Processing math: 56%

CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 6 - MCQExams.com

The value of tan113+tan115+tan117+tan118 is ___________.
  • 11π5
  • π4
  • π
  • 3π4
tan[2tan115π4]= ?
  • 717
  • 717
  • 712
  • 712
sin(cos135)= ?
  • 34
  • 45
  • 35
  • none of these
cos(tan134)=?
  • 35
  • 45
  • 49
  • none of these
Evaluate : tan12(cos153) 
  • (35)2
  • (3+5)2
  • (53)2
  • (5+3)2
If x0 then cos(tan1x+cot1x)=?
  • 1
  • 1
  • 0
  • none of these
The value of sin(sin112+cos112)=?
  • 0
  • 1
  • 1
  • none of these
The value of sin(cos135) is
  • 25
  • 45
  • 25
  • none of these
sin[2tan158]
  • 2564
  • 8089
  • 75128
  • none of these
sin[2sin145]
  • 1225
  • 1625
  • 2425
  • none of these
sin{π3sin1(12)}= ?
  • 1
  • 0
  • 12
  • none of these
tan{cos145+tan123}= ?
  • 136
  • 176
  • 196
  • 236
Evaluate : cot(tan1x+cot1x) 
  • 1
  • 12
  • 0
  • none of these
Evaluate : cos(2tan112) 
  • 35
  • 45
  • 78
  • none of these
The value of 
sin1{(sinπ/3)xx2+k2kx}cos1{cosπ/6xx2+k2kx}
 (wherek2<x<2k,k>0) is 
  • tan1(2x2+xkk2x22xk+k2)
  • tan1(x2+2xkk2x22xk+k2)
  • tan1(x2+2xk2k22x22xk+2k2)
  • none of these
If sin15x+sin112x=π2, then x is equal to
  • 713
  • 43
  • 13
  • 137
tan1x+tan1y+tan1z=π2, then 
  • xy+yz+zxxyz=0
  • xy+yz+zx+xyz=0
  • xy+yz+zx+1=0
  • xy+yz+zx1=0

cos1(cos(5π4)) is given by

  • 5π4
  • 3π4
  • π4
  • none of these

The value of sin1(cot(sin1234+cos1124+sec12)) is

  • 0
  • π2
  • π3
  • none of these
If tan11x1+x=12tan1x, then x is equal to
  • 1
  • 3
  • 13
  • none of these
If  tan1x+2cot1x=2π3, then x is equal to 
  • 313+1
  • 3
  • 3
  • 2
If  3sin1(2x1+x2)4cos1(1x21+x2)+2tan1(2x1x2)=π3, where |x|<1. then x is equal to
  • 13
  • 13
  • 3
  • 34
  • 32
The principal value of sin1(sin10) is
  • 10
  • 103π
  • 3π10
  • none of these
If  3tan1(12+3)tan11x=13, then x is equal to
  • 1
  • 2
  • 3
  • 2
The value 2tan1[aba+btanθ2] is equal to
  • cos1[acosθ+bbcosθ+a]
  • cos1[bcosθ+aacosθ+b]
  • cos1[acosθbcosθ+a]
  • cos1[bcosθacosθ+b]
 If x=sec1(x+1x)+sec1(y+1y) where xy < 0, then the possible values of z is (are)
  • 8π10
  • 7π10
  • 9π10
  • 21π20
If tan1(sin2θ2sinθ+3)+cot1(5sec2y+1)=π2, then the value of cos2θsinθ is equal to
  • 0
  • 1
  • 1
  • none of these
If  f(x)=sin1(32x121x2),12x1, then f(x) is equal to
  • sin1(12)sin1x
  • sin1xπ6
  • sin1x+π6
  • none of these
If  cot1(cosa)tan1(cosa)=x, then sinx is  
  • tan2α2
  • cot2α2
  • tanα
  • cotα2
2tan1(2) is equal to
  • cos1(35)
  • π+cos1(35)
  • π2+tan1(34)
  • π+cot1(34)
The value of lim|x|cos(tan1(sin(tan1x)))  is equal to
  • 1
  • 2
  • 12
  • 12
If x\in\bigg(\dfrac{-\pi}{2},\dfrac{\pi}{2}\bigg), then the value \tan^{-1}\Bigg(\dfrac{\tan x}{4}\Bigg)+\tan^{-1}\Bigg(\dfrac{3\sin 2x}{5+3\cos 2x}\Bigg)  is
  • \dfrac{x}{2}
  • 2x
  • 3x
  • x
If \alpha,\beta \,\,and\,\, \gamma are the roots of \displaystyle \tan^{-1} \left ( x-1 \right ) +\tan^{-1} x + \tan^{-1} \left ( x+1 \right ) = \tan^{-1} 3x, then
  • \alpha+\beta+ \gamma=0
  • \alpha\beta+\beta\gamma+\gamma\alpha=\dfrac{-1}{4}
  • \alpha\beta\gamma=1
  • |\alpha-\beta|_{max}=1
If f(x) = (\sin^{-1}x)^2 +(\cos^{-1}x)^2, then.
  • f(x) has the least value of \dfrac{\pi^2}{8}
  • f(x) has the least value of \dfrac{5\pi^2}{8}
  • f(x) has the least value of \dfrac{\pi^2}{16}
  • f(x) has the least value of \dfrac{5\pi^2}{4}
If sin^{-1}x+sin^{-1}y=\dfrac{\pi}{2} and \sin 2x=\cos 2y, then
  • x=\dfrac{\pi}{8}+\sqrt{\dfrac{1}{2}-\dfrac{\pi^2}{64}}
  • y=-\dfrac{\pi}{12}+\sqrt{\dfrac{1}{2}-\dfrac{\pi^2}{64}}
  • x=\dfrac{\pi}{12}+\sqrt{\dfrac{1}{2}-\dfrac{\pi^2}{64}}
  • y=-\dfrac{\pi}{8}+\sqrt{\dfrac{1}{2}-\dfrac{\pi^2}{64}}
cos^{-1}x+cos^{-1}\Bigg[\dfrac{x}{2}+\dfrac{1}{2}\sqrt{3-3x^2}\Bigg] is equal to
  • \dfrac{\pi}{3} for x\in\Bigg[\dfrac{1}{2},1\Bigg]
  • \dfrac{\pi}{3} for x\in\Bigg[0,\dfrac{1}{2}\Bigg]
  • 2cos^{-1}x-cos^{-1}\dfrac{1}{2} for x\in\Bigg[\dfrac{1}{2},1\Bigg]
  • 2cos^{-1}x-cos^{-1}\dfrac{1}{2} for x\in\Bigg[0,\dfrac{1}{2}\Bigg]
The domain of the function \cos ^{-1}(2x-1) is
  • [0,1]
  • [-1,1]
  • (-1,1)
  • [0,\pi]
If \cos \left(\sin ^{-1}\dfrac{2}{5} + \cos ^{-1} x\right)=0 then x is equal to
  • \dfrac{1}{5}
  • \dfrac{2}{5}
  • 0
  • 1
The domain of trigonometric function can be restricted to any one of their branch (not necessarily principle value) in order to obtain their inverse functions.
  • True
  • False
The minimum value of n for which \tan^{-1}\dfrac {n}{\pi} > \dfrac {\pi}{4}, n\ \in \ N is valid is 5.
  • True
  • False
All trigonometric functions have inverse over their respective domains.
  • True
  • False
The value of \cot \left[cos^{-1}\left(\dfrac{7}{25}\right)\right] is
  • \dfrac{25}{24}
  • \dfrac{25}{7}
  • \dfrac {24} {25}
  • \dfrac {7} {24}
If |x| \le 1, then 2 \tan ^{-1}x +\sin ^{-1} \left(\dfrac{2x}{1+x^2} \right) is equal to 
  • 4\ \tan^{-1}x
  • 0
  • \dfrac{\pi}{2}
  • \pi
The value of the expression 2 \sec ^{-1}2+ \sin^{-1}\left(\dfrac{1}{2}\right) is
  • \dfrac{\pi}{6}
  • \dfrac{5\pi}{6}
  • \dfrac{7\pi}{6}
  • 1
The value of \sin [2 \tan ^{-1} (.75)] is equal to
  • 0.75
  • 1.5
  • 0.96
  • \sin 1.5
The value of \cos ^{-1} \left(\cos \dfrac{3 \pi}{2}\right) is equal to
  • \dfrac{\pi}{2}
  • \dfrac{3\pi}{2}
  • \dfrac{5\pi}{2}
  • \dfrac{7\pi}{2}
The value of the expression (\cos^{-1}x)^2 is equal to \sec^2 x.
  • True
  • False
If \cos ^{-1} \alpha +\cos ^{-1} \beta +\cos ^{-1} \gamma = 3 \pi, then \alpha (\beta + \gamma) + \beta (\gamma + \alpha) + \gamma (\alpha + \beta)
  • 0
  • 1
  • 6
  • 12
The domain of the function defined by f(x)=\sin^{-1}x+\cos x is 
  • [-1, 1]
  • [-1, \pi +1]
  • ( -\infty, \infty)
  • \phi
If \sin^{-1}x+\sin^{-1}y=\dfrac{\pi}{2}, then the value of \cos^{-1}x+\cos^{-1}y is 
  • \dfrac{\pi}{2}
  • \pi
  • 0
  • \dfrac{2\pi}{3}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers