CBSE Questions for Class 12 Commerce Maths Matrices Quiz 5 - MCQExams.com

lf $$\mathrm{A}=\left\{\begin{array}{lll}
1 & 1 & 3\\
5 & 2 & 6\\
-2 & -1 & -3
\end{array}\right\},$$ then $$\mathrm{A}^{3}$$ is a/an
  • diagonal matrix
  • square matrix
  • null matrix
  • unit Matrix
If $$\begin{bmatrix} x & -3 \\ -9 & y \end{bmatrix}\begin{bmatrix} 4 & -3 \\ 9 & 7 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$ then $$x=$$ .......... $$, y $$ $$=$$ ........
  • $$7,4$$
  • $$4,7$$
  • $$8,9$$
  • $$9,8$$
State true/false:
If $$A=\begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix},$$ then solve is $${ A }^{ 3 }=I$$?
  • True
  • False
If $$A= \begin{bmatrix}
2 &  3   \\
3  & 2      
\end{bmatrix},$$ $$B= \begin{bmatrix}
2  & 1   \\
3  & 5      
\end{bmatrix}$$ and $$C= \begin{bmatrix}
0  & 1   \\
1  & 2      
\end{bmatrix},$$ then $$\left ( AB \right )\times C=$$
  • $$\begin{bmatrix}

    8 &  11 \\

    18  & 23

    \end{bmatrix}$$
  • $$\begin{bmatrix}

    11 &  30 \\

    23 &  60

    \end{bmatrix}$$
  • $$\begin{bmatrix}

    17  &  47 \\

    13  & 38 

    \end{bmatrix}$$
  • $$\begin{bmatrix}

    0 &  1 \\

    1  &2

    \end{bmatrix}$$
If  $$A=\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$ , $$B=\begin{bmatrix} 3 & 2 & 0 \\ 1 & 0  & 4  \end{bmatrix}$$, then $$AB=$$ is
  • $$\begin{bmatrix} 6 & 2 & 5 \\ 7 & 2 & 3 \end{bmatrix}$$
  • $$\begin{bmatrix} 2 & 1 & 5 \\ 0 & 1 & 7 \end{bmatrix}$$
  • $$\begin{bmatrix} -5 & 2 & 5 \\ 1 & 2 & 11 \end{bmatrix}$$
  • $$\begin{bmatrix} 7 & 4 & 4 \\ 6 & 2 & 12 \end{bmatrix}$$
If A = $$\begin{bmatrix}
 2\ \ \ 4 \\
 3\ \ 5
\end{bmatrix},$$ $$B= \begin{bmatrix}
 x\ \ \ y \\
 6\ \ \ 5
\end{bmatrix}$$ and  $$AB= \begin{bmatrix}8\ \ \ 2 \\
 6\ \ \ -2 
\end{bmatrix}$$
then $$x= $$ ______, and $$y = $$ _____.
  • $$- 9, -8$$
  • $$8, 9$$
  • $$- 8, -9$$
  • $$9, 8$$
If $$P=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$ and if
$$PQ=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$,then $$Q=$$
  • $$\begin{bmatrix} -4 & 2 \\ 3 & -1 \end{bmatrix}$$
  • $$\begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix}$$
  • $$\begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix}$$
  • $$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
If $$A=\begin{bmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix},  B=\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\  -1 & 1 & 2 \end{bmatrix}$$  then  $$AB=$$
  • $$\begin{bmatrix} 5 & 3 & 11 \\ 1 & 2 & 2 \\ 1 & 3 & 5 \end{bmatrix}$$
  • $$\begin{bmatrix} 5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4 \end{bmatrix}$$
  • $$\begin{bmatrix} 5 & 8 & 11 \\ 1 & 2 & 3 \\ 2 & 2 & -3 \end{bmatrix}$$
  • $$\begin{bmatrix} 5 & 3 & 13 \\ -1 & 2 & 4 \\ -2 & 3 & -5 \end{bmatrix}$$
If $$\displaystyle A=\left [ a_{ij} \right ]$$ is a square matrix of even order such that $$\displaystyle \left [ a_{ij} \right ]=i^{2}-j^{2}$$, then
  • $$A$$ is a skew-symmetric matrix and $$\displaystyle \left | A \right |=0$$
  • $$A$$ is symmetric matrix and $$\displaystyle \left | A \right |$$ is a square
  • $$A$$ is symmetric matrix and $$\displaystyle \left | A \right |=0$$
  • none of these
$$A=\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1  \end{bmatrix}, \text{then} \,A^{3}-4A^{2}-6A=$$
  • $$0$$
  • $$A$$
  • $$-A$$
  • $$I$$
If $$A=\begin{bmatrix} 1 & tanx \\ -tanx & 1 \end{bmatrix}$$, then $${ A }^{ T }{ A }^{ -1 }$$ is
  • $$\begin{bmatrix} -cos2x & sin2x \\ -sin2x & cos2x \end{bmatrix}$$
  • $$\begin{bmatrix} cos2x & -sin2x \\ sin2x & cos2x \end{bmatrix}$$
  • $$\begin{bmatrix} cos2x & cos2x \\ cos2x & sin2x \end{bmatrix}$$
  • none of these
If $$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}A=\begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$$, then sum of all the elements of matrix $$A$$ is
  • $$0$$
  • $$1$$
  • $$2$$
  • $$-3$$
Let  $$A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\   and\  B=\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix},  a,b\in N.$$ Then:
  • there exists exactly one B such that $$AB=BA$$
  • there exist exactly infinitely many B's such that $$AB=BA$$
  • there cannot exist any B such that $$AB=BA$$
  • there exist more than one but finite number of B's such that $$AB=BA$$
If $$\begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$$ and $$  A^{2}=I$$, then $$x=$$
  • $$0$$
  • $$1$$
  • $$-1$$
  • $$2$$
If $$[1\ 2\ 3] B = [3\ 4],$$ then order of the matrix $$B$$ is
  • $$3 \times 1$$
  • $$1 \times 3$$
  • $$2 \times 3$$
  • $$3 \times 2$$
The inverse of the matrix $$\begin{bmatrix}2 & 1\\ 1 & 3\end{bmatrix}$$ is
  • $$\displaystyle \frac{1}{5} \begin{bmatrix}2 & 1\\ 1 & 3\end{bmatrix}$$
  • $$\displaystyle \frac{1}{5} \begin{bmatrix}3 & -1\\ -1 & 2\end{bmatrix}$$
  • $$\displaystyle \frac{1}{5} \begin{bmatrix}-3 & 1\\ 1 & 2\end{bmatrix}$$
  • $$\displaystyle \frac{1}{5} \begin{bmatrix}-3 & -1\\ 1 & 2\end{bmatrix}$$
If $$\displaystyle \:A= \left [ \begin{matrix}1 &2  &x \\0  &1  &0 \\0  &0  &1 \end{matrix} \right ]and \  B\left [ \begin{matrix}1 &-2  &y \\0  &1  &0 \\0  &0  &1 \end{matrix} \right ]$$ and  $$\displaystyle \:AB= I,$$ then $$x+y$$ equals 
  • $$0$$
  • $$-1$$
  • $$2$$
  • none of these
Let A be a square matrix. Which of the following is/are not symmetric matrix/matrices?
  • $$A+A^{T}$$
  • $$AA^{T}$$
  • $$A-A^{T}$$
  • $$A^{T}A$$
If $$A = \begin{bmatrix}1 & 2 & 2\\ 2 & 1 & -2\\ a & 2 & b\end{bmatrix}$$ is a matrix satisfying $$AA^T = 9 I_3$$, then the values of $$a$$ and $$b$$ are
  • $$a = -2, b = - 1$$
  • $$a = -2, b = 1$$
  • $$a = 2, b = - 1$$
  • No values of a,b satisfy given conditions
Using elementary transformation, find the inverse of the matrix $$A =\begin{bmatrix}a & b\\ c & \left ( \frac{1 + bc}{a} \right )\end{bmatrix}$$.
  • $$\Rightarrow A^{-1} = \begin{bmatrix} \frac{1 + bc}{a}& b\\ -c & a\end{bmatrix} $$
  • $$\Rightarrow A^{-1} = \begin{bmatrix} \frac{1 + bc}{a}& - b\\ c & a\end{bmatrix} $$
  • $$\Rightarrow A^{-1} = \begin{bmatrix} \frac{1 + bc}{a}& b\\ c & a\end{bmatrix} $$
  • None of these.
If $$A = \begin{bmatrix}1 & -2 & 3\\ -4 & 2 & 5\end{bmatrix}$$ and $$B = \begin{bmatrix}2 & 3\\ 4 & 5\\ 2 & 1\end{bmatrix}$$, then  the product  of AB and BA is
  • $$\begin{bmatrix}-10 & 2 & 21\\ -16 & 2 & 37\\ -2 & -2 & 11\end{bmatrix}$$
  • $$\begin{bmatrix}0 & -4\\ 10 & 3\end{bmatrix}$$
  • $$\begin{bmatrix}-64 & -8\\ -148 & 26\end{bmatrix}$$
  • $$Cannot\space be\space computed$$
The value of x is such that matrix product $$\begin{bmatrix}2 & 0 & 7\\ 0 & 1 & 0\\ 1 & -2 & 1\end{bmatrix} \begin{bmatrix}-x & 14x & 7x\\ 0 & 1 & 0\\ x & -4x & -2x\end{bmatrix}$$ equals an identity matrix. Then the value of 20x is
  • 4
  • 5
  • 1
  • 7
If A is a skew-symmetric matrix and n is odd positive integer, then $$A^n$$ is
  • a skew-symmetric matrix
  • a symmetric matrix
  • a diagonal matrix
  • none of these
If $$\displaystyle A=\begin{bmatrix} 1 & 0 \\ \cfrac { 1 }{ 2 }  & 1 \end{bmatrix},$$ then $${A}^{50}$$ is
  • $$\begin{bmatrix} 1 & 0 \\ 0 & 50 \end{bmatrix}$$
  • $$\begin{bmatrix} 1 & 0 \\ 50 & 1 \end{bmatrix}$$
  • $$\begin{bmatrix} 1 & 25 \\ 0 & 1 \end{bmatrix}$$
  • None of these
State true or false:
If $$A = \begin{bmatrix}2 & -1 \\ 0 & 1\end{bmatrix}$$ and $$B = \begin{bmatrix}1 & 0 \\ -1 & -1\end{bmatrix},$$ then $$(A+B)^2 = A^2 + AB + BA + B^2 = A^2 + 2AB + B^2$$
  • True
  • False
If $$\displaystyle \begin{bmatrix} 2 & -3 \\ 1 & \lambda \end{bmatrix} \times  \begin{bmatrix} 1 & 5 & \mu \\ 0 & 2 & -3 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 1 \\ 1 & -1 & 13 \end{bmatrix}$$ then

  • $$\displaystyle \lambda = 3, \mu = 4$$
  • $$\displaystyle \lambda = 4, \mu = 3$$
  • $$\lambda = 2 , \mu = 5$$
  • none of these
If the matrix $$\displaystyle A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$ then $$\displaystyle A^2$$ is
  • $$\displaystyle \begin{bmatrix} a^2 & b^2 \\ c^2 & d^2 \end{bmatrix}$$
  • $$\displaystyle \begin{bmatrix} a^2 + bc & ab + bd \\ ac + dc & bc + d^2 \end{bmatrix}$$
  • nonexistent
  • none of these
State true or false.
If $$A, B, C$$ are three matrices such that 
$$A = \begin{bmatrix}x & y & z\end{bmatrix},$$ $$B = \begin{bmatrix} a  & h & g \\ h & b & f \\ g & f & c\end{bmatrix}$$ and $$C = \begin{bmatrix}x \\ y \\ z\end{bmatrix},$$ then $$ABC = \begin{bmatrix}ax^2 + by^2 + cz^2 + 2hxy + 2gzx + 2fyz\end{bmatrix}$$
  • True
  • False
If $$A = \begin{bmatrix}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix},$$ $$B = \begin{bmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{bmatrix}$$ and $$C = \begin{bmatrix} -1 & -1 & 1 \\ 2 & 2 & -2 \\ -3 & -3 & 3 \end{bmatrix},$$
which if the following are null matrices ?
  • $$CA$$
  • $$AB$$
  • $$BA$$
  • $$AC$$
If $$A = \begin{bmatrix} 0 & 2 & 3 \\ 3 & 5 & 7 \end{bmatrix},$$ $$B = \begin{bmatrix} 1 & 3 & 7 \\ 2 & 4 & 1 \end{bmatrix}$$ and $$A+B = \begin{bmatrix} 1 & 5 & 10 \\ 5 & k & 8 \end{bmatrix},\\ $$ then find the value of $$k .$$
  • 9
  • 4
  • 5
  • 1
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers