Processing math: 17%

CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 9 - MCQExams.com

If sin1(x5)+cosec1(54)=π2, then value of x is :
  • 1
  • 3
  • 4
  • 5
The value of tan1(xcosθ1xsinθ)cot1(cosθxsinθ) is :
  • 2θ
  • θ
  • θ2
  • Independent of θ
Solve : sinh1(x1x2)=
  • cosh1x
  • cosh1x
  • tanh1x
  • tanh1x
The number of solution of the equation sin1(1x)2sin1x=π2 is are 
  • 0
  • 1
  • 2
  • More then Two
The value of tan1[1+x2+1x21+x21x2],|x|<12,x=0, is equal to:
  • pi4cos1x2
  • pi4+12cos1x2
  • pi4+cos1x2
  • pi412cos1x2
If sin1(aa23+a39...........)+cos1(1+b+b2+.......)=π2
  • a=3,b=1
  • a=1,b=13
  • a=16,b=12
  • a=16,b=13
If (cot1x)23(cot1x)+2>0, then x lies in
  • (cot 2, cot 1)
  • (,cot2)(cot1,)
  • (cot1)
  • (,cot1)(cot2,)
Thee value of cos1x+cos1(x2+3x22), where 12x1.
  • π6
  • π3
  • π2
  • 0
The solution of the equation sin1(dtdx)=x+y is
  • tan(x+y)+sec(x+y)=x+c
  • tan(x+y)-sec(x+y)=x+c
  • tan(x+y)+sec(x+y)+x+c=0
  • None of these
cos1[cos(1715π)] is equal to-
  • 17π15
  • 17π15
  • 2π15
  • 13π15
Let Sn=cot1(3x+2x)+cot1(6x+2x)+cot1(10x+2x)+.....+n term where x>0. If lim then x equals
  • \dfrac{\pi}{4}
  • 1
  • \tan 1
  • \cot 1
Let f:-\left\{ 0,4\pi  \right\} \rightarrow \left[ 0,\pi  \right] be defined by f(x)={ cos }^{ -1 }\left( cosx \right) . The number of points x\in \left[ 0,4\pi  \right] satisfying the equation f(x)=\frac { 10-x }{ 10 } is
  • 2
  • 1
  • 3
  • 4
Sum of maximum and minimum values of (sin^{-1}x)^4 + (cos^{-1}x)^4 is:
  • \dfrac{137\pi^2}{128}
  • \dfrac{\pi^2}{17}
  • \dfrac{17\pi^4}{16}
  • \dfrac{137\pi^4}{128}
Number of values of x for which (tan^{-1} x)^2 + (cot^{-1} x)^2 = \dfrac{\pi^2}{4} is 
  • 2
  • 4
  • 1
  • 3
if { tan }^{ -1 }\frac { \sqrt { 1+{ x }^{ 2 }-1 }  }{ x } =4\quad then\quad x
  • tan8
  • tan4
  • tan\frac { 1 }{ 4 }
  • tan8
If f(x)=2tan^{-1}x+sin^{-1}\left (\dfrac {2x}{1+x^2}\right ) then for x>1, f(x)=
  • sec^{-1}x
  • sin^{-1}x
  • \pi
  • \cfrac {\pi }{2}
If { \tan \text{h} }^{ -1 }\left( \dfrac { 1 }{ 3 }  \right) =\dfrac { 1 }{ 2 } \log t , then t is equal to
  • 2
  • 3
  • 1
  • 4
\displaystyle \sum^{\infty}_{r=1}\tan^{-1}\left(\dfrac {1}{r^{2}+5r+7}\right) equal to
  • \tan^{-1}3
  • \dfrac {3\pi}{4}
  • \sin^{-1}\dfrac {1}{\sqrt {10}}
  • \cot^{-1}2
tan^{-1}y=tan^{-1}x+tan^{-1}(\frac{2x}{1-x^{2}}) where |x| < \frac{1}{\sqrt{3}}. Then a value of y is:
  • \dfrac{3x+x^{3}}{1+3x^{2}}
  • \dfrac{3x-x^{3}}{1+3x^{2}}
  • \dfrac{3x+x^{3}}{1-3x^{2}}
  • \dfrac{3x-x^{3}}{1-3x^{2}}
{ tanh }^{ -1 }\left( \frac { 1 }{ 3 }  \right) +{ coth }^{ -1 }\left( 3 \right) =.....
  • log 2
  • log 3
  • log\sqrt { 3 }
  • log \sqrt { 2 }
The value of sin \left ( 3 sin^{-1}\left ( 0.8 \right ) \right ) is
  • sin(2)
  • sin(1.88)
  • -sin(0.88)
  • None of these
The value of 3 tan^-1\left(\dfrac{1}{2}\right)+ 2tan^-1 \left(\dfrac{1}{5}\right) is-
  • \dfrac{\pi}{4}
  • \dfrac{\pi}{2}
  • \pi
  • None
If f\left( x \right) =\cos ^{ -1 }{ x } +\cos ^{ -1 }{ \left\{ \frac { x }{ 2 } +\dfrac { 1 }{ 2 } \sqrt {  3-3{ x }^{ 2 } }  \right\}  }  then
  • f\left( \dfrac { 2 }{ 3 } \right) =\dfrac { \pi }{ 3 }
  • f\left( \dfrac { 2 }{ 3 } \right) =2\cos ^{ -1 }{ \dfrac { 2 }{ 3 } -\dfrac { \pi }{ 3 } }
  • f\left( \dfrac { 1 }{ 3 } \right) =\dfrac { \pi }{ 3 }
  • f\left( \dfrac { 1 }{ 3 } \right) =2\cos ^{ -1 }{ \dfrac { 1 }{ 3 } -\dfrac { \pi }{ 3 } } m
If (\cos^{-1}x)^{2}+(\cos^{-1}y)^{2}+2(\cos^{-1}x)(\cos^{-1}y)=4\pi^{2} then x^{2}+y^{2} is equal to 
  • 1
  • \dfrac{3}{2}
  • 2
  • `Will depends on x and y
\cos ^{ -1 }{ \left( \cos { \dfrac { 7\pi  }{ 6 }  }  \right)  }  is equal to
  • \dfrac {7\pi}{6}
  • \dfrac {5\pi}{6}
  • \dfrac {\pi}{3}
  • \dfrac {\pi}{6}
The value of \sin^{-1}(\sin 3)+\cos^{-1}(\cos 7)-\tan^{-1}(\tan 5) is
  • \pi-1
  • \pi
  • 3\pi-1
  • 2\pi-1
\sum^ { \infty }_ { n=1 }   tan^{-1}\dfrac{4n}{n^4-2n^2+2} is equal to:
  • tan^{-1}2+tan^{-1}3
  • 4 tan^{-1}1
  • \pi/2
  • sec^{-1}(-\sqrt2)
The smallest and largest value of \tan^{-1}\left(\dfrac {1-x}{1+x}\right),0 \le x \le 1 are
  • 0, \pi
  • 0,\dfrac {\pi}{4}
  • -\dfrac {\pi}{4}, \dfrac {\pi}{4}
  • \dfrac {\pi}{4}, \dfrac {\pi}{2}
{ cos }^{ -1 }(\frac { x }{ 3 } )+{ cos }^{ -1 }(\frac { y }{ 2 } )=(\frac { \theta  }{ 2 } ) , then the value of { 4x }^{ 2 }-12xy cos(\frac { \theta  }{ 2 } )+{ 9y }^{ 2 } is equal to 
  • 18(1+cos\theta )
  • 18(1-cos\theta )
  • 36(1+cos\theta )
  • 36(1-cos\theta )
\cos ^{ -1 }{ \left\{ \dfrac { 1 }{ 2 } { x }^{ 2 }+\sqrt { { 1-x }^{ 2 } } .\sqrt { 1\dfrac { { x }^{ 2 } }{ 4 }  }  \right\}  } =\cos ^{ -1 }{ \dfrac { x }{ 2 }  } -\cos ^{ -1 }{ x }  holds for
  • \left| x \right| \le 1
  • x\in R
  • 0\le x\le 1
  • -1\le x\le 0
If x=si{ n }^{ -1 }(sin10) and y={ s }^{ -1 }(cos10) then y-x is equal to:
  • 0
  • 7\pi
  • 10
  • \pi
Evaluate \cot ^{ -1 }{ \sum _{ n=1 }^{ 19 }{ \cot ^{ -1 }{ [1+\sum _{ p=1 }^{ n }{ 2p } ] }  }  }
  • \frac { 23 }{ 22 }
  • \frac { 19 }{ 23 }
  • \frac { 23 }{ 19 }
  • \frac { 22 }{ 23 }
If x={ sin }^{ -1 }(sin10) and y={ cos }^{ -1 }(cos10), then the value of (y - x) is
  • \pi
  • 7\pi
  • 0
  • 10
Considering only the principal values of inverse functions, the set A=\left\{ x\quad \ge \quad 0\quad :tan^{ -1 }(2x)+tan^{ -1 }(3x)=\dfrac { \pi  }{ 4 }  \right\}
  • Is an empty set
  • contains more than two elements
  • contains two elements
  • is a singleton
The value of \sin ^{ -1 }{ (\cos { (\cos ^{ -1 }{ (\cos { x } ) } +\sin ^{ -1 }{ (\sin { x } ) } ) } ) } ,\quad where\quad x\in (\frac { \pi  }{ 2 } ,\pi ), is equal to 
  • \frac { \pi }{ 2 }
  • -\pi
  • \pi
  • -\frac { \pi }{ 2 }
If \theta ={ cot }^{ -1 }\sqrt { cosx } -{ tan }^{ -1 }\sqrt { cosx } , then sin\theta =
  • tan\cfrac { 1 }{ 2 } x
  • { tan }^{ 2 }(x/2)
  • \cfrac { 1 }{ 2 } { tan }^{ -1 }(x2)
  • None of these
The value of \sin^{-1}(\sin 12)-\cos^{-1}(\cos 12)=
  • 0
  • \pi
  • 8\pi +24
  • 8\pi -24
\tan ^{ -1 }{ (\frac { 5 }{ 12 } ) } +\sin ^{ -1 }{ (\frac { 24 }{ 25 } ) } =\cos ^{ -1 }{ (x) } \Rightarrow x=
  • \frac { -31 }{ 325 }
  • \frac { -33 }{ 325 }
  • \frac { -36 }{ 325 }
  • \frac { -39 }{ 325 }
If  \cot  \dfrac { 2{ x } }{ 3 } +\tan  \dfrac { { x } }{ 3 } =\csc  \dfrac { { kx } }{ 3 } ,  then the value of  \tan ^{ { -1 } } (\tan { k } )  equals
  • 2
  • 2 - \pi
  • \pi - 2
  • 2\pi - 2
\sin ^{-1}\left(\dfrac{1}{\sqrt{2}}\right)+\sin ^{-1}\left(\dfrac{\sqrt{2}-1}{\sqrt{6}}\right)+\ldots+\sin ^{-1}\left(\dfrac{\sqrt{n}-\sqrt{n-1}}{\sqrt{n(n+1)}}\right)+\ldots . \infty=
  • \pi
  • \cfrac {\pi}{2}
  • \cfrac {\pi}{4}
  • \cfrac {3\pi}{2}
4\tan ^{ -1 }{ \frac { 1 }{ 5 }  } -\tan ^{ -1 }{ \frac { 1 }{ 70 }  } +\tan ^{ -1 }{ \frac { 1 }{ 99 }  } =
  • \pi
  • { \pi }/{ 2 }
  • { \pi }/{ 4 }
  • { 3\pi }/4
The value of the expression tan(\frac{1}{2} cos ^{-1}\frac{2}{\sqrt{5}}) is
  • 2-\sqrt{5}
  • \sqrt{5}-2
  • \frac{\sqrt{5}-2}{2}
  • 5-\sqrt{2}
If x = \sin ^ { - 1 } ( \sin 10 ) \text { and } y = \cos ^ { - 1 } ( \cos 10 ) then y - x is equal to: 
  • \pi
  • 10
  • 7\pi
  • 0
If cos{  }^{ -1 }\frac { x }{ a } +cos{  }^{ -1 }\frac { y }{ b } =\alpha \quad then\quad \frac { { x }^{ 2 } }{ { a }^{ 2 } } -\frac { 2xy }{ ab } cos\alpha +\frac { { y }^{ 2 } }{ { b }^{ 2 } } =
  • sin^{2}\alpha
  • cos^{2}\alpha
  • tan^{2}\alpha
  • cot^{2}\alpha
What is the value of \sin^{-1} \left\{ {\cos(\sin^{-1} x)} \right\} +\cos^{-1} \left\{ {\sin (\cos^{-1} x)} \right\}  ?
  • 2x
  • 2x+\pi
  • \dfrac{\pi}{2}
  • -\dfrac{\pi}{2}
{\cot}^{-1}\left(\sqrt{\cos\alpha}\right) -{\tan}^{-1}\left(\sqrt{\cos\alpha}\right) =x, then \sin x is equal to
  • \displaystyle {\tan}^{2}\frac{\alpha}{2}
  • \displaystyle {\cot}^{2}\frac{\alpha}{2}
  • \tan\alpha
  • \displaystyle \cot\frac{\alpha}{2}
The product of all values of x satisfying the equation.
{ sin }^{ -1 }cos\left( \dfrac { { 2x }^{ 2 }+10\left| x \right| +4 }{ { x }^{ 2 }+5\left| x \right| +3 } \right)
=cot\left\{ { cot }^{ -1 }\left( \dfrac { 2-18\left| x \right| }{ 9\left| x \right| } \right) \right\} +\dfrac { \pi }{ 2 } is
  • 9
  • -9
  • 3
  • -1
The value of \displaystyle sin^{1}\left ( sin\dfrac{5\pi}{3} \right ) is ......
  • \dfrac{\pi}{3}
  • \dfrac{5\pi}{3}
  • \dfrac{\pi}{3}
  • \dfrac{2\pi}{3}
The value of \tan \left[ \sin ^ { - 1 } \left( \cos \left( \sin ^ { - 1 } x \right) \right) \right] \tan \left[ \cos ^ { - 1 } \left( \sin \left( \cos ^ { - 1 } x \right) \right) \right] , ( x \in ( 0,1 ) ) is equal to

  • 0
  • 1
  • -1
  • None
f ( x ) = \sin ^ { - 1 } \sqrt { \frac { \sqrt { 1 + x ^ { 2 } } - 1 } { 2 \sqrt { 1 + x ^ { 2 } } } } , then which of the following is (are) correct?
  • f ( -1 ) = \frac { - 1 } { 4 }
  • \operatorname { Ran } \mathscr { f } _ { f ( x ) }$ is $\left[ 0 , \frac { \pi } { 2 } \right]
  • f ^ { \prime } ( x ) is an odd function
  • \lim _ { x \rightarrow 0 } \frac { f ( x ) } { x } = \frac { 1 } { 2 }
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers