MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Matrices Quiz 2 - MCQExams.com
CBSE
Class 12 Commerce Maths
Matrices
Quiz 2
If $$A = \begin{bmatrix}2 & 3 & 4 \\ -3 & 4 & 8\end{bmatrix},$$ $$B = \begin{bmatrix}-1 & 4 & 7 \\ -3 & -2 & 5\end{bmatrix}$$ and $$ A+B = \begin{bmatrix}1 & a & b \\ c & 2 & 13\end{bmatrix},$$ then find the value of $$a+b+c.$$
Report Question
0%
$$12$$
0%
$$21$$
0%
$$15$$
0%
$$5$$
Explanation
Given,
$$A = \begin{bmatrix}2 & 3 & 4 \\ -3 & 4 & 8\end{bmatrix},$$ $$B = \begin{bmatrix}-1 & 4 & 7 \\ -3 & -2 & 5\end{bmatrix}$$ and $$\quad A+B = \begin{bmatrix}1 & a & b \\ c & 2 & 13\end{bmatrix}$$ ....(1)
Therefore,
$$\quad A+B = \begin{bmatrix}2 & 3 & 4 \\ -3 & 4 &
8\end{bmatrix} + \begin{bmatrix}-1 & 4 & 7 \\ -3 & -2 &
5\end{bmatrix}=\begin{bmatrix}2-1 & 3+4 & 4+7 \\ -3-3 & 4-2 & 8+5\end{bmatrix}= \begin{bmatrix}1 & 7 & 11 \\ -6 & 2 & 13\end{bmatrix}$$ .....(2)
By equating (1) and (2), we get
$$ a+b+c=7+11-6=12$$
If $$A = \begin{bmatrix}3 & 1 \\ -1 & 2\end{bmatrix}$$, Then $$A^2$$ =
Report Question
0%
$$\begin{bmatrix}8 & -5 \\ -5 & 3\end{bmatrix}$$
0%
$$\begin{bmatrix}8 & -5 \\ 5 & 3\end{bmatrix}$$
0%
$$\begin{bmatrix}8 & -5 \\ -5 & -3\end{bmatrix}$$
0%
$$\begin{bmatrix}8 & 5 \\ -5 & 3\end{bmatrix}$$
Explanation
Given $$A = \begin{bmatrix}3 & 1 \\ -1 & 2\end{bmatrix}$$
$$A^{2}= \begin{bmatrix}3 & 1 \\ -1 & 2\end{bmatrix} \begin{bmatrix}3 & 1 \\ -1 & 2\end{bmatrix}$$
$$=\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$
If $$\displaystyle 2\begin{bmatrix}3 &4 \\5 &x \end{bmatrix}+\begin{bmatrix}1 &y \\0 &2 \end{bmatrix}=\begin{bmatrix}7 &0 \\10 &5 \end{bmatrix}$$
, then the values of $$x\ and\ y$$ are :
Report Question
0%
$$\displaystyle x=0,y=-2$$
0%
$$\displaystyle x=\dfrac{3}{2},y=-8$$
0%
$$\displaystyle x=-2,y=-8$$
0%
$$\displaystyle x=2,y=8$$
Explanation
$$2\left[ \begin{matrix} 3 & 4 \\ 5 & x \end{matrix} \right] +\left[ \begin{matrix} 1 & y \\ 0 & 2 \end{matrix} \right] =\left[ \begin{matrix} 7 & 0 \\ 10 & 5 \end{matrix} \right] $$
$$\Rightarrow \left[ \begin{matrix} 6 & 8 \\ 10 & 2x \end{matrix} \right] +\left[ \begin{matrix} 1 & y \\ 0 & 2 \end{matrix} \right] =\left[ \begin{matrix} 7 & 0 \\ 10 & 5 \end{matrix} \right] $$
$$\Rightarrow \left[ \begin{matrix} 7 & 8+y \\ 10 & 2x+2 \end{matrix} \right] =\left[ \begin{matrix} 7 & 0 \\ 10 & 5 \end{matrix} \right] $$
$$\Rightarrow 8+y=0\;\&\;2x+2=5$$
$$\Rightarrow y=-8\;\&\;2x=3$$
$$\Rightarrow x=\dfrac { 3 }{ 2 } $$
$$\therefore x=\dfrac { 3 }{ 2 }\; \&\;y=-8$$
Hence, the answer is $$x=\dfrac { 3 }{ 2 }\; \&\;y=-8.$$
If $$\begin{bmatrix} x & y \\ u & v \end{bmatrix}$$ is symmetric matrix, then
Report Question
0%
$$x+v=0$$
0%
$$x-v=0$$
0%
$$y+u=0$$
0%
$$y-u=0$$
Explanation
$$A =\begin{bmatrix} x & y \\ u & v \end{bmatrix}$$
$$A^T =\begin{bmatrix} x & u \\ y & v \end{bmatrix}$$
So for $$A$$ to be symmetric matrix, $$A=A^T$$
$$\Rightarrow y = u\Rightarrow y-u=0$$
If $$\displaystyle A=\begin{bmatrix}x &y \\z &w \end{bmatrix},B=\begin{bmatrix}x &-y \\-z &w \end{bmatrix}$$ and $$C=\begin{bmatrix}-2x &0 \\0 &-2w \end{bmatrix},$$ then $$A+B+C$$ is a:
Report Question
0%
identity matrix
0%
null matrix
0%
row matrix
0%
column matrix
Explanation
Given:
$$\displaystyle A=\begin{bmatrix}x &y \\z &w \end{bmatrix},B=\begin{bmatrix}x &-y \\-z &w \end{bmatrix}$$ and $$C=\begin{bmatrix}-2x &0 \\0 &-2w \end{bmatrix}$$
Consider,
$$\displaystyle A+B+C=\begin{bmatrix}X &Y \\Z &W \end{bmatrix}+\begin{bmatrix}X &-Y \\-Z &W \end{bmatrix}+\begin{bmatrix}-2X &0 \\0 &-2W \end{bmatrix}$$
$$=\begin{bmatrix}X+X+\left ( -2X \right ) &Y+\left ( -Y \right )+0 \\Z+\left ( -Z \right )+0 &W+W+\left ( -2W \right ) \end{bmatrix}$$
$$=\begin{bmatrix}0 &0 \\0 &0 \end{bmatrix}$$
Hence, $$A+B+C$$ is a null matrix.
If matrix $$A$$ is of order $$p\times q$$ and matrix $$B$$ is of order $$r\times s$$ ,then $$A-B$$ will exist if
Report Question
0%
$$p=q$$
0%
$$p=r, q=s$$
0%
$$p=q, r=s$$
0%
$$p=s, q=r$$
Explanation
If matrix $$A$$ is of order $$p\times q$$ and matrix $$B$$ is of order $$r\times s,$$ then $$A-B$$ will exist if order of $$A$$ and $$B$$ is same
Therefore, $$p=r,q=s$$
Ans: B
If $$\displaystyle A=\left [ a_{ij} \right ]_{m\times\:n}, B=\left [ b_{ij} \right ]_{m\times\:n},$$ then the element $$\displaystyle C_{23}$$ of the matrix $$C=A+B$$ is
Report Question
0%
$$\displaystyle C_{32}$$
0%
$$\displaystyle a_{23}+b_{32}$$
0%
$$\displaystyle a_{23}+b_{23}$$
0%
$$\displaystyle a_{32}+b_{23}$$
Explanation
$$\displaystyle A=\left [ a_{ij} \right ]_{m\times\:n}$$ and
$$B=\left [ b_{ij} \right ]_{m\times\:n}$$
$$\therefore C=A+B$$
$$\Rightarrow \left [ c_{ij} \right ]_{m\times\:n}=\left [ a_{ij}+b_{ij} \right ]_{m\times\:n}$$
Hence, $$c_{23}=a_{23}+b_{23}$$
If $$A-A'=0$$, then $$A'$$ is
Report Question
0%
orthogonal matrix
0%
symmetric matrix
0%
skew-symmetric matrix
0%
triangular matrix
Explanation
It is fundamental concept that,
If $$A = A'$$ then $$A=A'$$ is called symmetric matrix.
For any square matrix $$A, \ A+{A}^{T}$$ is-
Report Question
0%
unit matrix
0%
symmetric matrix
0%
skew symmetric matrix
0%
zero matrix
Explanation
Let, $$B = A+A^T$$
$$\Rightarrow B^T = (A+A^T)^T =A^T+(A^T)^T =A^T+A =B$$
Hence $$B = A+A^T$$ is a symmetric matrix.
If $$\displaystyle \begin{bmatrix} x & y \\ 1 & 6 \end{bmatrix} $$ = $$\displaystyle \begin{bmatrix} 1 & 8 \\ 1 & 6 \end{bmatrix},$$ then $$x+2y=$$
Report Question
0%
$$13$$
0%
$$17$$
0%
$$19$$
0%
None of these
Explanation
By equating given matrices, we have
$$x=1$$ and $$y=8$$
$$\displaystyle \therefore x+2y=17$$
If $$A= \displaystyle \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} $$ and B=$$\displaystyle \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, $$ then $$A+B=$$
Report Question
0%
$$A$$
0%
$$B$$
0%
$$\displaystyle \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} $$
0%
$$\displaystyle \begin{bmatrix} 0 & 2 \\ 2 & 2 \end{bmatrix} $$
Explanation
Given, $$A= \displaystyle \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} $$ and B=$$\displaystyle \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $$
Then, $$A+ B = \displaystyle \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix}$$
If A is any square matrix, then $$(A\, +\, A^T)$$ is a ............ matrix
Report Question
0%
symmetric
0%
skew symmetric
0%
scalar
0%
identity
Explanation
Lets matrix $$A=\begin{bmatrix} a & b & c\\ d & f & g\\ e & h & i\end{bmatrix}$$
Then, matrix $$A^T$$, after transforming rows with each other will be,
$$A^T=\begin{bmatrix} a & d & e\\ b & f & h\\ c & g & i\end{bmatrix}$$
on adding $$A+A^T$$, we get
$$\begin{bmatrix} 2a & (b+d) & (c+e)\\ (b+d) & 2f & (h+g)\\ (e+c) & (h+g) & 2i\end{bmatrix}$$
which is clearly symmetry about its diagonal.
If $$A$$ is a square matrix, then $$A-{A}^{T}$$ is-
Report Question
0%
unit matrix
0%
null matrix
0%
$$A$$
0%
a skew symmetric matrix
Explanation
$${ \left( A-{ A }^{ T } \right) }^{ T }={ A }^{ T }-{ \left( { A }^{ T } \right) }^{ T }={ A }^{ T }-A=-\left( A-{ A }^{ T } \right) $$
Therefore, it is a skew symmetric matrix
Ans: D
If $$\displaystyle \begin{bmatrix} 2 & 3 \\ 4 & 4 \end{bmatrix} $$+$$\displaystyle \begin{bmatrix} x & 3 \\ y & 1 \end{bmatrix} $$=$$\displaystyle \begin{bmatrix} 10 & 6 \\ 8 & 5 \end{bmatrix},$$ then $$(x,y)=$$
Report Question
0%
$$(4,8)$$
0%
$$(8,4)$$
0%
$$(1,2)$$
0%
$$(2,4)$$
Explanation
By equating given matrices, we have
$$2+x=10 \Rightarrow x=8$$
Also, $$4+y=8 \Rightarrow y=4$$.
For square matrix $$A$$, $$A{A}^{T}$$ is-
Report Question
0%
unit matrix
0%
symmetric matrix
0%
skew symmetric matrix
0%
diagonal matrix
Explanation
Since,$${ \left( A{ A }^{ T } \right) }^{ T }={ \left( { A }^{ T } \right) }^{ T }{ A }^{ T }=A{ A }^{ T }$$
Therefore, $$A{ A }^{ T }$$ is symmetric matrix
Ans: B
IF $$A=\begin{bmatrix} -1 & 0 & 2 \\ 3 & 1 & 2 \end{bmatrix}$$ and $$B=\begin{bmatrix} -1 & 5 \\ 2 & 7 \\ 3 & 10 \end{bmatrix},$$ then
Report Question
0%
$$AB$$ and $$BA$$ both exist
0%
$$AB$$ exists but bot $$BA$$
0%
$$BA$$ exists but not $$AB$$
0%
but $$AB$$ and $$BA$$ do not exist
Explanation
Since, order of $$A$$ is $$2\times3$$ and or
der of $$B$$ is $$3\times 2$$
Thus, $$AB$$ and $$BA$$ exists.
If $$A$$ and $$B$$ are symmetric matrices of order $$\displaystyle n,\left( A\neq B \right) $$, then
Report Question
0%
$$A+B$$ is skew-symmetric
0%
$$A+B$$ is symmetric
0%
$$A+B$$ is a diagonal matrix
0%
$$A+B$$ is a zero matrix
Explanation
Since $$A$$ and $$B$$ are symmetric matrices, $$A' = A$$ and $$B'=B$$
$$\therefore (A+B)'=A'+B'=A+B$$
$$\therefore A+B$$ is symmetric matrix
If $$A$$ is a skew symmetric matrix then $$ \displaystyle A^{T} $$
Report Question
0%
$$-A$$
0%
$$A$$
0%
$$0$$
0%
diagonal matrix
Explanation
In mathematics, a skew-symmetric (or anti-symmetric or antimetric) matrix is a square matrix whose transpose is its negation; that is, it satisfies the condition $$-A=A^{T}$$
Hence, $$A^{T}=-A$$.
If $$ A= \begin{bmatrix} 1 & 2\end{bmatrix}, B=\begin{bmatrix} 3 & 4\end{bmatrix}$$ then $$A+B=$$
Report Question
0%
$$\begin{bmatrix}1 & 4\end{bmatrix}$$
0%
$$\begin{bmatrix}4 & 4\end{bmatrix}$$
0%
$$\begin{bmatrix}4 & 6\end{bmatrix}$$
0%
None of these
Explanation
Given $$A=\begin{bmatrix} 1 & 2 \end{bmatrix}$$
$$B=\begin{bmatrix} 3 & 4 \end{bmatrix}$$
Now, $$A+B=\begin{bmatrix} 1+3 & 2+4 \end{bmatrix}$$
$$\Rightarrow A+B=\begin{bmatrix} 4 & 6 \end{bmatrix}$$
$$\therefore $$Option C is correct
If $$A$$ is matrix of order $$\displaystyle m\times n$$ and $$B$$ is a matrix of order $$\displaystyle n\times p,$$ then the order of $$AB$$ is
Report Question
0%
$$\displaystyle p\times m$$
0%
$$\displaystyle p\times n$$
0%
$$\displaystyle n\times p$$
0%
$$\displaystyle m\times p$$
Explanation
If $$A$$ is matrix of order $$m \times n$$ and $$B$$ is a matrix of order $$ n \times p,$$ then the order of $$AB$$ is $$m \times p.$$
Two matrices $$A$$ and $$B$$ are added if
Report Question
0%
both are rectangular
0%
both have same order
0%
no of columns of A is equal to columns of B
0%
no of rows of A is equal to no of columns of B
Explanation
While adding two matrices we add the numbers which belong to some row and column of each matrix or
two matrices can be added if there are equal number of rows and columns in both.
Hence, both matrices should have same order.
$$\therefore$$ option B is correct
Find the output order for the following matrix multiplication $$A_{4 \times 2}\times B_{2\times4}$$?
Report Question
0%
$$2 \times 4$$
0%
$$4 \times 4$$
0%
$$4 \times2$$
0%
Multiplication not possible
Explanation
Note:
1. $$m×n$$ is the order of matrix $$AB$$ if the order of matrix $$A$$ is $$m×p$$ and the order of $$B$$ is $$p×n$$.
2.
For matrix multiplication to work, the columns of the second matrix have to have the same number of entries as do the rows of the first matrix.
Here $$A,B$$ are conformant matrices, Multiplication is possible.
Therefore, $$A$$ is of size $$4 \times 2$$, and $$B$$ is of size $$2 \times 4$$, in which case the output is
of size $$4 \times 4$$ and is the matrix product of $$A$$ and $$B$$.
If the matrices $$A=\begin{bmatrix}2 & 1 & 3 \\4 & 1 & 0\end{bmatrix}$$ and $$B=\begin{bmatrix}1 & -1\\ 0 & 2 \\5 & 0\end{bmatrix}$$, then AB will be
Report Question
0%
$$\begin{bmatrix}17 & 0 \\4 & -2\end{bmatrix}$$
0%
$$\begin{bmatrix}4 & 0 \\ 0 & 4\end{bmatrix}$$
0%
$$\begin{bmatrix}17 & 4 \\0 & -2\end{bmatrix}$$
0%
$$\begin{bmatrix}0 & 0 \\0 & 0\end{bmatrix}$$
Explanation
Given, $$A=\begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}$$ and $$B=\begin{bmatrix}1 & -1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}$$
Now, $$AB=\begin{bmatrix}2\times1+1\times0+3\times5 & 2\times(-1)+1\times2+3\times0 \\ 4\times1+1\times0+0\times5 & 4\times(-1)+1\times2+0\times0\end{bmatrix}$$
$$=\begin{bmatrix}17 & 0 \\ 4 & -2\end{bmatrix}$$
Least number of changes for the expression $$ax^{2} + bxy + cy^{2} + dx + ey + f$$ to be symmetric in x and y is
Report Question
0%
$$a = b, c = d$$
0%
$$b = c, e = f$$
0%
$$a = c, d = e$$
0%
$$a = f, b = e, c = d$$
Explanation
$$ax^2+bxy+cy^2+dx+ey+f$$.......(1)
Replace by $$x$$ by $$y$$ and $$y$$ by $$x$$
$$\Rightarrow ay^2+byx+cx^2+dy+ex+f$$.......(2)
if (1) and (2) are equal then
$$\boxed{a=c\,and\,d=e}$$
What is the output for the following matrix multiplication $$A_{3 \times 2}\times B_{2\times 3}$$?
Report Question
0%
$$(AB)_{3\times 2}$$
0%
$$(AB)_{3\times 3}$$
0%
$$(AB)_{2\times 3}$$
0%
$$(AB)_{2\times 2}$$
Explanation
Here $$A,B$$ are conformant matrices.
Therefore, $$A$$ is of size $$3 \times 2$$, and $$B$$ is of size $$2 \times 3$$, in which case the output is of size $$3 \times 3$$ and is the matrix product of $$A$$ and $$B$$.
The result will be $$(AB)_{3\times 3}.$$
Find the output order for the following matrix multiplication $$X_{5 \times 3}\times Y_{3\times 5}$$?
Report Question
0%
$$5 \times 5$$
0%
$$3 \times 5$$
0%
$$5 \times 3$$
0%
$$3 \times 3$$
Explanation
Since, $$X$$ is of size $$5 \times 3$$, and $$Y$$ is of size $$3 \times 5$$
$$\therefore$$ T
he matrix product of $$X$$ and $$Y$$ has order
$$5 \times 5.$$
Find the value in place of question mark in the following:
$$A_{6 \times 2}\times B_{2\times 6} = C_{?\times6}$$?
Report Question
0%
$$2$$
0%
$$6$$
0%
$$12$$
0%
None of these
Explanation
$$A_{6 \times 2}$$ denotes a matrix having $$6$$ rows and $$2$$ columns.
Similarly, $$B_{2 \times 6}$$ denotes a matrix having $$2$$ rows and $$6$$ columns.
When multiplied, we get $$6$$ rows and $$6$$ columns based on the matrix multiplication rule.
Thus, if the product of matrices $$A$$ and $$B$$ is $$C$$, we can write the answer as $$C_{6 \times 6}$$
$$A=\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta\end{bmatrix}$$ and $$AB=BA=I$$, then B is equal to
Report Question
0%
$$\begin{bmatrix} -\cos\theta & \sin\theta \\ \sin\theta & \cos\theta\end{bmatrix}$$
0%
$$\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta\end{bmatrix}$$
0%
$$\begin{bmatrix} -\sin\theta & \cos\theta \\ \cos\theta & \sin\theta\end{bmatrix}$$
0%
$$\begin{bmatrix} \sin\theta & -\cos\theta \\ -\cos\theta & \sin\theta\end{bmatrix}$$
Explanation
Given, $$A=\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$ and $$AB=BA=I$$
$$\Rightarrow B=A^{-1}I=A^{-1}$$
$$=\displaystyle\frac{1}{\cos^2\theta +\sin^2\theta}\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta\end{bmatrix}$$
$$\Rightarrow B=\begin{bmatrix}\cos\theta & \sin\theta \\ -\sin\theta & \cos\theta\end{bmatrix}$$
If $$A=\begin{bmatrix} 3 & x-1 \\ 2x+3 & x+2 \end{bmatrix}$$ is symmetric matrix then the value of $$x$$ is
Report Question
0%
$$4$$
0%
$$3$$
0%
$$-4$$
0%
$$-3$$
Explanation
Since $$A$$ is symmetric matrix, then
$$A=A'$$
$$\Rightarrow$$ $$\begin{bmatrix} 3 & x-1 \\ 2x+3 & x+2 \end{bmatrix}=\begin{bmatrix} 3 & 2x+3 \\ x-1 & x+2 \end{bmatrix}$$
$$\Rightarrow $$ $$x-1=2x+3$$ $$\Rightarrow$$ $$x=-4$$
What is the output order for the following matrix multiplication $$A_{2 \times 1}\times B_{1\times 2}$$?
Report Question
0%
$$1 \times 1$$
0%
$$2 \times 3$$
0%
$$2 \times 2$$
0%
$$2 \times 1$$
Explanation
We know that $$m\times n $$ is the order of matrix $$AB$$ if the order of matrix $$A$$ is $$m\times p$$ and the order of $$B$$ is $$p\times n.$$
Since, $$A$$ is of size $$2 \times 1$$, and $$B$$ is of size $$1 \times 2$$, in which case the output is of size $$2 \times 2$$
and is the matrix product of $$A$$ and $$B$$.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page