Processing math: 17%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 9 - MCQExams.com
CBSE
Class 12 Commerce Maths
Inverse Trigonometric Functions
Quiz 9
If
s
i
n
−
1
(
x
5
)
+
c
o
s
e
c
−
1
(
5
4
)
=
π
2
, then value of x is :
Report Question
0%
1
0%
3
0%
4
0%
5
The value of
t
a
n
−
1
(
x
c
o
s
θ
1
−
x
s
i
n
θ
)
−
c
o
t
−
1
(
c
o
s
θ
x
−
s
i
n
θ
)
is :
Report Question
0%
2
θ
0%
θ
0%
θ
2
0%
Independent of
θ
Solve :
s
i
n
h
−
1
(
x
√
1
−
x
2
)
=
Report Question
0%
c
o
s
h
−
1
x
0%
−
c
o
s
h
−
1
x
0%
t
a
n
h
−
1
x
0%
−
t
a
n
h
−
1
x
The number of solution of the equation
sin
−
1
(
1
−
x
)
−
2
sin
−
1
x
=
π
2
is are
Report Question
0%
0
0%
1
0%
2
0%
More then Two
The value of
tan
−
1
[
√
1
+
x
2
+
√
1
−
x
2
√
1
+
x
2
−
√
1
−
x
2
]
,
|
x
|
<
1
2
,
x
=
0
, is equal to:
Report Question
0%
p
i
4
−
cos
−
1
x
2
0%
p
i
4
+
1
2
cos
−
1
x
2
0%
p
i
4
+
cos
−
1
x
2
0%
p
i
4
−
1
2
cos
−
1
x
2
If
s
i
n
−
1
(
a
−
a
2
3
+
a
3
9
−
.
.
.
.
.
.
.
.
.
.
.
∞
)
+
c
o
s
−
1
(
1
+
b
+
b
2
+
.
.
.
.
.
.
.
∞
)
=
π
2
Report Question
0%
a
=
−
3
,
b
=
1
0%
a
=
1
,
b
=
−
1
3
0%
a
=
1
6
,
b
=
1
2
0%
a
=
1
6
,
b
=
1
3
If
(
c
o
t
−
1
x
)
2
−
3
(
c
o
t
−
1
x
)
+
2
>
0
,
then x lies in
Report Question
0%
(cot 2, cot 1)
0%
(
−
∞
,
c
o
t
2
)
∪
(
c
o
t
1
,
∞
)
0%
(
c
o
t
1
∞
)
0%
(
−
∞
,
c
o
t
1
)
∪
(
c
o
t
2
,
∞
)
Thee value of
cos
−
1
x
+
cos
−
1
(
x
2
+
√
3
−
x
2
2
)
, where
1
2
≤
x
≤
1
.
Report Question
0%
π
6
0%
π
3
0%
π
2
0%
0
The solution of the equation
s
i
n
−
1
(
d
t
d
x
)
=
x
+
y
is
Report Question
0%
tan(x+y)+sec(x+y)=x+c
0%
tan(x+y)-sec(x+y)=x+c
0%
tan(x+y)+sec(x+y)+x+c=0
0%
None of these
c
o
s
−
1
[
c
o
s
(
−
17
15
π
)
]
is equal to-
Report Question
0%
−
17
π
15
0%
17
π
15
0%
−
2
π
15
0%
13
π
15
Let
S
n
=
cot
−
1
(
3
x
+
2
x
)
+
cot
−
1
(
6
x
+
2
x
)
+
cot
−
1
(
10
x
+
2
x
)
+
.
.
.
.
.
+
n
term where
x
>
0
. If
lim
then
x
equals
Report Question
0%
\dfrac{\pi}{4}
0%
1
0%
\tan 1
0%
\cot 1
Let f:-
\left\{ 0,4\pi \right\}
\rightarrow \left[ 0,\pi \right]
be defined by f(x)=
{ cos }^{ -1 }\left( cosx \right)
. The number of points x
\in \left[ 0,4\pi \right]
satisfying the equation f(x)=
\frac { 10-x }{ 10 }
is
Report Question
0%
2
0%
1
0%
3
0%
4
Sum of maximum and minimum values of (sin
^{-1}
x)
^4
+ (cos
^{-1}
x)
^4
is:
Report Question
0%
\dfrac{137\pi^2}{128}
0%
\dfrac{\pi^2}{17}
0%
\dfrac{17\pi^4}{16}
0%
\dfrac{137\pi^4}{128}
Number of values of x for which
(tan^{-1} x)^2 + (cot^{-1} x)^2 = \dfrac{\pi^2}{4}
is
Report Question
0%
2
0%
4
0%
1
0%
3
if
{ tan }^{ -1 }\frac { \sqrt { 1+{ x }^{ 2 }-1 } }{ x } =4\quad then\quad x
Report Question
0%
tan8
0%
tan4
0%
tan\frac { 1 }{ 4 }
0%
tan8
If
f(x)=2tan^{-1}x+sin^{-1}\left (\dfrac {2x}{1+x^2}\right )
then for x>1, f(x)=
Report Question
0%
sec^{-1}x
0%
sin^{-1}x
0%
\pi
0%
\cfrac {\pi }{2}
If
{ \tan \text{h} }^{ -1 }\left( \dfrac { 1 }{ 3 } \right) =\dfrac { 1 }{ 2 } \log t ,
then
t
is equal to
Report Question
0%
2
0%
3
0%
1
0%
4
\displaystyle \sum^{\infty}_{r=1}\tan^{-1}\left(\dfrac {1}{r^{2}+5r+7}\right)
equal to
Report Question
0%
\tan^{-1}3
0%
\dfrac {3\pi}{4}
0%
\sin^{-1}\dfrac {1}{\sqrt {10}}
0%
\cot^{-1}2
tan^{-1}y=tan^{-1}x+tan^{-1}(\frac{2x}{1-x^{2}})
where
|x| < \frac{1}{\sqrt{3}}
. Then a value of y is:
Report Question
0%
\dfrac{3x+x^{3}}{1+3x^{2}}
0%
\dfrac{3x-x^{3}}{1+3x^{2}}
0%
\dfrac{3x+x^{3}}{1-3x^{2}}
0%
\dfrac{3x-x^{3}}{1-3x^{2}}
{ tanh }^{ -1 }\left( \frac { 1 }{ 3 } \right) +{ coth }^{ -1 }\left( 3 \right) =.....
Report Question
0%
log 2
0%
log 3
0%
log
\sqrt { 3 }
0%
log \sqrt { 2 }
The value of sin
\left ( 3 sin^{-1}\left ( 0.8 \right ) \right )
is
Report Question
0%
sin(2)
0%
sin(1.88)
0%
-sin(0.88)
0%
None of these
The value of
3 tan^-1\left(\dfrac{1}{2}\right)+ 2tan^-1 \left(\dfrac{1}{5}\right)
is-
Report Question
0%
\dfrac{\pi}{4}
0%
\dfrac{\pi}{2}
0%
\pi
0%
None
If
f\left( x \right) =\cos ^{ -1 }{ x } +\cos ^{ -1 }{ \left\{ \frac { x }{ 2 } +\dfrac { 1 }{ 2 } \sqrt { 3-3{ x }^{ 2 } } \right\} }
then
Report Question
0%
f\left( \dfrac { 2 }{ 3 } \right) =\dfrac { \pi }{ 3 }
0%
f\left( \dfrac { 2 }{ 3 } \right) =2\cos ^{ -1 }{ \dfrac { 2 }{ 3 } -\dfrac { \pi }{ 3 } }
0%
f\left( \dfrac { 1 }{ 3 } \right) =\dfrac { \pi }{ 3 }
0%
f\left( \dfrac { 1 }{ 3 } \right) =2\cos ^{ -1 }{ \dfrac { 1 }{ 3 } -\dfrac { \pi }{ 3 } } m
If
(\cos^{-1}x)^{2}+(\cos^{-1}y)^{2}+2(\cos^{-1}x)(\cos^{-1}y)=4\pi^{2}
then
x^{2}+y^{2}
is equal to
Report Question
0%
1
0%
\dfrac{3}{2}
0%
2
0%
`Will depends on x and y
\cos ^{ -1 }{ \left( \cos { \dfrac { 7\pi }{ 6 } } \right) }
is equal to
Report Question
0%
\dfrac {7\pi}{6}
0%
\dfrac {5\pi}{6}
0%
\dfrac {\pi}{3}
0%
\dfrac {\pi}{6}
The value of
\sin^{-1}(\sin 3)+\cos^{-1}(\cos 7)-\tan^{-1}(\tan 5)
is
Report Question
0%
\pi-1
0%
\pi
0%
3\pi-1
0%
2\pi-1
\sum^ { \infty }_ { n=1 } tan^{-1}\dfrac{4n}{n^4-2n^2+2}
is equal to:
Report Question
0%
tan^{-1}2+tan^{-1}3
0%
4 tan^{-1}1
0%
\pi/2
0%
sec^{-1}(-\sqrt2)
The smallest and largest value of
\tan^{-1}\left(\dfrac {1-x}{1+x}\right),0 \le x \le 1
are
Report Question
0%
0, \pi
0%
0,\dfrac {\pi}{4}
0%
-\dfrac {\pi}{4}, \dfrac {\pi}{4}
0%
\dfrac {\pi}{4}, \dfrac {\pi}{2}
{ cos }^{ -1 }(\frac { x }{ 3 } )+{ cos }^{ -1 }(\frac { y }{ 2 } )=(\frac { \theta }{ 2 } )
, then the value of
{ 4x }^{ 2 }
-12xy cos
(\frac { \theta }{ 2 } )
+
{ 9y }^{ 2 }
is equal to
Report Question
0%
18(1+cos\theta )
0%
18(1-cos\theta )
0%
36(1+cos\theta )
0%
36(1-cos\theta )
\cos ^{ -1 }{ \left\{ \dfrac { 1 }{ 2 } { x }^{ 2 }+\sqrt { { 1-x }^{ 2 } } .\sqrt { 1\dfrac { { x }^{ 2 } }{ 4 } } \right\} } =\cos ^{ -1 }{ \dfrac { x }{ 2 } } -\cos ^{ -1 }{ x }
holds for
Report Question
0%
\left| x \right| \le 1
0%
x\in R
0%
0\le x\le 1
0%
-1\le x\le 0
If
x=si{ n }^{ -1 }(sin10)
and
y={ s }^{ -1 }(cos10)
then
y-x
is equal to:
Report Question
0%
0
0%
7\pi
0%
10
0%
\pi
Evaluate
\cot ^{ -1 }{ \sum _{ n=1 }^{ 19 }{ \cot ^{ -1 }{ [1+\sum _{ p=1 }^{ n }{ 2p } ] } } }
Report Question
0%
\frac { 23 }{ 22 }
0%
\frac { 19 }{ 23 }
0%
\frac { 23 }{ 19 }
0%
\frac { 22 }{ 23 }
If
x={ sin }^{ -1 }(sin10)
and
y={ cos }^{ -1 }(cos10)
, then the value of (y - x) is
Report Question
0%
\pi
0%
7\pi
0%
0
0%
10
Considering only the principal values of inverse functions, the set
A=\left\{ x\quad \ge \quad 0\quad :tan^{ -1 }(2x)+tan^{ -1 }(3x)=\dfrac { \pi }{ 4 } \right\}
Report Question
0%
Is an empty set
0%
contains more than two elements
0%
contains two elements
0%
is a singleton
The value of
\sin ^{ -1 }{ (\cos { (\cos ^{ -1 }{ (\cos { x } ) } +\sin ^{ -1 }{ (\sin { x } ) } ) } ) } ,\quad where\quad x\in (\frac { \pi }{ 2 } ,\pi )
, is equal to
Report Question
0%
\frac { \pi }{ 2 }
0%
-\pi
0%
\pi
0%
-\frac { \pi }{ 2 }
If
\theta ={ cot }^{ -1 }\sqrt { cosx } -{ tan }^{ -1 }\sqrt { cosx }
, then
sin\theta =
Report Question
0%
tan\cfrac { 1 }{ 2 } x
0%
{ tan }^{ 2 }(x/2)
0%
\cfrac { 1 }{ 2 } { tan }^{ -1 }(x2)
0%
None of these
The value of
\sin^{-1}(\sin 12)-\cos^{-1}(\cos 12)=
Report Question
0%
0
0%
\pi
0%
8\pi +24
0%
8\pi -24
Explanation
{\sin}^{-1}{\left(\sin{12}\right)}-{\cos}^{-1}{\left(\cos{12}\right)}
={\cos}^{-1}{\sqrt{1-{\sin}^{2}{12}}}-{\cos}^{-1}{\left(\cos{12}\right)}
since
{\sin}^{-1}{x}={\cos}^{-1}{\sqrt{1-{x}^{2}}}
={\cos}^{-1}{\left(\cos{12}\right)}-{\cos}^{-1}{\left(\cos{12}\right)}=0
\tan ^{ -1 }{ (\frac { 5 }{ 12 } ) } +\sin ^{ -1 }{ (\frac { 24 }{ 25 } ) } =\cos ^{ -1 }{ (x) } \Rightarrow x=
Report Question
0%
\frac { -31 }{ 325 }
0%
\frac { -33 }{ 325 }
0%
\frac { -36 }{ 325 }
0%
\frac { -39 }{ 325 }
If
\cot \dfrac { 2{ x } }{ 3 } +\tan \dfrac { { x } }{ 3 } =\csc \dfrac { { kx } }{ 3 } ,
then the value of
\tan ^{ { -1 } } (\tan { k } )
equals
Report Question
0%
2
0%
2 - \pi
0%
\pi - 2
0%
2\pi - 2
\sin ^{-1}\left(\dfrac{1}{\sqrt{2}}\right)+\sin ^{-1}\left(\dfrac{\sqrt{2}-1}{\sqrt{6}}\right)+\ldots+\sin ^{-1}\left(\dfrac{\sqrt{n}-\sqrt{n-1}}{\sqrt{n(n+1)}}\right)+\ldots . \infty=
Report Question
0%
\pi
0%
\cfrac {\pi}{2}
0%
\cfrac {\pi}{4}
0%
\cfrac {3\pi}{2}
4\tan ^{ -1 }{ \frac { 1 }{ 5 } } -\tan ^{ -1 }{ \frac { 1 }{ 70 } } +\tan ^{ -1 }{ \frac { 1 }{ 99 } } =
Report Question
0%
\pi
0%
{ \pi }/{ 2 }
0%
{ \pi }/{ 4 }
0%
{ 3\pi }/4
The value of the expression tan
(\frac{1}{2} cos ^{-1}\frac{2}{\sqrt{5}})
is
Report Question
0%
2-\sqrt{5}
0%
\sqrt{5}-2
0%
\frac{\sqrt{5}-2}{2}
0%
5-
\sqrt{2}
If
x = \sin ^ { - 1 } ( \sin 10 ) \text { and } y = \cos ^ { - 1 } ( \cos 10 )
then
y - x
is equal to:
Report Question
0%
\pi
0%
10
0%
7\pi
0%
0
If
cos{ }^{ -1 }\frac { x }{ a } +cos{ }^{ -1 }\frac { y }{ b } =\alpha \quad then\quad \frac { { x }^{ 2 } }{ { a }^{ 2 } } -\frac { 2xy }{ ab } cos\alpha +\frac { { y }^{ 2 } }{ { b }^{ 2 } } =
Report Question
0%
sin^{2}\alpha
0%
cos^{2}\alpha
0%
tan^{2}\alpha
0%
cot^{2}\alpha
What is the value of
\sin^{-1} \left\{ {\cos(\sin^{-1} x)} \right\} +\cos^{-1} \left\{ {\sin (\cos^{-1} x)} \right\}
?
Report Question
0%
2x
0%
2x+\pi
0%
\dfrac{\pi}{2}
0%
-\dfrac{\pi}{2}
{\cot}^{-1}\left(\sqrt{\cos\alpha}\right) -{\tan}^{-1}\left(\sqrt{\cos\alpha}\right) =x
, then
\sin x
is equal to
Report Question
0%
\displaystyle {\tan}^{2}\frac{\alpha}{2}
0%
\displaystyle {\cot}^{2}\frac{\alpha}{2}
0%
\tan\alpha
0%
\displaystyle \cot\frac{\alpha}{2}
The product of all values of x satisfying the equation.
{ sin }^{ -1 }cos\left( \dfrac { { 2x }^{ 2 }+10\left| x \right| +4 }{ { x }^{ 2 }+5\left| x \right| +3 } \right)
=cot\left\{ { cot }^{ -1 }\left( \dfrac { 2-18\left| x \right| }{ 9\left| x \right| } \right) \right\} +\dfrac { \pi }{ 2 }
is
Report Question
0%
9
0%
-9
0%
3
0%
-1
The value of
\displaystyle sin^{1}\left ( sin\dfrac{5\pi}{3} \right )
is ......
Report Question
0%
\dfrac{\pi}{3}
0%
\dfrac{5\pi}{3}
0%
\dfrac{\pi}{3}
0%
\dfrac{2\pi}{3}
The value of
\tan \left[ \sin ^ { - 1 } \left( \cos \left( \sin ^ { - 1 } x \right) \right) \right]
\tan \left[ \cos ^ { - 1 } \left( \sin \left( \cos ^ { - 1 } x \right) \right) \right]
,
( x \in ( 0,1 ) )
is equal to
Report Question
0%
0
0%
1
0%
-1
0%
None
f ( x ) = \sin ^ { - 1 } \sqrt { \frac { \sqrt { 1 + x ^ { 2 } } - 1 } { 2 \sqrt { 1 + x ^ { 2 } } } } ,
then which of the following is (are) correct?
Report Question
0%
f ( -1 ) = \frac { - 1 } { 4 }
0%
\operatorname { Ran } \mathscr { f } _ { f ( x ) }$ is $\left[ 0 , \frac { \pi } { 2 } \right]
0%
f ^ { \prime } ( x )
is an odd function
0%
\lim _ { x \rightarrow 0 } \frac { f ( x ) } { x } = \frac { 1 } { 2 }
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page