\left( \dfrac { x }{ \sqrt { 2 }  } +\sqrt { \dfrac { 1-{ x }^{ 2 } }{ 2 }  }  \right) -{ sin }^{ -1 }x \right] is
  • -1
  • 1
  • 1\sqrt{3}
  • \sqrt{3}
the value of \cos ^{ -2 }{ \left( \cos { 10 }  \right)  } is
  • 4\pi +10
  • 4\pi -10
  • 2\pi +10
  • 2\pi -10
2\cot ^{ -1 }{ 7 } +\cos ^{ -1 }{ \dfrac { 3 }{ 5 }  } is equal to 
  • \cot ^{ -1 }{ \left( \dfrac { 44 }{ 117 } \right) }
  • cosec ^{ -1 }{ \left( \dfrac { 125 }{ 117 } \right) }
  • \tan ^{ -1 }{ \left( \dfrac { 4 }{ 117 } \right) }
  • \tan ^{ -1 }{ \left( \dfrac { 44 }{ 125 } \right) }
The value of \tan ^{ -1 }{ \left( 2\sin { \left( \sec ^{ -1 }{ \left( 2 \right)  }  \right)  }  \right)  } is
  • \dfrac {\pi}{6}
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{3}
  • \dfrac {\pi}{2}
{\tan ^{ - 1}}\left( {\frac{1}{2}\tan 2A} \right) + {\tan ^{ - 1}}\cot A + {\tan ^{ - 1}}{\cot ^3}A =
  • 0;\,if\,\pi /4 < A < \pi /2
  • 0;\,if\,0 < A < \pi /4
  • \pi; \,if\pi /4 < A < \pi /2
  • \pi ;\,if0 < A < \pi /2
The value of \cos ^{ -1 }{ \left\{ \frac { \sqrt { 1-\sin { x }  } +\sqrt { 1+\sin { x }  }  }{ \surd \left( 1-\sin { x }  \right) -\surd \left( 1+\sin { x }  \right)  }  \right\}  } is \left( 0<x<2\pi  \right)
  • \pi -\frac { x }{ 2 }
  • 2\pi -x
  • -\frac { x}{ 2 }
  • 2\pi -\frac { X }{ 2 }
Annual expenses of  A and B are in the ratio  5:3. The  saving  of Aand B are in the ratio 1:2. Find the expenses of A. given that the income of A is Rs. 8000  and that of B is Rs.9000.
  • 3000
  • 4000
  • 4500
  • 5000
{ cos }^{ -1 }\left( \dfrac { 3+5\cos { x }  }{ 5+3\cos { x }  }  \right) =
  • { tan }^{ -1 }\left( \dfrac { 1 }{ 2 } \tan { \dfrac { x }{ 2 } } \right)
  • 2\tan ^{ -1 }{ \left(- \dfrac { 1 }{ 2 } \tan { \dfrac { x }{ 2 } } \right) }
  • \dfrac { 1 }{ 2 } \tan ^{ -1 }{ \left( 2\tan { \dfrac { x }{ 2 } } \right) }
  • 2\tan ^{ -1 }{ \left( \dfrac { 1 }{ 2 } \tan { \dfrac { x }{ 2 } } \right) }
If \sin^{-1}\left(x-\dfrac {x^{2}}{2}+\dfrac {x^{3}}{4}-...\infty \right)+\cos^{-1}\left(x^{2}-\dfrac {x^{4}}{2}+\dfrac {x^{6}}{4}-...\infty \right)=\dfrac {\pi}{2} for 0 < |x| < \sqrt {2},then x equal
  • \dfrac {1}{2}
  • 1
  • \dfrac {-1}{2}
  • -1
{ cos }^{ -1 }\left( \dfrac { \cos { \alpha  } \cos { \beta  }  }{ 1+\cos { \alpha  } \cos { \beta  }  }  \right) =2{ tan }^{ -1 }\left( \tan { \dfrac { \alpha  }{ 2 }  } \tan { \dfrac { \beta  }{ 2 }  }  \right).
  • True
  • False
If {sin}^{-1}x+{sin}^{-1}y+{sin}^{-1}z=\pi, then x\sqrt {{1}-{x}^{2}}+y\sqrt {{1}-{y}^{2}}+z \sqrt {{1}-{z}^{2}}=-2xyz
  • True
  • False
State true or false.
{\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{8}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{7}} \right) = \dfrac{\pi }{2}
  • True
  • False
The value of \cos\left\{\tan^{-1}\left(\tan \dfrac{15\pi}{4}\right)\right\} is?
  • \dfrac{1}{\sqrt{2}}
  • -\dfrac{1}{\sqrt{2}}
  • 1
  • None of these
If the number 93215x2 is completely divisible by 11, then x is equal to  
  • 2
  • 3
  • 1
  • 4
Find the values of \cos^{-1}\left(\cos \dfrac {7\pi}{6}\right) is equal to
  • \dfrac {7\pi}{6}
  • \dfrac {5\pi}{6}
  • \dfrac {\pi}{3}
  • \dfrac {\pi}{6}
The value of 3\tan^{-1}\dfrac {1}{2}+2\tan^{-1}\dfrac {1}{5}+\sin^{-1}\dfrac {142}{65\sqrt {5}} is
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{2}
  • \pi
  • none\ of\ these
Find the approximate value of \sin^{-1}(0.51) given that \sqrt {3}=1.7321
  • \dfrac {\pi}{6}+0.011541
  • \dfrac {\pi}{3}+0.011541
  • \dfrac {\pi}{6}+0.011547
  • \dfrac {\pi}{3}+0.011547
\cot ^{ -1 }{ \left( \dfrac { \sqrt { 1-\sin { x }  } +\sqrt { 1+\sin { x }  }  }{ \sqrt { 1-\sin { x }  } -\sqrt { 1+\sin { x }  }  }  \right)  }=....\left( 0<x<\dfrac { \pi  }{ 2 }  \right)
  • \dfrac { x }{ 2 }
  • \dfrac { \pi }{ 2 } -2x
  • 2\pi -x
  • \pi -\dfrac { x }{ 2 }
The value of \tan^{-1}\dfrac {1}{2}+\tan^{-1}\dfrac {1}{3} is
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{6}
  • \dfrac {\pi}{3}
  • 0
Let in \Delta ABC, \, \angle A = \dfrac{\pi}{2}. Then value of \tan^{-1} \dfrac{b}{a + c} + \tan^{-1} \dfrac{c}{a + b} equals 
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{4}
  • \dfrac{\pi}{3}
  • None of these
{\sin ^{ - 1}}(\cos \left( {{{\sin }^{ - 1}}x} \right)) + {\cos ^{ - 1}}(\sin \left( {{{\cos }^{ - 1}}x} \right)){\text{is}}\;{\text{equal}}\;{\text{to}}{\text{.}}
  • \frac{\pi }{2}
  • \frac{\pi }{4}
  • \frac{{3\pi }}{4}
  • 0
If {\tan ^{ - 1}}\dfrac{1}{{a - 1}} = {\tan ^{ - 1}}\dfrac{1}{x} + {\tan ^{ - 1}}\dfrac{1}{{{a^2} - x + 1}},\,then\,x\,is\,
  • a
  • {a^{3\,}}
  • {a^2} - a + 1\,
  • {a^2} + a - 1
{\cot ^{ - 1}}\left( {2 + \sqrt 3 } \right) =
  • \frac{\pi }{{12}}
  • \frac{\pi }{{15}}
  • \frac{\pi }{5}
  • \frac{{3\pi }}{{10}}
If minimum value of {\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2} = \frac{{{\pi ^2}}}{K} then the value of K is 
  • 4
  • 8
  • 6
  • 16
The value of {\sin ^{ - 1}}\left( {\cos \dfrac{{33\pi }}{5}} \right) is 
  • \dfrac{{3\pi }}{5}
  • \dfrac{{7\pi }}{5}
  • \dfrac{\pi }{{10}}
  • - \dfrac{\pi }{{10}}
The value of \cos(\tan^{-1}(\tan2))
  • \dfrac{1}{\sqrt{5}}
  • -\dfrac{1}{\sqrt{5}}
  • \cos 2
  • -\cos 2
cot^{-1}(\sqrt{cos\alpha })-tan^{-1}(\sqrt{cos\alpha })=x , then sin x is equal to
  • \tan^{2}\dfrac{\alpha }{2}
  • \cot^{2}\dfrac{\alpha }{2}
  • \tan \alpha
  • \cot\dfrac{\alpha }{2}
{\cos ^{ - 1}}\dfrac{3}{5} - {\sin ^{ - 1}}\dfrac{4}{5} = {\cos ^{ - 1}}x then x is equal to:
  • 0
  • 1
  • -1
  • none of these
If \sin ^{ -1 }{ x } =\cot ^{ -1 }{ x } then
  • { x }^{ 2 }=\cfrac { \sqrt { 5 } -1 }{ 2 }
  • { x }^{ 2 }=\cfrac { \sqrt { 5 } +1 }{ 2 }
  • { x }^{ }=\cfrac { \sqrt { 5 } +1 }{ 2 }
  • { x }^{ }=\cfrac { \sqrt { 5 } -1 }{ 2 }
Sin^{-1}(2x(1-x^2)) = 2sin^{-1}x is true if.
