CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 7 - MCQExams.com

If $$\tan^{-1}x=\dfrac{\pi}{10}$$ for some $$x\in R$$, then the value of $$\cot^{-1}x$$ is 
  • $$\dfrac{\pi}{5}$$
  • $$\dfrac{2\pi}{5}$$
  • $$\dfrac{3\pi}{5}$$
  • $$\dfrac{4\pi}{5}$$
The value of $$ \sin^{-1}\left\{\cos \left( \dfrac{43\pi}{5}\right)\right\}$$ is 
  • $$\dfrac{3\pi}{5}$$
  • $$\dfrac{-7\pi}{5}$$
  • $$\dfrac{\pi}{10}$$
  • $$-\dfrac{\pi}{10}$$
The value of $$\cot  (\sin^{-1}x)$$ is 
  • $$\dfrac{\sqrt{1+x^2}}{x}$$
  • $$\dfrac{x}{\sqrt{1+x^2}}$$
  • $$\dfrac{1}{x}$$
  • $$\dfrac{\sqrt{1-x^2}}{x}$$
The domain of $$y=\cos^{-1}(x^2-4)$$ is 
  • $$[3, 5]$$
  • $$[0, \pi]$$
  • $$[-\sqrt 5, -\sqrt 3] \cap [ -\sqrt 5, \sqrt 3]$$
  • $$[ -\sqrt 5, -\sqrt 3] \cup [ \sqrt 3, 5]$$
The domain of the function $$y=\sin^{-1}(-x^2)$$ is 
  • $$[0, 1]$$
  • $$(0, 1)$$
  • $$[-1, 1]$$
  • $$\phi$$
The value of $$\sin (2\sin^{-1}(0.6))$$ is 
  • $$0.48$$
  • $$0.96$$
  • $$1.2$$
  • $$\sin 1.2$$
The value of the expression $$\sin [ \cot^{-1}\{ \cos (\tan^{-1}1)\}]$$ is 
  • $$0$$
  • $$1$$
  • $$\dfrac{1}{\sqrt 3}$$
  • $$\sqrt{\dfrac{2}{3}}$$
The value of $$\tan^2 ( \sec^{-1}2)+\cot^2 (\csc^{-1}3)$$ is 
  • $$5$$
  • $$11$$
  • $$13$$
  • $$15$$
If $$\alpha \le 2\sin^{-1}x+\cos^{-1}x \le \beta$$, then 
  • $$\alpha =\dfrac{-\pi}{2}, \beta =\dfrac{\pi}{2}$$
  • $$\alpha =0, \beta =\pi$$
  • $$\alpha =\dfrac{-\pi}{2}, \beta =\dfrac{3\pi}{2}$$
  • $$\alpha =0, \beta =2\pi$$
$$\sin^{-1} (1 -x) - 2 \sin ^{-1} x = \dfrac{\pi }{2} , $$ then x
  • $$0 , \dfrac{1 }{2}$$
  • $$ 1, \dfrac{1}{2}$$
  • $$ 0 $$
  • $$ \dfrac{1 }{2}$$
Choose the correct answer 
$$ \cos ^{-1} ( \cos \dfrac{7\pi }{6}) $$ is equal to
  • $$ \dfrac{7\pi }{6} $$
  • $$ \dfrac{5\pi }{6} $$
  • $$ \dfrac{\pi }{3} $$
  • $$ \dfrac{\pi }{6} $$
Choose the correct answer : 
$$ \sin \left ( \dfrac{\pi }{3} - \sin^{-1}\left ( -\dfrac{1}{2} \right ) \right ) $$ is equal to
  • $$ \pi $$
  • $$ - \dfrac{\pi }{2} $$
  • $$ 1 $$
  • $$ 2 \sqrt{3}$$
If  $$ \sin ^{-1} x = y $$ , then
  • $$ 0 \leq y \leq \pi $$
  • $$ - \dfrac{\pi}{2} \leq y \leq \dfrac{\pi }{2} $$
  • $$ 0 < y < \pi $$
  • $$ - \dfrac{\pi}{2} < y < \dfrac{\pi }{2} $$
$$ \tan^{-1} \sqrt{3} - \sec^{-1} (-2) $$ is equal to
  • $$ \pi $$
  • $$ - \dfrac{\pi }{3} $$
  • $$ \dfrac{\pi }{3} $$
  • $$ - \dfrac{2\pi }{3} $$
Multiple choice Questions :
$$ 2\sin \left ( \cos^{-1}\left ( \dfrac{-4}{5} \right ) \right )\times \cos \cos^{-1} \left ( \dfrac{-4}{5} \right )$$
  • $$ \dfrac{24}{25}$$
  • $$ - \dfrac{24}{25}$$
  • $$ - \dfrac{6}{25}$$
  • $$ \dfrac{- 6}{25}$$
Multiple choice Questions :
$$ \sin^{-1}\left ( \dfrac{4}{5} \right ) + \cos^{-1}\left ( \dfrac{4}{5} \right )=$$
  • $$ \dfrac{\pi}{2} $$
  • $$ 0 $$
  • $$ \pi $$
  • $$ \dfrac{-\pi}{2} $$
Multiple choice Questions :
$$ \cos^{-1} \cos \left ( \dfrac{4 \pi}{3} \right ) = $$ 
  • $$ \dfrac{4 \pi}{3} $$
  • $$ \dfrac{2 \pi}{3} $$
  • $$ \dfrac{- \pi}{3} $$
  • $$ - \pi $$
Multiple choice Questions :
The value of $$ \tan^{-1} (\tan 5)$$
  • $$ 2 \pi $$
  • $$ 5 - 2 \pi $$
  • $$ 5 $$
  • $$ \dfrac{2 \pi}{3} $$
$$\tan ^{-1}\left ( \dfrac{x}{y} \right ) - \tan^{-1} \dfrac{x - y}{x + y}$$ is equal to
  • $$\dfrac{\pi }{2}$$
  • $$\dfrac{\pi }{3}$$
  • $$\dfrac{\pi }{4}$$
  • $$\dfrac{-3\pi }{4}$$
Multiple choice Questions :
If a > b > c ,
$$ \cot^{-1} \left ( \dfrac{1 + ab}{a - b} \right ) + \cot^{-1}\left ( \dfrac{1 + bc}{b - c} \right ) + \cot^{-1} \left ( \dfrac{1 + ac}{c - a} \right ) $$
  • $$ 0 $$
  • $$ \pi $$
  • $$ 2 \pi $$
  • $$\dfrac{\pi}{2}$$
If $$\sin^{-1}\left(\dfrac{1}{2}\right)=x$$, then general value $x$$ is:
  • $$2n\pi \pm \dfrac{\pi}{6}$$
  • $$\dfrac{\pi}{6}$$
  • $$n\pi \pm \dfrac{\pi}{6}$$
  • $$n\pi +(-1)^n\dfrac{\pi}{6}$$
If $$\tan^{-1}(1)+\cos^{-1}(\dfrac{1}{\sqrt{2}})=\sin^{-1}x$$, then value of $$x$$ is
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$-\dfrac{1}{2}$$
$$2\tan(\tan^{-1}x+\tan^{-1}x^3)$$ is:

  • $$\dfrac{2x}{1-x^2}$$
  • $$1+x^2$$
  • $$2x$$
  • none of these
Value of $$\sin^{-1}(\dfrac{\sqrt{3}}{2})+2\cos^{-1}(\dfrac{\sqrt{3}}{2})$$ is:

  • $$\dfrac{\pi}{2}$$
  • $$\dfrac{\pi}{3}$$
  • $$\dfrac{2\pi}{3}$$
  • $$\pi$$
If $$\cot^{-1}x+\tan^{-1}\dfrac{1}{3}=\dfrac{\pi}{2}$$ then $$x$$ is:
  • $$1$$
  • $$3$$
  • $$\dfrac{1}{3}$$
  • none of these
If $$\tan^{-1}(3x)+\tan^{-1} 2x=\dfrac{\pi}{4}$$, then $$x$$ is:
  • $$\dfrac{1}{6}$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{10}$$
  • $$\dfrac{1}{2}$$
lf the equation $$\displaystyle \sin^{-1}(x^{2}+x+1)+\cos^{-1}(\lambda x+1)=\frac{\pi}{2}$$ has exactly two solutions, then $$\lambda$$ can not have the integral value(s)
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$2$$
Assertion(A): $$\cos^{-1}x$$ and $$\tan^{-1}x$$ are positive for all positive real values of $$x$$ in their domain.
Reason(R): The domain of $$f(x)=\cos^{-1}x+\tan^{-1}x$$ is $$[-1, 1].$$
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true but R is not correct explanation of A
  • A is true but R is false
  • A is false but R is true

$$\sin^{-1}|\sin x|=\sqrt{\sin^{-1}|\sin x|}$$ then $$x=$$
  • $$n\pi-1$$
  • $$ n\pi$$
  • $$n\pi+1$$
  • $$n\displaystyle \frac{\pi}{2}+1$$
The number of solutions of:
$$\displaystyle \sin^{-1}(1+b+b^{2}+\ldots.\infty)+\cos^{-1}(a-\frac{a^{2}}{3}+\frac{a^{3}}{9}+\ldots\infty)=\frac{\pi}{2}$$
  • $$1$$
  • $$2$$
  • $$3$$
  • $$\infty$$
If $$(\tan^{-1}x)^{2}+(\cot^{-1}x)^{2} = \displaystyle \frac{5\pi^{2}}{8}$$, then $$x=$$
  • $$-1$$
  • $$1$$
  • $$0$$
  • $$2$$
$$cos^{-1} \left (\sqrt{\dfrac{a-x}{a-b}} \right)$$ =$$sin^{-1} \left (\sqrt{\dfrac{x-b}{a-b}}\right)$$ is possible if
  • $$a>x>b$$ or $$ a< x < b $$
  • $$a=x=b$$
  • $$a > b$$ and x takes any value
  • $$a < b$$ and x takes any value
The solution set of the equation $$\tan^{-1}x -\cot^{-1}x =\cos^{-1}(2-x)$$ is
  • $$(0,1)$$
  • $$(-1,1)$$
  • $$[1,3)$$
  • $$(1,3)$$
If $$\sin^{-1}\alpha+\sin^{-1}\beta+\sin^{-1}\gamma =\displaystyle \frac{3\pi}{2}$$, then $$\alpha\beta+\alpha\gamma+\beta\gamma$$ is equal to :
  • $$1$$
  • $$0$$
  • $$3$$
  • $$-3$$
The number of positive integral solutions of the equation  $$tan^{-1}x+cot^{-1}y =tan^{-1} 3$$ is :
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
The domain of $$\displaystyle \mathrm{f}(\mathrm{x})=\cot^{-1}\left(\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}-[\mathrm{x}^{2}]}}\right)$$ is
( $$[\;.] $$ denotes the greatest integer function)
  • $$(0,\infty)$$
  • $$\mathrm{R}-\{0\}$$
  • $$\mathrm{R}-\{\mathrm x:\mathrm{x}\in \mathrm{Z}\}$$
  • $$(-\infty,0)$$
If $$(tan^{-1} x)^2 +(cot ^{-1}x)^2=\displaystyle \frac{5 \pi^2}{8}$$, then $$x$$ =
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$2$$
The number of integral solutions of $$sin^{-1}\sqrt{4x-x^{2}-3}+tan^{-1}\sqrt{x^{2}-3x+2}=\frac{\pi }{2}$$ is


  • zero
  • infinite
  • four
  • None of these
The value of $$sin^{-1}(sin2010^{0})+cos^{-1}(cos2010^{0})+tan^{-1}(tan2010^{0})$$ is

  • $$\frac{\pi }{6}$$
  • $$\frac{\pi }{3}$$
  • $$\frac{2\pi }{3}$$
  • $$\frac{5\pi }{6}$$
The number of solutions of the equation $$1+x^{2}+2x\, sin\: (cos^{-1}y)=0$$ is 
  • 1
  • 2
  • 3
  • 4
The value of $$\displaystyle \sec^{-1}\left (\displaystyle \frac{1}{1-2x^{2}}\right)+4{\cos^{-1}}\sqrt{\displaystyle \frac{1+x}{2}}$$ is equal to
  • $$\pi $$
  • $$2\pi$$
  • $$\dfrac{\pi}{2}$$
  • None of these
The largest interval lying in $$\left ( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right )$$ for which the function $$\left [ f(x)=4^{-x^{2}}+\cos^{-1}\left ( \dfrac{x}{2}-1 \right )+\log (\cos x) \right ]$$ is defined, is-
  • $$[0,\pi ]$$
  • $$\left ( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right )$$
  • $$\left [- \dfrac{\pi }{4},\dfrac{\pi }{2} \right )$$
  • $$\left [0,\dfrac{\pi }{2} \right )$$
The number of real solutions of $$tan^{-1} (\sqrt{x(x+1)}+sin^{-1} \displaystyle \sqrt{(x^{2}+x+1)}=\dfrac{\pi}{2}$$ is
  • $$0$$
  • $$1$$
  • $$2$$
  • infinite
If $$x> 0\, $$ and $$\, cos^{-1}\left ( \dfrac{12}{x} \right )+cos^{-1}\left ( \dfrac{35}{x} \right )=\dfrac{\pi }{2},$$ then x is
  • $$7$$
  • $$39$$
  • $$37$$
  • $$-37$$
The value of $$\sin^{-1}$$$$\left \{ \tan\left ( \cos^{-1}\sqrt{\dfrac{2+\sqrt{3}}{4}}+\cos^{-1}\dfrac{\sqrt{12}}{4} -\text{cosec}^{-1}\sqrt{2}\right ) \right \}$$, is
  • $$0$$
  • $$\dfrac{\pi }{2}$$
  • $$-\dfrac{\pi }{2}$$
  • $$\pi $$
If $$cosec ^{ -1 }\left(cosec (x) \right)$$ and $$cosec\left(cosec ^{ -1 }(x) \right) $$ are equal functions, then the maximum range of value of $$x$$ is
  • $$\displaystyle\:\left [ -\frac{\pi }{2},-1\right ]\cup \left [ 1,\frac{\pi }{2} \right ]$$
  • $$\displaystyle\:\left (-\frac{\pi }{2},-1\right )\cup \left (1,\frac{\pi }{2} \right )$$
  • $$\displaystyle\:\left ( -\infty ,-1]\cup [1,\infty \right )$$
  • $$\displaystyle\:\left ( -\infty ,-1)\cup (1,\infty \right )$$
If $$\left[ \sin ^{ -1 }{ \cos ^{ -1 }{ \sin ^{ -1 }{ \tan ^{ -1 }{ \theta  }  }  }  }  \right] =1$$, where $$[.]$$ denotes the greatest integer function, the $$\theta$$ lies in the interval  
  • $$[\tan { \sin { \cos { 1 } } } ,\sin { \tan { \cos { \sin { 1 } } } } ]$$
  • $$[\sin { \tan { \cos { 1 } } } ,\tan { \sin { \cos { \sin { 1 } } } } ]$$
  • $$[\tan { \sin { \cos { 1 } } } ,\tan { \sin { \cos { \sin { 1 } } } } ]$$
  • None of these
$$\displaystyle \:\cos ^{-1}x+\cos ^{-1}\left ( \frac{x}{2}+\frac{1}{2}\sqrt{3-3x^{2}} \right )$$ is equal to
  • $$\displaystyle \:\frac{\pi }{3} $$ for $$ x \epsilon \left [ \dfrac{1}{2},1 \right ]$$
  • $$\displaystyle \:\frac{\pi }{3} $$ for $$ x\epsilon \left [ 0,\dfrac{1}{2} \right ]$$
  • $$\displaystyle \:2\cos ^{-1}x-\cos ^{-1}\dfrac{1}{2} $$ for $$ x \epsilon \left [ \dfrac{1}{2},1 \right ]$$
  • $$\displaystyle \:2\cos ^{-1}x-\cos ^{-1}\dfrac{1}{2}$$ for $$ x \epsilon \left [ 0,\dfrac{1}{2}\right ]$$
The range of values of p for which the equation $$\sin \cos ^{-1}(\cos (\tan ^{-1}x))= p$$ has a solution is
  • $$\left ( -\frac{1}{\sqrt{2}},\frac{2}{\sqrt{2}} \right )$$
  • $$[0,1)$$
  • $$\left ( \frac{1}{\sqrt{2}1} \right )$$
  • $$(-1,1)$$
The solution set of the equation $$\displaystyle \sin^{-1} \sqrt{1-x} + \cos^{-1}x = \cot^{-1} \left ( \frac{\sqrt{1-x^{2}}}{x} \right )-\sin^{-1}x$$
  • $$\displaystyle \left [ -1,\: 1 \right ] - \left \{ 0 \right \}$$
  • $$\displaystyle \left ( 0, \: 1 \right ] \cup \left \{ -1 \right \}$$
  • $$\displaystyle \left [ -1,\: 0 \right ) \cup \left \{ 1 \right \}$$
  • $$\displaystyle  \{ 1 \}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers