Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 5 - MCQExams.com
CBSE
Class 12 Commerce Maths
Inverse Trigonometric Functions
Quiz 5
If
f
(
x
)
=
√
sec
−
1
(
2
−
|
x
|
4
)
,
then the domain of
f
(
x
)
is ______________.
Report Question
0%
[
−
2
,
2
]
0%
[
−
6
,
6
]
0%
(
−
∞
,
−
6
]
∪
[
6
,
∞
)
0%
None Of These
If
3
tan
−
1
(
1
2
+
√
3
)
−
tan
−
1
1
x
=
tan
−
1
1
3
then
x
=
Report Question
0%
1
0%
2
0%
3
0%
√
3
Explanation
Let
y
=
tan
−
1
(
1
2
+
√
3
)
⟹
tan
y
=
1
2
+
√
3
tan
3
y
=
3
tan
y
−
tan
3
y
1
+
3
tan
2
y
=
1
2
+
√
3
(
3
−
1
(
2
+
√
3
)
2
)
1
+
3
(
2
+
√
3
)
2
=
1
2
+
√
3
(
20
+
12
√
3
)
4
+
4
√
3
=
20
+
12
√
3
20
+
12
√
3
=
1
⟹
3
tan
−
1
(
1
2
+
√
3
)
=
tan
−
1
(
1
)
tan
−
1
(
1
x
)
=
tan
−
1
(
1
)
−
tan
−
1
1
3
=
tan
−
1
1
−
1
3
1
+
1
3
=
1
2
⟹
x
=
2
n
∑
r
=
1
t
a
n
−
1
(
2
r
−
1
1
+
2
2
r
−
1
)
is equal to :
Report Question
0%
t
a
n
−
1
(
2
n
)
0%
t
a
n
−
1
(
2
n
)
−
π
4
0%
t
a
n
−
1
(
2
n
+
1
)
0%
t
a
n
−
1
(
2
n
+
1
)
−
π
4
Explanation
n
∑
r
=
1
tan
−
1
(
2
r
−
1
1
+
2
2
r
−
1
)
=
n
∑
r
=
1
tan
−
1
(
2
r
−
1
(
2
−
1
)
1
+
2
r
.2
r
−
1
)
=
n
∑
r
=
1
tan
−
1
(
2
r
−
2
r
−
1
1
+
2
r
.2
r
−
1
)
=
n
∑
r
=
1
tan
−
1
2
r
−
tan
−
1
(
2
r
−
1
)
=
tan
−
1
2
−
tan
−
1
1
+
tan
−
1
2
2
−
tan
−
1
2
1
+
⋯
+
tan
−
1
2
n
−
tan
−
1
2
n
−
1
=
tan
−
1
(
2
n
)
−
π
4
For
0
<
x
<
1
the value of
cos
−
1
x
+
cos
−
1
(
−
x
)
=
?
Report Question
0%
0
0%
π
0%
−
π
0%
none of these
Explanation
We've for
|
x
|
≤
1
,
cos
−
1
(
−
x
)
=
π
−
cos
−
1
x
.
It also holds in this case.
So for
0
<
x
<
1
we've,
cos
−
1
x
+
cos
−
1
(
−
x
)
=
cos
−
1
x
+
π
−
cos
−
1
x
=
π
.
The value of
sin
h
(
cos
h
−
1
x
)
is
Report Question
0%
√
x
2
+
1
0%
1
/
√
x
2
+
1
0%
√
x
2
−
1
0%
n
o
n
e
o
f
t
h
e
s
e
The value of
∞
∑
r
=
0
t
a
n
1
(
1
1
+
r
+
r
2
)
is equal to
Report Question
0%
π
4
0%
−
π
2
0%
π
0%
π
2
Explanation
given,
∞
∑
r
=
0
tan
−
1
(
1
1
+
r
+
r
2
)
Consider
tan
−
1
(
1
1
+
r
+
r
2
)
=
tan
−
1
(
1
1
+
r
(
r
+
1
)
)
=
tan
−
1
(
(
r
+
1
)
−
r
1
+
(
r
+
1
)
r
)
=
tan
−
1
(
r
+
1
)
−
tan
−
1
r
G.E
=
∞
∑
r
=
0
tan
−
1
(
r
+
1
)
−
tan
−
1
(
r
)
=
tan
−
1
1
−
tan
−
1
0
+
tan
−
1
2
−
tan
−
1
1
+
.
.
.
…
+
tan
−
1
∞
=
tan
−
1
∞
−
tan
−
1
0
=
π
2
−
0
=
π
2
.
The value of
s
i
n
−
1
(
s
i
n
12
)
+
c
o
s
−
1
(
c
o
s
12
)
is equal to :
Report Question
0%
Z
e
r
o
0%
24
−
2
π
0%
4
π
−
24
0%
None of these
Explanation
Given,
sin
−
1
(
sin
12
)
+
cos
−
1
(
cos
12
)
The principle values,
sin
−
1
x
∈
[
−
π
2
,
π
2
]
,
∀
x
∈
[
−
1
,
1
]
cos
−
1
x
∈
[
0
,
π
]
,
∀
x
∈
[
−
1
,
1
]
∴
sin
−
1
(
sin
12
)
≠
12
∉
[
−
π
2
,
π
2
]
∴
cos
−
1
(
cos
12
)
≠
12
∉
[
0
,
π
]
∴
sin
−
1
(
sin
12
)
+
cos
−
1
(
cos
12
)
=
sin
−
1
(
sin
(
12
−
4
π
)
)
+
cos
−
1
(
cos
(
4
π
−
12
)
)
=
(
12
−
4
π
)
+
(
4
π
−
12
)
=
0
∴
sin
−
1
(
sin
12
)
+
cos
−
1
(
cos
12
)
=
0
The simplified form of
c
o
s
−
1
(
3
5
c
o
s
x
+
4
5
s
i
n
x
)
is :
Report Question
0%
t
a
n
−
1
4
3
−
x
0%
t
a
n
−
1
1
3
−
x
0%
t
a
n
−
1
4
3
+
x
0%
None of these
∞
∑
r
=
1
tan
−
1
(
3
r
2
−
r
+
9
)
is -
Report Question
0%
π
3
0%
π
6
0%
π
2
0%
π
12
I
f
cos
(
2
sin
−
1
x
)
=
1
9
,
t
h
e
n
x
i
s
e
q
u
a
l
t
o
Report Question
0%
O
n
l
y
2
3
0%
O
n
l
y
−
2
3
0%
2
3
,
−
2
3
0%
1
3
If
c
o
s
−
1
3
5
−
s
i
n
−
1
4
5
=
c
o
s
−
1
x
, then x is equal to -
Report Question
0%
0
0%
1
0%
-1
0%
None of these
Explanation
Given,
cos
−
1
3
5
+
sin
−
1
4
5
=
cos
−
1
x
apply
cos
on both sides, we get,
cos
(
cos
−
1
3
5
+
sin
−
1
4
5
)
=
cos
(
cos
−
1
x
)
U
s
e
t
h
e
f
o
l
l
o
w
i
n
g
i
d
e
n
t
i
t
y
:
cos
(
s
+
t
)
=
cos
(
s
)
cos
(
t
)
−
sin
(
s
)
sin
(
t
)
cos
(
cos
−
1
(
3
5
)
)
cos
(
sin
−
1
(
4
5
)
)
−
sin
(
cos
−
1
(
3
5
)
)
sin
(
sin
−
1
(
4
5
)
)
=
x
3
5
(
√
1
−
(
4
5
)
2
)
−
4
5
(
√
1
−
(
3
5
)
2
)
=
x
3
5
×
3
5
−
4
5
×
4
5
=
x
9
25
−
16
25
=
x
∴
x
=
−
7
25
Number of solution of the equation
tan
−
1
(
1
x
−
1
+
1
x
−
2
+
1
x
−
3
+
1
x
−
4
)
+
cos
−
1
(
x
)
=
3
π
4
−
sin
−
1
(
x
)
are
Report Question
0%
0
0%
1
0%
2
0%
3
The range of the function
f
(
x
)
=
ℓ
n
(
sin
−
1
(
x
2
+
x
)
)
is
Report Question
0%
[
−
ℓ
n
(
sin
−
1
1
4
)
,
ℓ
n
π
4
]
0%
[
−
ℓ
n
π
4
,
ℓ
n
π
2
]
0%
(
0
,
ℓ
n
π
2
]
0%
(
−
∞
,
ℓ
n
π
2
]
The trigonometric equation
sin
−
1
x
=
2
sin
−
1
a
, has a solution for-
Report Question
0%
|
a
|
≤
1
√
2
0%
1
2
<
|
a
|
<
1
√
2
0%
a
l
l
r
e
a
l
v
a
l
u
e
s
o
f
a
0%
|
a
|
<
1
2
Explanation
The trigonometric equation
sin
−
1
x
=
2
sin
−
1
a
will have a solution if
2
sin
−
1
a
∈
[
−
π
2
,
π
2
]
(
∵
sin
−
1
x
∈
[
−
π
2
,
π
2
]
)
⟹
sin
−
1
a
∈
[
−
π
4
,
π
4
]
⟹
a
∈
[
−
sin
π
4
,
sin
π
4
]
⟹
a
∈
[
−
1
√
2
,
1
√
2
]
⟹
|
a
|
≤
1
√
2
If
f
(
x
)
=
cos
−
1
(
√
2
x
2
+
1
x
2
+
1
)
, then range of
f
(
x
)
is
Report Question
0%
[
0
,
π
]
0%
(
0
,
π
4
]
0%
(
0
,
π
3
]
0%
[
0
,
π
2
)
Explanation
Given,
f
(
x
)
=
cos
−
1
(
√
2
x
2
+
1
x
2
+
1
)
Range of
√
2
x
2
+
1
x
2
+
1
0
<
f
(
x
)
≤
1
cos
−
1
(
1
)
≤
cos
−
1
(
√
2
x
2
+
1
x
2
+
1
)
<
cos
−
1
(
0
)
0
≤
cos
−
1
(
√
2
x
2
+
1
x
2
+
1
)
<
π
2
Therefore the range is,
0
≤
f
(
x
)
<
π
2
Number of solution(s) to the equation
cos
−
1
x
+
sin
−
1
(
x
2
)
=
π
6
is/are
Report Question
0%
0
0%
1
0%
2
0%
3
Explanation
Hence,
option
(
B
)
is correct answer.
c
o
s
−
1
(
π
3
+
s
e
c
−
1
(
−
2
)
)
=
Report Question
0%
-1
0%
1
0%
0
0%
None of these
Explanation
As we know that
sec
−
1
(
−
2
)
=
2
π
3
∴
cos
(
π
3
+
sec
−
1
(
−
2
)
)
=
cos
(
π
3
+
2
π
3
)
=
cos
π
=
−
1
The value of
cot
(
c
o
s
e
c
−
1
5
3
+
tan
−
1
2
3
)
is equal to-
Report Question
0%
6
17
0%
3
17
0%
4
17
0%
5
17
∫
π
0
[
c
o
t
x
]
d
x
,
w
h
e
r
e
[
⋅
]
denotes the greatest integer function, is equal to:
Report Question
0%
1
0%
-1
0%
−
π
2
0%
π
2
s
e
c
h
−
1
(
s
i
n
θ
)
=
Report Question
0%
l
o
g
(
t
a
n
θ
2
)
0%
l
o
g
(
s
i
n
θ
2
)
0%
l
o
g
(
c
o
s
θ
2
)
0%
l
o
g
(
c
o
t
θ
2
)
cos
−
1
[
cos
(
−
17
15
π
)
]
is equal to
Report Question
0%
−
17
π
15
0%
17
π
15
0%
13
π
15
0%
−
2
π
15
Find
∫
x
.
sin
x
d
x
Report Question
0%
sin
x
+
x
cos
x
=
C
0%
sin
x
−
x
cos
x
+
C
0%
sin
x
+
x
sin
x
+
C
0%
sin
x
−
x
sin
x
+
C
If
A
=
tan
1
−
(
x
√
3
2
k
−
x
)
and
B
=
tan
−
1
(
2
x
−
k
k
√
3
)
then
A
.
B
=
Report Question
0%
0
o
0%
π
/
6
0%
π
/
4
0%
π
/
3
if x
>
0
t
h
e
n
t
a
n
h
−
1
(
x
2
−
1
x
2
+
1
)
Report Question
0%
l
o
g
e
(
2
x
)
0%
l
o
g
e
x
0%
l
o
g
e
(
3
x
)
0%
l
o
g
e
(
5
x
)
i
f
x
>
0
t
h
e
n
t
a
n
h
−
1
(
x
2
−
1
x
2
+
1
)
Report Question
0%
l
o
g
e
(
2
x
)
0%
l
o
g
e
x
0%
l
o
g
e
(
3
x
)
0%
l
o
g
e
(
5
x
)
If
cos
−
1
x
−
cos
−
1
(
y
2
)
=
α
a
x
2
−
4
x
y
cos
α
+
y
2
=
Report Question
0%
−
4
sin
2
α
0%
4
sin
2
α
0%
4
0%
2
sin
2
α
If
cot
−
1
x
+
tan
−
1
(
1
3
)
=
π
2
, then
x
will be
Report Question
0%
1
0%
3
0%
1
3
0%
None of these
Explanation
Given
cot
−
1
x
+
tan
−
1
(
1
3
)
=
π
2
⟹
cot
−
1
x
=
π
2
−
tan
−
1
(
1
3
)
⟹
cot
−
1
x
=
cot
−
1
(
1
3
)
⟹
x
=
1
3
If
x
=
sin
−
1
(
sin
10
)
and
y
=
cos
−
1
(
cos
10
)
, then find
y
−
x
.
Report Question
0%
π
0%
7
π
0%
0
0%
10
Explanation
Given,
x
=
s
i
n
−
1
(
s
i
n
10
)
x
=
3
π
−
10
Also,
y
=
c
o
s
−
1
(
c
o
s
10
)
y
=
4
π
−
10
Therefore,
y
−
x
=
4
π
−
10
−
3
π
+
10
=
π
State true or false.
sin
−
1
x
+
cos
−
1
x
=
π
2
Report Question
0%
True
0%
False
Explanation
As we know that
For
y
∈
[
−
1
,
1
]
,
sin
−
1
y
+
cos
−
1
y
=
π
2
So
sin
−
1
x
+
cos
−
1
x
=
π
2
So the relation is
True
sin
−
1
(
3
5
)
+
cos
−
1
(
12
13
)
=
sin
−
1
(
56
65
)
Report Question
0%
True
0%
False
cos
−
1
{
1
2
x
2
+
√
1
−
x
2
√
1
−
x
2
4
}
=
cos
−
1
x
2
−
cos
−
1
x
holds for:
Report Question
0%
|
x
|
≤
1
0%
x
∈
R
0%
0
≤
x
≤
1
0%
−
1
≤
x
≤
0
Explanation
c
l
e
a
r
l
y
,
x
/
2
ϵ
[
−
1
,
1
]
&
x
ϵ
[
−
1
,
1
]
x
ϵ
[
−
2
,
2
]
&
x
ϵ
[
−
1
,
1
]
Intersection of above sells is [-1,1]
Thus
,
[
|
x
|
≤
1
]
cos
−
1
(
41
/
49
)
sin
−
1
(
2
/
7
)
=
Report Question
0%
4
0%
3
0%
2
0%
1
Explanation
Step-1: Rewrite the Numerator observing Denominator
& apply multiple - angles of trigonometric function.
We have,
cos
−
1
(
41
/
49
)
sin
−
1
(
2
/
7
)
.....(i)
Now,
cos
−
1
(
1
−
2
(
2
7
)
2
)
Put
sin
θ
=
2
7
∴
cos
−
1
(
1
−
2
sin
2
θ
)
cos
−
1
(
cos
2
θ
)
[
cos
2
θ
=
1
−
2
sin
2
θ
]
=
2
θ
Step-2: Use the above results & get the required unknown.
cos
−
1
(
41
/
49
)
sin
−
1
(
2
/
7
)
=
2
θ
θ
=
2
[
using (i)
]
Hence, option - C is the answer
The value of
t
a
n
(
1
2
c
o
s
−
1
(
√
5
3
)
)
is
Report Question
0%
3
+
√
5
2
0%
3
−
√
5
0%
1
2
(
3
−
√
5
)
0%
none of these
Explanation
Given,
y
=
tan
[
1
2
cos
−
1
(
√
5
3
)
]
Let,
x
=
cos
−
1
(
√
5
3
)
⇒
cos
x
=
√
5
3
∴
y
=
tan
1
2
x
y
=
tan
x
2
y
=
√
1
−
cos
x
1
+
cos
x
=
√
1
−
√
5
3
1
+
√
5
3
=
√
3
−
√
5
3
+
√
5
rationalizing the factor, we get,
y
=
3
−
√
5
2
sin
−
1
(
4
5
)
+
sin
−
1
(
7
25
)
=
sin
−
1
(
117
125
)
Report Question
0%
True
0%
False
If tan (x + y) = 33 and x =
t
a
n
−
1
3
, then y will be
Report Question
0%
0.3
0%
t
a
n
−
1
(
1.3
)
0%
t
a
n
−
1
(
0.3
)
0%
t
a
n
−
1
(
1
18
)
Explanation
Given,
tan
(
x
+
y
)
=
33
x
=
tan
−
1
3
⇒
tan
x
=
3
Formula,
tan
(
x
+
y
)
=
tan
x
+
tan
y
1
−
tan
x
tan
y
33
=
3
+
tan
y
1
−
(
3
)
tan
y
33
(
1
−
3
tan
y
)
=
3
+
tan
y
33
−
99
tan
y
=
3
+
tan
y
30
=
100
tan
y
tan
y
=
30
100
=
0.3
∴
y
=
tan
−
1
0.3
If
s
i
n
−
1
(
1
3
)
+
s
i
n
−
1
(
2
3
)
=
s
i
n
−
1
x
, then x is equal to
Report Question
0%
0
0%
√
5
+
4
√
2
9
0%
5
√
2
−
4
√
5
9
0%
π
2
Explanation
sin
−
1
1
3
+
sin
−
1
2
3
sin
−
1
{
1
3
√
1
−
(
2
3
)
2
+
2
3
√
1
−
(
1
3
)
2
}
sin
−
1
{
1
3
(
√
5
3
)
+
2
3
(
√
8
3
)
}
sin
−
1
{
√
5
+
4
√
2
9
}
x
=
√
5
+
4
√
2
9
The value of
sin
−
1
(
sin
5
π
3
)
=
Report Question
0%
−
π
3
0%
π
3
0%
4
π
3
0%
3
π
3
Explanation
Given,
sin
−
1
(
sin
5
π
3
)
Let
θ
=
sin
−
1
(
sin
5
π
3
)
sin
θ
=
(
sin
5
π
3
)
=
sin
(
2
π
−
π
3
)
⇒
sin
θ
=
−
sin
π
3
∴
θ
=
−
π
3
The value of
s
e
c
[
s
i
n
−
1
(
s
i
n
50
π
9
)
+
c
o
s
−
1
c
o
s
(
31
π
9
)
]
is equal to
Report Question
0%
s
e
c
10
π
9
0%
s
e
c
9
π
0%
−
1
0%
1
Explanation
Given,
sec
[
sin
−
1
(
sin
50
π
9
)
+
cos
−
1
(
cos
31
π
9
)
]
=
sec
[
50
π
9
+
31
π
9
]
=
sec
81
π
9
=
sec
9
π
tan
−
1
(
3
/
5
)
+
tan
−
1
(
1
/
4
)
=
Report Question
0%
0
0%
π
/
4
0%
3
n
/
4
0%
None of these
Explanation
given,
tan
−
1
3
5
+
tan
−
1
1
4
=
tan
−
1
(
3
5
+
1
4
1
−
3
5
×
1
4
)
=
tan
−
1
(
12
+
5
20
1
−
3
20
)
=
tan
−
1
(
17
20
20
−
3
20
)
=
tan
−
1
(
17
20
17
20
)
=
tan
−
1
(
1
)
=
π
4
tan
−
1
(
tan
3
π
/
4
)
=
Report Question
0%
5
π
/
4
0%
π
/
4
0%
−
π
/
4
0%
None of these
Explanation
Let
y
=
tan
−
1
(
tan
3
π
4
)
⇒
tan
y
=
tan
(
π
−
π
4
)
⇒
tan
y
=
tan
π
4
∴
y
=
π
4
,
π
+
π
4
⇒
y
=
π
4
,
4
π
+
π
4
∴
y
=
π
4
,
5
π
4
The value of
sin
−
1
(
cos
(
log
2
(
4
α
−
44
)
)
)
is
Report Question
0%
π
3
0%
π
2
0%
0
0%
1
tan
(
2
cos
−
1
3
5
)
=
_____
Report Question
0%
8
3
0%
24
25
0%
7
25
0%
−
24
7
Explanation
Given,
tan
(
2
cos
−
1
(
3
5
)
)
as
tan
(
2
x
)
=
2
tan
(
x
)
1
−
tan
2
(
x
)
=
2
tan
(
cos
−
1
(
3
5
)
)
1
−
tan
2
(
cos
−
1
(
3
5
)
)
as
tan
(
cos
−
1
(
x
)
)
=
√
1
−
x
2
x
=
2
(
√
1
−
(
3
5
)
2
(
3
5
)
)
1
−
(
√
1
−
(
3
5
)
2
(
3
5
)
)
2
=
2
⋅
5
√
−
(
3
5
)
2
+
1
3
1
−
(
5
√
−
(
3
5
)
2
+
1
3
)
2
=
2
⋅
5
√
−
(
3
5
)
2
+
1
3
1
−
4
2
3
2
=
8
3
1
−
4
2
3
2
=
8
3
(
1
−
16
9
)
=
−
8
7
3
=
−
24
7
tan
−
1
(
1
7
)
+
tan
−
1
(
1
13
)
=
cos
−
1
(
9
2
)
Report Question
0%
True
0%
False
The solution set of the equation
2
c
o
s
−
1
x
=
c
o
t
−
1
(
2
x
2
−
1
2
x
√
1
x
2
)
is
Report Question
0%
(
0
,
1
)
0%
(
−
1
,
1
)
−
0
0%
(
−
1
,
0
)
0%
[
−
1
,
1
]
cos
−
1
[
cos
(
2
cot
−
1
(
√
2
−
1
)
)
]
is equal to
Report Question
0%
√
2
−
1
0%
1
−
√
2
0%
π
/
4
0%
3
π
/
4
The number of solutions of the equation
3
cos
−
1
x
−
π
x
−
π
2
=
0
Report Question
0%
0
0%
1
0%
2
0%
i
n
f
i
n
i
t
e
If
α
=
cos
−
1
(
3
5
)
,
β
=
tan
−
1
(
1
3
)
where
0
<
α
,
b
e
t
a
<
π
2
,
then
α
−
β
is equal to :
Report Question
0%
sin
−
1
(
9
5
√
10
)
0%
tan
−
1
(
9
14
)
0%
cos
−
1
(
9
5
√
10
)
0%
tan
−
1
(
9
5
√
10
)
Explanation
cos
α
=
3
5
,
tan
β
=
1
5
⇒
tan
α
=
4
3
⇒
t
a
n
(
α
−
β
)
=
4
3
−
1
3
1
+
4
3
.
1
3
=
9
3
⇒
sin
(
α
−
β
)
=
9
5
√
10
⇒
α
−
β
=
sin
−
1
(
9
5
√
10
)
If
sin
−
1
1
x
=
2
tan
−
1
1
7
+
cos
−
1
3
5
, then
x
=
___
Report Question
0%
24
117
0%
7
3
0%
125
117
0%
None of these
Explanation
2
tan
−
1
(
1
7
)
+
cos
−
1
(
3
5
)
=
tan
−
1
(
1
7
)
+
tan
−
1
(
1
7
)
+
cos
−
1
(
3
5
)
=
tan
−
1
(
1
7
+
1
7
1
−
1
7
×
1
7
)
+
cos
−
1
(
3
5
)
[
∵
tan
−
1
+
tan
−
1
y
tan
−
1
x
=
tan
−
1
(
x
+
y
1
−
x
y
)
]
=
tan
−
1
(
2
7
1
−
1
49
)
+
θ
=
tan
−
1
(
7
24
)
+
tan
−
1
(
4
3
)
=
tan
−
1
(
7
24
+
4
3
1
−
7
24
×
4
3
)
=
tan
−
1
(
117
44
)
∵
sin
−
1
(
1
x
)
=
tan
−
1
(
117
44
)
Let
θ
=
tan
−
1
(
117
44
)
∴
tan
θ
=
117
44
∴
sin
θ
=
117
√
117
2
+
44
2
=
117
125
∴
θ
=
sin
−
1
(
117
125
)
∴
sin
−
1
(
1
x
)
=
sin
−
1
(
117
125
)
On comparing
1
x
=
117
125
∴
x
=
125
117
If
cos
−
1
x
−
cos
−
1
y
2
=
α
where
−
1
−
1
≤
x
≤
1
,
−
2
≤
y
≤
2
,
x
≤
y
2
then for all
4
x
2
−
4
x
y
cos
α
+
y
2
is equal to
Report Question
0%
4
sin
2
α
−
2
x
2
y
2
0%
4
cos
2
α
+
2
x
2
y
2
0%
4
sin
2
α
0%
2
sin
2
α
Explanation
cos
(
cos
−
1
x
−
cos
−
1
y
2
)
=
cos
α
cos
α
⇒
x
×
y
2
+
√
1
−
x
2
√
1
−
y
2
4
⇒
(
cos
α
−
x
y
2
)
2
=
(
1
−
x
2
)
(
1
−
y
2
4
)
x
2
+
y
2
4
−
x
y
cos
α
=
1
−
cos
2
α
=
sin
2
α
The value of
t
a
n
(
cos
−
1
3
5
+
tan
−
1
1
4
)
is
Report Question
0%
19
8
0%
8
19
0%
19
12
0%
3
4
Explanation
Given,
tan
(
cos
−
1
3
5
+
tan
−
1
1
4
)
Let,
cos
−
1
3
5
=
a
⇒
cos
a
=
3
5
⇒
sin
2
a
=
1
−
cos
2
a
=
1
−
9
25
=
25
−
9
25
=
16
25
∴
sin
a
=
4
5
⇒
tan
a
=
sin
a
cos
a
=
4
5
3
5
=
4
3
⇒
a
=
tan
−
1
4
3
∴
tan
(
cos
−
1
3
5
+
tan
−
1
1
4
)
=
tan
(
a
+
tan
−
1
1
4
)
where
a
=
cos
−
1
3
5
=
tan
(
tan
−
1
4
3
+
tan
−
1
1
4
)
where
a
=
cos
−
1
3
5
=
tan
−
1
4
3
We know that
tan
−
1
A
+
tan
−
1
B
=
tan
−
1
(
A
+
B
1
−
A
B
)
=
tan
(
tan
−
1
(
4
3
+
1
4
1
−
4
3
×
1
4
)
)
=
tan
(
tan
−
1
(
16
+
3
12
1
−
4
12
)
)
=
tan
(
tan
−
1
(
19
12
12
−
4
12
)
)
=
tan
(
tan
−
1
19
8
)
=
19
8
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page