  • x\in [0,1]
  • [-\dfrac{1}{2} ,\dfrac{1}{2}]
  • [\dfrac{1}{2},- \dfrac{1}{2}]
  • [\dfrac{3}{2}, -\dfrac{3}{2}]
The greatest and least value of  {\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2} are respectively 
  • \dfrac{{{\pi ^2}}}{4}and0
  • \dfrac{\pi }{2}and\, - \dfrac{\pi }{2}
  • \dfrac{{5{\pi ^2}}}{4}and\dfrac{{{\pi ^2}}}{8}
  • \dfrac{{{\pi ^2}}}{4}\,and\,\dfrac{{ - \pi }}{4}
The number of elements in the range of
f(x)=\sin ^{ -1 }{ x } +\cos ^{ -1 }{ x } +\sec ^{ -1 }{ x } is
  • 1
  • 2
  • 3
  • 4
The principal value of tan^{-1}[cot\dfrac{3\pi}{4}] is :
  • \dfrac{-3\pi}{4}
  • \dfrac{3\pi}{4}
  • \dfrac{-\pi}{4}
  • \dfrac{\pi}{4}
The algebraic expression for \tan \left(\sin^{-1}\cos\ \tan^{-1}\dfrac {x}{2}\right) is
  • \dfrac {2}{x}
  • \dfrac {x}{2}
  • \dfrac {1}{x}
  • \dfrac {2}{|x|}
If \sin ^{-1}x + \sin ^{-1}y + \sin ^{-1}z = \dfrac{3\pi}{2}, then (x^{500} + y^{500} + z^{500}) - (x^{501} + y^{501} + z^{501}) is
  • 0
  • 1
  • 2
  • 4
The value of \sin \left(\dfrac {1}{4}\sin^{-1}\dfrac {\sqrt {63}}{8}\right) is
  • \dfrac {1}{2}
  • \dfrac {1}{3}
  • \dfrac {1}{2\sqrt {2}}
  • \dfrac {1}{5}
If \tan^{-1}\left(\dfrac{x+1}{x-1}\right)+\tan^{-1}\left(\dfrac{x-1}{x}\right)=\pi +\tan^{-1}(-7), then x=
  • 2
  • -2
  • 1
  • No solution
The number of real solutions of \cos ^ { - 1 } x + \cos ^ { - 1 } 2 x = - \pi is

  • 0
  • 1
  • 2
  • None
The value of \sin (\cot^{-1}x) is 
  • \sqrt{1+x^2}
  • x
  • (1+x^2)^{-3/2}
  • (1+x^2)^{-1/2}
\cos ^ { - 1 } \left( \cos \left( \dfrac { - 17 \pi } { 5 } \right) \right) is equal to

  • - \dfrac { 17 \pi } { 5 }
  • \dfrac { 3 \pi } { 5 }
  • \dfrac { 2 \pi } { 5 }
  • none of these
\sinh { \left( \cosh ^{ -1 }{ x }  \right)  } =
  • \sqrt{x^{2}+1}
  • \dfrac{1}{\sqrt{x^{2}+1}}
  • \sqrt{x^{2}-1}
  • \dfrac{1}{\sqrt{x^{2}-1}}
\sin\ h^{-1}{\left(2^{3/2}\right)}=
  • \log \left(2+\sqrt{8}\right)
  • \log \left(3+\sqrt{8}\right)
  • \log \left(2-\sqrt{8}\right)
  • \log \left(\sqrt{8}+\sqrt{7}\right)
The value of \tan ^{-1} \left (\dfrac{1}{3}\right) +\tan ^{-1} \left (\dfrac{2}{9}\right) + \tan ^{-1}\left  (\dfrac{4}{33}\right) + \tan ^{-1} \left (\dfrac{8}{129}\right) +.......n terms is
  • \tan^{-1} 2^n - \dfrac{\pi}{4}
  • \tan^{-1} 2^n
  • \cot^{-1} 2^n
  • \dfrac{\sin^{-1} 2^n}{\cos^{-1} 2^n}
If \cot^{-1} [\sqrt{\cos \alpha}] - \tan^{-1} [\sqrt{\cos \alpha}] = x, then \sin x is equal to
  • \tan^2 \left (\dfrac{\alpha}{2}\right)
  • \cot^2 \left (\dfrac{\alpha}{2}\right)
  • \tan \alpha
  • \cot \dfrac{\alpha}{2}
\sec\ h^{-1}\left(\dfrac{1}{5}\right)=
  • \log( {\sqrt{24}+5})
  • \log {5+\sqrt{27}}
  • \log {26+\sqrt{5}}
  • \log {27+\sqrt{5}}
If \cot \dfrac {2x}{3}+\tan \dfrac {x}{3}=\csc \dfrac {x}{3} then value of \tan^{-1(\tan k)} equals
  • 2
  • 2-\pi
  • \pi-2
  • 2\pi-2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers