Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 9 - MCQExams.com
CBSE
Class 12 Commerce Maths
Inverse Trigonometric Functions
Quiz 9
If
s
i
n
−
1
(
x
5
)
+
c
o
s
e
c
−
1
(
5
4
)
=
π
2
, then value of x is :
Report Question
0%
1
0%
3
0%
4
0%
5
The value of
t
a
n
−
1
(
x
c
o
s
θ
1
−
x
s
i
n
θ
)
−
c
o
t
−
1
(
c
o
s
θ
x
−
s
i
n
θ
)
is :
Report Question
0%
2
θ
0%
θ
0%
θ
2
0%
Independent of
θ
Solve :
s
i
n
h
−
1
(
x
√
1
−
x
2
)
=
Report Question
0%
c
o
s
h
−
1
x
0%
−
c
o
s
h
−
1
x
0%
t
a
n
h
−
1
x
0%
−
t
a
n
h
−
1
x
The number of solution of the equation
sin
−
1
(
1
−
x
)
−
2
sin
−
1
x
=
π
2
is are
Report Question
0%
0
0%
1
0%
2
0%
More then Two
The value of
tan
−
1
[
√
1
+
x
2
+
√
1
−
x
2
√
1
+
x
2
−
√
1
−
x
2
]
,
|
x
|
<
1
2
,
x
=
0
, is equal to:
Report Question
0%
p
i
4
−
cos
−
1
x
2
0%
p
i
4
+
1
2
cos
−
1
x
2
0%
p
i
4
+
cos
−
1
x
2
0%
p
i
4
−
1
2
cos
−
1
x
2
If
s
i
n
−
1
(
a
−
a
2
3
+
a
3
9
−
.
.
.
.
.
.
.
.
.
.
.
∞
)
+
c
o
s
−
1
(
1
+
b
+
b
2
+
.
.
.
.
.
.
.
∞
)
=
π
2
Report Question
0%
a
=
−
3
,
b
=
1
0%
a
=
1
,
b
=
−
1
3
0%
a
=
1
6
,
b
=
1
2
0%
a
=
1
6
,
b
=
1
3
If
(
c
o
t
−
1
x
)
2
−
3
(
c
o
t
−
1
x
)
+
2
>
0
,
then x lies in
Report Question
0%
(cot 2, cot 1)
0%
(
−
∞
,
c
o
t
2
)
∪
(
c
o
t
1
,
∞
)
0%
(
c
o
t
1
∞
)
0%
(
−
∞
,
c
o
t
1
)
∪
(
c
o
t
2
,
∞
)
Thee value of
cos
−
1
x
+
cos
−
1
(
x
2
+
√
3
−
x
2
2
)
, where
1
2
≤
x
≤
1
.
Report Question
0%
π
6
0%
π
3
0%
π
2
0%
0
The solution of the equation
s
i
n
−
1
(
d
t
d
x
)
=
x
+
y
is
Report Question
0%
tan(x+y)+sec(x+y)=x+c
0%
tan(x+y)-sec(x+y)=x+c
0%
tan(x+y)+sec(x+y)+x+c=0
0%
None of these
c
o
s
−
1
[
c
o
s
(
−
17
15
π
)
]
is equal to-
Report Question
0%
−
17
π
15
0%
17
π
15
0%
−
2
π
15
0%
13
π
15
Let
S
n
=
cot
−
1
(
3
x
+
2
x
)
+
cot
−
1
(
6
x
+
2
x
)
+
cot
−
1
(
10
x
+
2
x
)
+
.
.
.
.
.
+
n
term where
x
>
0
. If
lim
n
→
∞
S
n
=
then
x
equals
Report Question
0%
π
4
0%
1
0%
tan
1
0%
cot
1
Let f:-
{
0
,
4
π
}
→
[
0
,
π
]
be defined by f(x)=
c
o
s
−
1
(
c
o
s
x
)
. The number of points x
∈
[
0
,
4
π
]
satisfying the equation f(x)=
10
−
x
10
is
Report Question
0%
2
0%
1
0%
3
0%
4
Sum of maximum and minimum values of (sin
−
1
x)
4
+ (cos
−
1
x)
4
is:
Report Question
0%
137
π
2
128
0%
π
2
17
0%
17
π
4
16
0%
137
π
4
128
Number of values of x for which
(
t
a
n
−
1
x
)
2
+
(
c
o
t
−
1
x
)
2
=
π
2
4
is
Report Question
0%
2
0%
4
0%
1
0%
3
if
t
a
n
−
1
√
1
+
x
2
−
1
x
=
4
t
h
e
n
x
Report Question
0%
tan8
0%
tan4
0%
t
a
n
1
4
0%
tan8
If
f
(
x
)
=
2
t
a
n
−
1
x
+
s
i
n
−
1
(
2
x
1
+
x
2
)
then for x>1, f(x)=
Report Question
0%
s
e
c
−
1
x
0%
s
i
n
−
1
x
0%
π
0%
π
2
If
tan
h
−
1
(
1
3
)
=
1
2
log
t
,
then
t
is equal to
Report Question
0%
2
0%
3
0%
1
0%
4
∞
∑
r
=
1
tan
−
1
(
1
r
2
+
5
r
+
7
)
equal to
Report Question
0%
tan
−
1
3
0%
3
π
4
0%
sin
−
1
1
√
10
0%
cot
−
1
2
t
a
n
−
1
y
=
t
a
n
−
1
x
+
t
a
n
−
1
(
2
x
1
−
x
2
)
where
|
x
|
<
1
√
3
. Then a value of y is:
Report Question
0%
3
x
+
x
3
1
+
3
x
2
0%
3
x
−
x
3
1
+
3
x
2
0%
3
x
+
x
3
1
−
3
x
2
0%
3
x
−
x
3
1
−
3
x
2
t
a
n
h
−
1
(
1
3
)
+
c
o
t
h
−
1
(
3
)
=
.
.
.
.
.
Report Question
0%
log 2
0%
log 3
0%
log
√
3
0%
l
o
g
√
2
The value of sin
(
3
s
i
n
−
1
(
0.8
)
)
is
Report Question
0%
sin(2)
0%
sin(1.88)
0%
-sin(0.88)
0%
None of these
The value of
3
t
a
n
−
1
(
1
2
)
+
2
t
a
n
−
1
(
1
5
)
is-
Report Question
0%
π
4
0%
π
2
0%
π
0%
None
If
f
(
x
)
=
cos
−
1
x
+
cos
−
1
{
x
2
+
1
2
√
3
−
3
x
2
}
then
Report Question
0%
f
(
2
3
)
=
π
3
0%
f
(
2
3
)
=
2
cos
−
1
2
3
−
π
3
0%
f
(
1
3
)
=
π
3
0%
f
(
1
3
)
=
2
cos
−
1
1
3
−
π
3
m
If
(
cos
−
1
x
)
2
+
(
cos
−
1
y
)
2
+
2
(
cos
−
1
x
)
(
cos
−
1
y
)
=
4
π
2
then
x
2
+
y
2
is equal to
Report Question
0%
1
0%
3
2
0%
2
0%
`Will depends on x and y
cos
−
1
(
cos
7
π
6
)
is equal to
Report Question
0%
7
π
6
0%
5
π
6
0%
π
3
0%
π
6
The value of
sin
−
1
(
sin
3
)
+
cos
−
1
(
cos
7
)
−
tan
−
1
(
tan
5
)
is
Report Question
0%
π
−
1
0%
π
0%
3
π
−
1
0%
2
π
−
1
∞
∑
n
=
1
t
a
n
−
1
4
n
n
4
−
2
n
2
+
2
is equal to:
Report Question
0%
t
a
n
−
1
2
+
t
a
n
−
1
3
0%
4
t
a
n
−
1
1
0%
π
/
2
0%
s
e
c
−
1
(
−
√
2
)
The smallest and largest value of
tan
−
1
(
1
−
x
1
+
x
)
,
0
≤
x
≤
1
are
Report Question
0%
0
,
π
0%
0
,
π
4
0%
−
π
4
,
π
4
0%
π
4
,
π
2
c
o
s
−
1
(
x
3
)
+
c
o
s
−
1
(
y
2
)
=
(
θ
2
)
, then the value of
4
x
2
-12xy cos
(
θ
2
)
+
9
y
2
is equal to
Report Question
0%
18
(
1
+
c
o
s
θ
)
0%
18
(
1
−
c
o
s
θ
)
0%
36
(
1
+
c
o
s
θ
)
0%
36
(
1
−
c
o
s
θ
)
cos
−
1
{
1
2
x
2
+
√
1
−
x
2
.
√
1
x
2
4
}
=
cos
−
1
x
2
−
cos
−
1
x
holds for
Report Question
0%
|
x
|
≤
1
0%
x
∈
R
0%
0
≤
x
≤
1
0%
−
1
≤
x
≤
0
If
x
=
s
i
n
−
1
(
s
i
n
10
)
and
y
=
s
−
1
(
c
o
s
10
)
then
y
−
x
is equal to:
Report Question
0%
0
0%
7
π
0%
10
0%
π
Evaluate
cot
−
1
19
∑
n
=
1
cot
−
1
[
1
+
n
∑
p
=
1
2
p
]
Report Question
0%
23
22
0%
19
23
0%
23
19
0%
22
23
If
x
=
s
i
n
−
1
(
s
i
n
10
)
and
y
=
c
o
s
−
1
(
c
o
s
10
)
, then the value of (y - x) is
Report Question
0%
π
0%
7
π
0%
0
0%
10
Considering only the principal values of inverse functions, the set
A
=
{
x
≥
0
:
t
a
n
−
1
(
2
x
)
+
t
a
n
−
1
(
3
x
)
=
π
4
}
Report Question
0%
Is an empty set
0%
contains more than two elements
0%
contains two elements
0%
is a singleton
The value of
sin
−
1
(
cos
(
cos
−
1
(
cos
x
)
+
sin
−
1
(
sin
x
)
)
)
,
w
h
e
r
e
x
∈
(
π
2
,
π
)
, is equal to
Report Question
0%
π
2
0%
−
π
0%
π
0%
−
π
2
If
θ
=
c
o
t
−
1
√
c
o
s
x
−
t
a
n
−
1
√
c
o
s
x
, then
s
i
n
θ
=
Report Question
0%
t
a
n
1
2
x
0%
t
a
n
2
(
x
/
2
)
0%
1
2
t
a
n
−
1
(
x
2
)
0%
None of these
The value of
sin
−
1
(
sin
12
)
−
cos
−
1
(
cos
12
)
=
Report Question
0%
0
0%
π
0%
8
π
+
24
0%
8
π
−
24
Explanation
sin
−
1
(
sin
12
)
−
cos
−
1
(
cos
12
)
=
cos
−
1
√
1
−
sin
2
12
−
cos
−
1
(
cos
12
)
since
sin
−
1
x
=
cos
−
1
√
1
−
x
2
=
cos
−
1
(
cos
12
)
−
cos
−
1
(
cos
12
)
=
0
tan
−
1
(
5
12
)
+
sin
−
1
(
24
25
)
=
cos
−
1
(
x
)
⇒
x
=
Report Question
0%
−
31
325
0%
−
33
325
0%
−
36
325
0%
−
39
325
If
cot
2
x
3
+
tan
x
3
=
csc
k
x
3
,
then the value of
tan
−
1
(
tan
k
)
equals
Report Question
0%
2
0%
2
−
π
0%
π
−
2
0%
2
π
−
2
sin
−
1
(
1
√
2
)
+
sin
−
1
(
√
2
−
1
√
6
)
+
…
+
sin
−
1
(
√
n
−
√
n
−
1
√
n
(
n
+
1
)
)
+
…
.
∞
=
Report Question
0%
π
0%
π
2
0%
π
4
0%
3
π
2
4
tan
−
1
1
5
−
tan
−
1
1
70
+
tan
−
1
1
99
=
Report Question
0%
π
0%
π
/
2
0%
π
/
4
0%
3
π
/
4
The value of the expression tan
(
1
2
c
o
s
−
1
2
√
5
)
is
Report Question
0%
2
−
√
5
0%
√
5
−
2
0%
√
5
−
2
2
0%
5-
√
2
If
x
=
sin
−
1
(
sin
10
)
and
y
=
cos
−
1
(
cos
10
)
then
y
−
x
is equal to:
Report Question
0%
π
0%
10
0%
7
π
0%
0
If
c
o
s
−
1
x
a
+
c
o
s
−
1
y
b
=
α
t
h
e
n
x
2
a
2
−
2
x
y
a
b
c
o
s
α
+
y
2
b
2
=
Report Question
0%
s
i
n
2
α
0%
c
o
s
2
α
0%
t
a
n
2
α
0%
c
o
t
2
α
What is the value of
sin
−
1
{
cos
(
sin
−
1
x
)
}
+
cos
−
1
{
sin
(
cos
−
1
x
)
}
?
Report Question
0%
2
x
0%
2
x
+
π
0%
π
2
0%
−
π
2
cot
−
1
(
√
cos
α
)
−
tan
−
1
(
√
cos
α
)
=
x
, then
sin
x
is equal to
Report Question
0%
tan
2
α
2
0%
cot
2
α
2
0%
tan
α
0%
cot
α
2
The product of all values of x satisfying the equation.
s
i
n
−
1
c
o
s
(
2
x
2
+
10
|
x
|
+
4
x
2
+
5
|
x
|
+
3
)
=
c
o
t
{
c
o
t
−
1
(
2
−
18
|
x
|
9
|
x
|
)
}
+
π
2
is
Report Question
0%
9
0%
-9
0%
3
0%
-1
The value of
s
i
n
1
(
s
i
n
5
π
3
)
is ......
Report Question
0%
π
3
0%
5
π
3
0%
π
3
0%
2
π
3
The value of
tan
[
sin
−
1
(
cos
(
sin
−
1
x
)
)
]
tan
[
cos
−
1
(
sin
(
cos
−
1
x
)
)
]
,
(
x
∈
(
0
,
1
)
)
is equal to
Report Question
0%
0
0%
1
0%
−
1
0%
None
f
(
x
)
=
sin
−
1
√
√
1
+
x
2
−
1
2
√
1
+
x
2
,
then which of the following is (are) correct?
Report Question
0%
f
(
−
1
)
=
−
1
4
0%
Ran
f
f
(
x
)
$
i
s
$
[
0
,
π
2
]
0%
f
′
(
x
)
is an odd function
0%
lim
x
→
0
f
(
x
)
x
=
1
2
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page