Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 9 - MCQExams.com

If sin1(x5)+cosec1(54)=π2, then value of x is :
  • 1
  • 3
  • 4
  • 5
The value of tan1(xcosθ1xsinθ)cot1(cosθxsinθ) is :
  • 2θ
  • θ
  • θ2
  • Independent of θ
Solve : sinh1(x1x2)=
  • cosh1x
  • cosh1x
  • tanh1x
  • tanh1x
The number of solution of the equation sin1(1x)2sin1x=π2 is are 
  • 0
  • 1
  • 2
  • More then Two
The value of tan1[1+x2+1x21+x21x2],|x|<12,x=0, is equal to:
  • pi4cos1x2
  • pi4+12cos1x2
  • pi4+cos1x2
  • pi412cos1x2
If sin1(aa23+a39...........)+cos1(1+b+b2+.......)=π2
  • a=3,b=1
  • a=1,b=13
  • a=16,b=12
  • a=16,b=13
If (cot1x)23(cot1x)+2>0, then x lies in
  • (cot 2, cot 1)
  • (,cot2)(cot1,)
  • (cot1)
  • (,cot1)(cot2,)
Thee value of cos1x+cos1(x2+3x22), where 12x1.
  • π6
  • π3
  • π2
  • 0
The solution of the equation sin1(dtdx)=x+y is
  • tan(x+y)+sec(x+y)=x+c
  • tan(x+y)-sec(x+y)=x+c
  • tan(x+y)+sec(x+y)+x+c=0
  • None of these
cos1[cos(1715π)] is equal to-
  • 17π15
  • 17π15
  • 2π15
  • 13π15
Let Sn=cot1(3x+2x)+cot1(6x+2x)+cot1(10x+2x)+.....+n term where x>0. If limnSn= then x equals
  • π4
  • 1
  • tan1
  • cot1
Let f:-{0,4π}[0,π] be defined by f(x)=cos1(cosx). The number of points x[0,4π] satisfying the equation f(x)=10x10 is
  • 2
  • 1
  • 3
  • 4
Sum of maximum and minimum values of (sin1x)4 + (cos1x)4 is:
  • 137π2128
  • π217
  • 17π416
  • 137π4128
Number of values of x for which (tan1x)2+(cot1x)2=π24 is 
  • 2
  • 4
  • 1
  • 3
if tan11+x21x=4thenx
  • tan8
  • tan4
  • tan14
  • tan8
If f(x)=2tan1x+sin1(2x1+x2) then for x>1, f(x)=
  • sec1x
  • sin1x
  • π
  • π2
If tanh1(13)=12logt, then t is equal to
  • 2
  • 3
  • 1
  • 4
r=1tan1(1r2+5r+7) equal to
  • tan13
  • 3π4
  • sin1110
  • cot12
tan1y=tan1x+tan1(2x1x2) where |x|<13. Then a value of y is:
  • 3x+x31+3x2
  • 3xx31+3x2
  • 3x+x313x2
  • 3xx313x2
tanh1(13)+coth1(3)=.....
  • log 2
  • log 3
  • log3
  • log2
The value of sin (3sin1(0.8)) is
  • sin(2)
  • sin(1.88)
  • -sin(0.88)
  • None of these
The value of 3tan1(12)+2tan1(15) is-
  • π4
  • π2
  • π
  • None
If f(x)=cos1x+cos1{x2+1233x2} then
  • f(23)=π3
  • f(23)=2cos123π3
  • f(13)=π3
  • f(13)=2cos113π3m
If (cos1x)2+(cos1y)2+2(cos1x)(cos1y)=4π2 then x2+y2 is equal to 
  • 1
  • 32
  • 2
  • `Will depends on x and y
cos1(cos7π6) is equal to
  • 7π6
  • 5π6
  • π3
  • π6
The value of sin1(sin3)+cos1(cos7)tan1(tan5) is
  • π1
  • π
  • 3π1
  • 2π1
n=1tan14nn42n2+2 is equal to:
  • tan12+tan13
  • 4tan11
  • π/2
  • sec1(2)
The smallest and largest value of tan1(1x1+x),0x1 are
  • 0,π
  • 0,π4
  • π4,π4
  • π4,π2
cos1(x3)+cos1(y2)=(θ2) , then the value of 4x2-12xy cos(θ2)+9y2 is equal to 
  • 18(1+cosθ)
  • 18(1cosθ)
  • 36(1+cosθ)
  • 36(1cosθ)
cos1{12x2+1x2.1x24}=cos1x2cos1x holds for
  • |x|1
  • xR
  • 0x1
  • 1x0
If x=sin1(sin10) and y=s1(cos10) then yx is equal to:
  • 0
  • 7π
  • 10
  • π
Evaluate cot119n=1cot1[1+np=12p]
  • 2322
  • 1923
  • 2319
  • 2223
If x=sin1(sin10) and y=cos1(cos10), then the value of (y - x) is
  • π
  • 7π
  • 0
  • 10
Considering only the principal values of inverse functions, the set A={x0:tan1(2x)+tan1(3x)=π4}
  • Is an empty set
  • contains more than two elements
  • contains two elements
  • is a singleton
The value of sin1(cos(cos1(cosx)+sin1(sinx))),wherex(π2,π), is equal to 
  • π2
  • π
  • π
  • π2
If θ=cot1cosxtan1cosx, then sinθ=
  • tan12x
  • tan2(x/2)
  • 12tan1(x2)
  • None of these
The value of sin1(sin12)cos1(cos12)=
  • 0
  • π
  • 8π+24
  • 8π24
tan1(512)+sin1(2425)=cos1(x)x=
  • 31325
  • 33325
  • 36325
  • 39325
If  cot2x3+tanx3=csckx3,  then the value of  tan1(tank)  equals
  • 2
  • 2π
  • π2
  • 2π2
sin1(12)+sin1(216)++sin1(nn1n(n+1))+.=
  • π
  • π2
  • π4
  • 3π2
4tan115tan1170+tan1199=
  • π
  • π/2
  • π/4
  • 3π/4
The value of the expression tan(12cos125) is
  • 25
  • 52
  • 522
  • 5-2
If x=sin1(sin10) and y=cos1(cos10) then yx is equal to: 
  • π
  • 10
  • 7π
  • 0
If cos1xa+cos1yb=αthenx2a22xyabcosα+y2b2=
  • sin2α
  • cos2α
  • tan2α
  • cot2α
What is the value of sin1{cos(sin1x)}+cos1{sin(cos1x)} ?
  • 2x
  • 2x+π
  • π2
  • π2
cot1(cosα)tan1(cosα)=x, then sinx is equal to
  • tan2α2
  • cot2α2
  • tanα
  • cotα2
The product of all values of x satisfying the equation.
sin1cos(2x2+10|x|+4x2+5|x|+3)
=cot{cot1(218|x|9|x|)}+π2 is
  • 9
  • -9
  • 3
  • -1
The value of sin1(sin5π3) is ......
  • π3
  • 5π3
  • π3
  • 2π3
The value of tan[sin1(cos(sin1x))] tan[cos1(sin(cos1x))] , (x(0,1)) is equal to

  • 0
  • 1
  • 1
  • None
f(x)=sin11+x2121+x2, then which of the following is (are) correct?
  • f(1)=14
  • Ranff(x)$is$[0,π2]
  • f(x) is an odd function
  • limx0f(x)x=12
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers