CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 5 - MCQExams.com

If $$f ( x ) = \sqrt { \sec ^ { - 1 } \left( \frac { 2 - | x | } { 4 } \right) } ,$$ then the domain of $$f ( x )$$ is ______________.
  • $$[ - 2,2 ]$$
  • $$[ - 6,6 ]$$
  • $$( - \infty , - 6 ] \cup [ 6 , \infty )$$
  • None Of These
If $$3{\tan ^{ - 1}}\left( {\frac{1}{{2 + \sqrt 3 }}} \right) - {\tan ^{ - 1}}\frac{1}{x} = {\tan ^{ - 1}}\frac{1}{3}$$ then $$x = $$
  • $$1$$
  • $$2$$
  • $$3$$
  • $$\sqrt 3 $$
$$\displaystyle \sum _{ r=1 }^{ n }{ { tan }^{ -1 } } \left(\dfrac { { 2 }^{ r-1 } }{ 1+{ 2 }^{ 2r-1 } } \right)$$ is equal to :
  • $${ tan }^{ -1 }({ 2 }^{ n })$$
  • $${ tan }^{ -1 }({ 2 }^{ n })-\frac { \pi }{ 4 } $$
  • $${ tan }^{ -1 }({ 2 }^{ n+1 })$$
  • $${ tan }^{ -1 }({ 2 }^{ n+1 })-\frac { \pi }{ 4 } $$
For $$0<x<1$$ the value of $$\cos^{-1}x+\cos^{-1}(-x)=?$$
  • $$0$$
  • $$\pi$$
  • $$-\pi$$
  • none of these
The value of $$\sin\ h(\cos\ h^{-1}x)$$ is 
  • $$\sqrt{x^{2}+1}$$
  • $$1/\sqrt{x^{2}+1}$$
  • $$\sqrt{x^{2}-1}$$
  • $$none of these$$
The value of $$\displaystyle \sum_{r=0}^{\infty}{ tan}^{1}\left(\dfrac{1}{1+r+{r}^{2}}\right)$$  is equal to
  • $$\dfrac { \pi } { 4 }$$
  • $$- \dfrac { \pi } { 2 }$$
  • $$\pi$$
  • $$\dfrac { \pi } { 2 }$$
The value of $${ sin }^{ -1 }(sin12)+{ cos }^{ -1 }(cos12)$$ is equal to :
  • $$Zero$$
  • $$24-2\pi $$
  • $$4\pi -24$$
  • None of these
The simplified form of $${ cos }^{ -1 }\left( \frac { 3 }{ 5 } { cos }x+\frac { 4 }{ 5 } { sin }x \right) $$ is :
  • $${ tan }^{ -1 }\frac { 4 }{ 3 } -x$$
  • $${ tan }^{ -1 }\frac { 1 }{ 3 } -x$$
  • $${ tan }^{ -1 }\frac { 4 }{ 3 } +x$$
  • None of these
$$\displaystyle \sum^{\infty}_{r=1}\tan^{-1}\left(\dfrac {3}{r^{2}-r+9}\right)$$ is -
  • $$\dfrac {\pi}{3}$$
  • $$\dfrac {\pi}{6}$$
  • $$\dfrac {\pi}{2}$$
  • $$\dfrac {\pi}{12}$$
$$If\,\cos \left( {2{{\sin }^{ - 1}}x} \right) = \frac{1}{9},\,then\,\,x\,\,is\,\,equal\,\,to$$
  • $$Only\,\frac{2}{3}\,$$
  • $$Only - \frac{2}{{3\,}}$$
  • $$\,\frac{2}{3}, - \frac{2}{3}$$
  • $$\frac{1}{3}$$
If $${ cos }^{ -1 }\dfrac { 3 }{ 5 } -{ sin }^{ -1 }\dfrac { 4 }{ 5 } ={ cos }^{ -1 }x$$, then x is equal to -
  • 0
  • 1
  • -1
  • None of these
Number of solution of the equation $$\tan^{-1}\left(\dfrac {1}{x-1}+\dfrac {1}{x-2}+\dfrac {1}{x-3}+\dfrac {1}{x-4} \right)+\cos^{-1}(x)=\dfrac {3\pi}{4}-\sin^{-1}(x)$$ are
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
The range of the function $$f(x)=\ell n\ (\sin^{-1}(x^{2}+x))$$ is
  • $$\left[-\ell n \left(\sin^{-1}\dfrac {1}{4}\right),\ell n \dfrac {\pi}{4}\right]$$
  • $$\left[-\ell n \dfrac {\pi}{4},\ell n \dfrac {\pi}{2}\right]$$
  • $$\left(0,\ell n \dfrac {\pi}{2}\right]$$
  • $$\left(-\infty ,\ell n \dfrac {\pi}{2}\right]$$
The trigonometric equation $$\sin^{-1}x=2\sin^{-1}a$$, has a solution for-
  • $$\left|a\right|\le\dfrac{1}{\sqrt{2}}$$
  • $$\dfrac{1}{2}<\left|a\right|<\dfrac{1}{\sqrt{2}}$$
  • $$all\ real\ values\ of\ a$$
  • $$\left|a\right|<\dfrac{1}{2}$$
If $$f(x)=\cos^{-1}\left(\dfrac {\sqrt {2x^{2}+1}}{x^{2}+1}\right)$$, then range of $$f(x)$$ is
  • $$[0,\pi]$$
  • $$\left(0,\dfrac {\pi}{4}\right]$$
  • $$\left(0,\dfrac {\pi}{3}\right]$$
  • $$\left[0,\dfrac {\pi}{2}\right)$$
Number of solution(s) to the equation$$ $$ $${\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{\pi }{6}\,$$ is/are 
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
$$cos^{-1}\left(\dfrac{\pi}{3}+sec^{-1}(-2)\right)$$=
  • -1
  • 1
  • 0
  • None of these
The value of $$\cot\left(cosec^{-1}\dfrac{5}{3}+\tan^{-1}\dfrac{2}{3}\right)$$ is equal to-
  • $$\dfrac{6}{17}$$
  • $$\dfrac{3}{17}$$
  • $$\dfrac{4}{17}$$
  • $$\dfrac{5}{17}$$
$$\int _{ 0 }^{ \pi  }{ \left[ cotx \right] dx,where\left[ \cdot  \right]  } $$ denotes the greatest integer function, is equal to:
  • 1
  • -1
  • $$-\dfrac { \pi }{ 2 } $$
  • $$\dfrac { \pi }{ 2 }$$
$${ sec\quad h }^{ -1 }\left( sin\quad \theta  \right) =$$
  • $$log\left( tan\frac { \theta }{ 2 } \right) $$
  • $$log\left( sin\frac { \theta }{ 2 } \right) $$
  • $$log\left( cos\frac { \theta }{ 2 } \right)$$
  • $$log\left( cot\frac { \theta }{ 2 } \right) $$
$$\cos^{ -1 }\left[\cos\left( -\frac { 17 }{ 15 } \pi  \right)  \right] $$ is equal to 
  • $$-\frac { 17\pi }{ 15 } $$
  • $$\frac { 17\pi }{ 15 } $$
  • $$\frac { 13\pi }{ 15 } $$
  • $$\frac { -2\pi }{ 15 } $$
Find $$\displaystyle \int x.\sin xdx$$
  • $$\sin x+x\cos x=C$$
  • $$\sin x-x\cos x+C$$
  • $$\sin x+x\sin x+C$$
  • $$\sin x-x\sin x+C$$
If $$A=\tan^{1-}\left(\dfrac {x\sqrt {3}}{2k-x}\right)$$ and $$B=\tan^{-1}\left(\dfrac {2x-k}{k\sqrt {3}}\right)$$ then $$A.B=$$
  • $$0^{o}$$
  • $$\pi /6$$
  • $$\pi /4$$
  • $$\pi /3$$
if x$$>0\quad then\quad { tanh }^{ -1 }\left( \frac { { x }^{ 2 }-1 }{ { x }^{ 2 }+1 }  \right)$$
  • $${ log }_{ e }\left( 2x \right)$$
  • $${ log }_{ e }x$$
  • $${ log }_{ e }\left( 3x \right)$$
  • $${ log }_{ e }\left( 5x \right)$$
$$if\quad x>0\quad then\quad { tanh }^{ -1 }\left( \frac { { x }^{ 2 }-1 }{ { x }^{ 2 }+1 }  \right) $$
  • $${ log }_{ e }\left( 2x \right) $$
  • $${ log }_{ e }x$$
  • $${ log }_{ e }\left( 3x \right) $$
  • $${ log }_{ e }\left( 5x \right) $$
If $$\cos^{-1}x-\cos^{-1}(\dfrac {y}{2})=\alpha$$ $$ax^{2}-4xy\cos \alpha +y^{2}=$$
  • $$-4\sin^{2}\alpha$$
  • $$4\sin^{2}\alpha$$
  • $$4$$
  • $$2\sin 2\alpha$$
If $$\cot^{-1}{x}+\tan^{-1}\left (\dfrac{1}{3}\right)=\dfrac{\pi}{2}$$, then $$x$$ will be
  • $$1$$
  • $$3$$
  • $$\dfrac {1}{3}$$
  • None of these
If $$x={ \sin }^{ -1 }(\sin10) $$ and $$y={ \cos }^{ -1 }(\cos10)$$, then find $$y - x$$.
  • $$\pi $$
  • $$7\pi $$
  • $$0$$
  • $$10$$
State true or false.
$$\sin^{-1}x+\cos^{-1}x=\dfrac {\pi}{2}$$
  • True
  • False
$${ \sin }^{ -1 }\left (\dfrac { 3 }{ 5 }\right )+{ \cos }^{ -1 }\left (\dfrac { 12 }{ 13 }\right )={ \sin }^{ -1 }\left (\dfrac { 56 }{ 65 } \right)$$
  • True
  • False
$$\cos ^{ -1 }{ \left\{ \dfrac { 1 }{ 2 } { x }^{ 2 }+\sqrt { 1-{ x }^{ 2 } } \sqrt { 1-\dfrac { { x }^{ 2 } }{ 4 }  }  \right\} =\cos ^{ -1 }{ \dfrac { x }{ 2 } -\cos ^{ -1 }{ x }  }  }$$ holds for:
  • $$|x|\le 1$$
  • $$x\in R$$
  • $$0\le x\le 1$$
  • $$-1\le x\le 0$$
$$\frac{\cos ^{-1}(41 / 49)}{\sin ^{-1}(2 / 7)}=$$
  • 4
  • 3
  • 2
  • 1
The value of $$tan(\frac { 1 }{ 2 } { cos }^{ -1 }(\frac { \sqrt { 5 }  }{ 3 } ))$$ is
  • $$\frac { 3+\sqrt { 5 } }{ 2 } $$
  • $$3-\sqrt { 5 } $$
  • $$\frac { 1 }{ 2 } (3-\sqrt { 5 } )$$
  • none of these
$$\sin^{-1}\left(\dfrac{4}{5}\right)+\sin^{-1}\left(\dfrac{7}{25}\right)=\sin^{-1}\left(\dfrac{117}{125}\right)$$
  • True
  • False
If tan (x + y) = 33 and x = $${ tan }^{ -1 }3$$, then y will be
  • 0.3
  • $${ tan }^{ -1 }(1.3)$$
  • $${ tan }^{ -1 }(0.3)$$
  • $${ tan }^{ -1 }(\frac { 1 }{ 18 } )$$
If $$sin^{-1}(\dfrac{1}{3}) + sin^{-1}(\dfrac{2}{3}) = sin^{-1} x$$, then x is equal to
  • $$0$$
  • $$\dfrac{\sqrt{5}+4\sqrt{2}}{9}$$
  • $$\dfrac{5\sqrt{2}-4\sqrt{5}}{9}$$
  • $$\dfrac{\pi}{2}$$
The value of $$\sin ^{-1}(\sin 5\frac {\pi}{3})=$$
  • $$-\frac {\pi}3$$
  • $$\frac {\pi}3$$
  • $$\frac {4\pi}3$$
  • $$\frac {3\pi}3$$
The value of $$\displaystyle sec\left [ sin^{-1}\left (sin \dfrac{50\pi }{9} \right ) + cos^{-1}cos\left ( \dfrac{31\pi }{9} \right ) \right ]$$ is equal to
  • $$sec\dfrac{10\pi}{9}$$
  • $$sec \ 9{\pi}$$
  • $$-1$$
  • $$1$$
$$\tan { ^{ -1 }\left( 3/5 \right)  } +\tan { ^{ -1 }\left( 1/4 \right)  } =$$
  • $$0$$
  • $$\pi /4$$
  • $$3n/4$$
  • None of these
$$\tan { ^{ -1 }\left( \tan { 3\pi /4 }  \right) = } $$
  • $$5\pi /4$$
  • $$\pi /4$$
  • $$-\pi /4$$
  • None of these
The value of $$\sin^{-1}(\cos (\log_{2}(4\alpha -44)))$$ is
  • $$\dfrac {\pi}{3}$$
  • $$\dfrac {\pi}{2}$$
  • $$0$$
  • $$1$$
$$\tan (2\cos ^{-1}\frac 35)=$$_____
  • $$\frac 83$$
  • $$\frac {24}{25}$$
  • $$\frac 7{25}$$
  • $$\frac {-24}7$$
$${ \tan }^{ -1 }\left( \dfrac { 1 }{ 7 }  \right) +{ \tan }^{ -1 }\left( \dfrac { 1 }{ 13 }  \right) =\cos ^{ -1 }{ \left( \dfrac { 9 }{ 2 }  \right)  } $$
  • True
  • False
The solution set of the equation$$2 cos^{ -1 } x = cot^{ -1 } \left(\dfrac { 2x^{ 2 } - 1 }{ 2x \sqrt { 1 x^{ 2 } } }\right) $$ is
  • $$\left(0, 1\right)$$
  • $$\left(-1, 1\right)-{ 0 }$$
  • $$\left(-1, 0\right)$$
  • $$\left[-1, 1\right]$$
$${ \cos   }^{ -1 }\left[ \cos  \left( 2{ \cot   }^{ -1 }\left( \sqrt { 2 } -1 \right)  \right)  \right]$$ is equal to
  • $$\sqrt{2}-1$$
  • $$1-\sqrt{2}$$
  • $$\pi/4$$
  • $$3\pi/4$$
The number of solutions of the equation $$3\cos^{-1}x-\pi x-\dfrac {\pi}{2}=0$$
  • $$0$$
  • $$1$$
  • $$2$$
  • $$infinite$$
If $$\alpha =\cos^{-1}\left(\dfrac{3}{5}\right),\beta=\tan^{-1}\left(\dfrac{1}{3}\right)$$ where $$0<\alpha,beta <\dfrac{\pi}{2},$$then $$\alpha -\beta $$ is equal to :
  • $$\sin^{-1}\left(\dfrac{9}{5\sqrt{10}}\right)$$
  • $$\tan^{-1}\left(\dfrac{9}{14}\right)$$
  • $$\cos^{-1}\left(\dfrac{9}{5\sqrt{10}}\right)$$
  • $$\tan^{-1}\left(\dfrac{9}{5\sqrt{10}}\right)$$
If $$\;\sin {\;^{ - 1}}\dfrac{1}{x} = 2\;{\tan ^{ - 1}}\dfrac{1}{7} + {\cos ^{ - 1}}\dfrac{3}{5}$$, then $$x =$$ ___
  • $$\dfrac {24}{117}$$
  • $$\dfrac {7}{3}$$
  • $$\dfrac {125}{117}$$
  • None of these
If $$\cos ^{ -1 }{ x } -\cos ^{ -1 }{ \cfrac { y }{ 2 }  } =\alpha $$ where $$-1-1\le x\le 1,-2\le y\le 2,x\le \cfrac { y }{ 2 } $$ then for all $$4{ x }^{ 2 }-4xy\cos { \alpha  } +{ y }^{ 2 }$$ is equal to
  • $$4\sin ^{ 2 }{ \alpha } -2{ x }^{ 2 }{ y }^{ 2 }$$
  • $$4\cos ^{ 2 }{ \alpha } +2{ x }^{ 2 }{ y }^{ 2 }$$
  • $$4\sin ^{ 2 }{ \alpha } $$
  • $$2\sin ^{ 2 }{ \alpha } $$
The value of $$tan \left (\cos^{-1} \dfrac {3}{5} + \tan^{-1} \dfrac {1}{4}\right )$$ is
  • $$\dfrac {19}{8}$$
  • $$\dfrac {8}{19}$$
  • $$\dfrac {19}{12}$$
  • $$\dfrac {3}{4}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers