Processing math: 13%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Matrices Quiz 6 - MCQExams.com
CBSE
Class 12 Commerce Maths
Matrices
Quiz 6
Given
A
,
B
,
C
are three matrices such that
A
=
[
x
y
z
]
,
B
=
[
a
h
g
h
b
f
g
f
c
]
,
C
=
[
x
y
z
]
.
Evaluate
A
B
C
.
Report Question
0%
A
B
C
=
[
a
x
2
+
b
y
2
+
c
z
2
+
2
h
x
y
+
2
g
z
x
+
2
f
y
z
]
0%
A
B
C
=
[
a
x
2
−
b
y
2
+
c
z
2
+
2
h
x
y
+
2
g
z
x
+
2
f
y
z
]
0%
A
B
C
=
[
a
x
2
−
b
y
2
+
c
z
2
−
2
h
x
y
+
2
g
z
x
+
2
f
y
z
]
0%
A
B
C
=
[
a
x
2
+
b
y
2
+
c
z
2
−
2
h
x
y
+
2
g
z
x
−
2
f
y
z
]
Explanation
A
=
[
x
y
z
]
,
B
=
[
a
h
g
h
b
f
g
f
c
]
,
C
=
[
x
y
z
]
A
B
=
[
a
x
+
h
y
+
g
z
h
x
+
b
y
+
z
g
x
+
f
y
+
c
z
]
A
B
C
=
[
a
x
+
h
y
+
g
z
h
x
+
b
y
+
z
g
x
+
f
y
+
c
z
]
[
x
y
z
]
=
[
a
x
2
+
b
y
2
+
c
z
2
+
2
h
x
y
+
2
g
z
x
+
2
f
y
z
]
Hence, option A.
If
A
=
[
1
−
2
3
−
4
2
5
]
and
B
=
[
2
3
4
5
2
1
]
. Find
A
B
and show that
A
B
≠
B
A
Report Question
0%
A
B
=
[
0
−
4
10
−
3
]
0%
A
B
=
[
0
4
10
3
]
0%
A
B
=
[
0
−
4
10
3
]
0%
None of these.
Explanation
Given,
A
=
[
1
−
2
3
−
4
2
5
]
,
B
=
[
2
3
4
5
2
1
]
A
B
=
[
1
−
2
3
−
4
2
5
]
[
2
3
4
5
2
1
]
=
[
2
−
8
+
6
3
−
10
+
3
−
8
+
8
+
10
−
12
+
10
+
5
]
=
[
0
−
4
10
3
]
B
A
=
[
2
3
4
5
2
1
]
[
1
−
2
3
−
4
2
5
]
=
|
2
−
12
−
4
+
6
6
+
15
4
−
20
−
8
+
10
12
+
25
2
−
4
−
4
+
2
−
6
+
5
|
[
−
10
2
21
−
16
2
37
−
2
−
2
−
1
]
Hence
A
B
≠
B
A
If
[
x
+
y
y
2
x
x
−
y
]
[
2
−
2
]
=
[
3
2
]
then
x
−
y
is equal to
Report Question
0%
2
0%
−
2
0%
4
0%
6
Explanation
Comparing LHS and RHS gives us
2
x
+
2
y
−
2
y
=
3
...(i)
And
4
x
−
2
x
+
2
y
=
2
...(ii)
from i
2
x
=
3
and from ii
2
x
+
2
y
=
2
Therefore
3
+
2
y
=
3
y
=
−
1
2
and
x
=
3
2
Hence
x
−
y
=
3
2
−
(
−
1
2
)
=
4
2
=
2
.
If
[
1
x
1
]
[
1
3
2
2
5
1
15
3
2
]
[
1
2
x
]
=
O
then
x
is
Report Question
0%
2
0%
−
2
0%
14
0%
none of these
Explanation
[
1
x
1
]
[
1
3
2
2
5
1
15
3
2
]
[
1
2
x
]
=
O
⇒
[
16
+
2
x
6
+
5
x
4
+
x
]
[
1
2
x
]
=
O
⇒
x
2
+
16
x
+
28
=
0
∴
If
\displaystyle A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \\ 0 & 6 \end{bmatrix}
and
\displaystyle B=\begin{bmatrix} 5 & 4 & 6 \\ 4 & 1 & 2 \\ -5 & -1 & 1 \end{bmatrix}
, then
Report Question
0%
A + B
exists
0%
AB
exists
0%
BA
exists
0%
none of these
Explanation
\displaystyle A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \\ 0 & 6 \end{bmatrix}
and
\displaystyle B=\begin{bmatrix} 5 & 4 & 6 \\ 4 & 1 & 2 \\ -5 & -1 & 1 \end{bmatrix}
Order of
A
is
3\times2
Order of
B
is
3\times3
Order of
A
and
B
are not same. So ,
A+B
does not exists.
Again ,
AB
also does not exists as the number of columns of
A
are not equal to the number of rows of
B.
Here,
BA
exists as the number of columns of
B
is equal to the number of rows of
A
.
If
\displaystyle A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}
and
\displaystyle B = \begin{bmatrix} a^2 & ab & ac \\ ba & b^2 & bc \\ ca & cb & c^2 \end{bmatrix}
then
AB
is equal to
Report Question
0%
[0]
0%
I
0%
2I
0%
none of these
Explanation
\displaystyle A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}
and
\displaystyle B = \begin{bmatrix} a^2 & ab & ac \\ ba & b^2 & bc \\ ca & cb & c^2 \end{bmatrix}
Now,
AB=\begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}\begin{bmatrix} a^{ 2 } & ab & ac \\ ba & b^{ 2 } & bc \\ ca & cb & c^{ 2 } \end{bmatrix}
\Rightarrow AB=\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
If
A = \begin{bmatrix}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}, \space B = \begin{bmatrix}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}
, then
AB
=
Report Question
0%
\begin{bmatrix}5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4\end{bmatrix}
0%
\begin{bmatrix}5 & 9 & 13 \\ -1 & -2 & 4 \\ 2 & -2 & -4\end{bmatrix}
0%
\begin{bmatrix}5 & -9 & 13 \\ 1 & -2 & 4 \\ 2 & -2 & 4\end{bmatrix}
0%
\begin{bmatrix}5 & -9 & 13 \\ 1 & -2 & 4 \\ -2 & 2 & 4\end{bmatrix}
Explanation
Given,
A = \begin{bmatrix}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}
and
B = \begin{bmatrix}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}
AB=\begin{bmatrix}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}\begin{bmatrix}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}=\begin{bmatrix}5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4\end{bmatrix}
Hence, option A is correct.
Given
A = \begin{bmatrix}1 & -1 \\ 2 & -1\end{bmatrix}
, which of the following result is true?
Report Question
0%
A^2 = I
0%
A^2 = -I
0%
A^2 = 2I
0%
None of these
Explanation
Given,
A = \begin{bmatrix}1 & -1 \\ 2 & -1\end{bmatrix}
Now,
A^{2}=\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}
=\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}
\Rightarrow A^{2}=-I
A = \begin{bmatrix}4 & x+2 \\ 2x-3 & x+1\end{bmatrix}
is symmetric, then
x
=
Report Question
0%
3
0%
5
0%
2
0%
4
Explanation
A = \begin{bmatrix}4 & x+2 \\ 2x-3 & x+1\end{bmatrix}
A^{T}=\begin{bmatrix}4 & 2x-3 \\ x+2 & x+1\end{bmatrix}
A
is symmetric.
\therefore\quad A=A^{T}
\Rightarrow 2x-3=x+2
\therefore x=5
Hence, option B.
If
\displaystyle A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}
then
\displaystyle A^2
is equal to
Report Question
0%
A
0%
I
0%
\displaystyle A^T
0%
none of these
Explanation
Given,
\displaystyle A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}
A^{ 2 }=\begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}\begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\Rightarrow A^{2}=I
If
A
be a matrix such that
\displaystyle A \times \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}
then
A
is
Report Question
0%
\displaystyle \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix}
0%
\displaystyle \begin{bmatrix} -1 & 1 \\ 4 & 2 \end{bmatrix}
0%
\displaystyle \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}
0%
none of these
Explanation
\displaystyle A \times \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}
We will check using options
Option A
Consider,
A\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}
=\begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix}\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}
=\begin{bmatrix} 6 & 12 \\ 0 & -6 \end{bmatrix}
\ne RHS
Hence, option
A
cannot be matrix
A
.
Option B,
Consider,
A\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}
\begin{bmatrix} -1 & 1 \\ 4 & 2 \end{bmatrix}\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}
=\begin{bmatrix} 0 & 6 \\ 6 & 0 \end{bmatrix}
\ne RHS
Hence, option
B
cannot be matrix
A
.
Option C,
Consider,
A\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}
=\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}
=\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}
= RHS
Hence, option C is correct for
A
.
If
\displaystyle A=\begin{bmatrix}0 &c &-b \\-c &0 &a \\b &-a &0 \end{bmatrix}
and
\displaystyle B=\begin{bmatrix}a^{2} &ab &ac \\ab &b^{2} &bc \\ac &bc &c^{2} \end{bmatrix},
then
AB=
Report Question
0%
\displaystyle A^{3}
0%
\displaystyle B^{2}
0%
I
0%
O
Explanation
Given :
\displaystyle A=\begin{bmatrix}0 &c &-b \\-c &0 &a \\b &-a &0 \end{bmatrix}
\displaystyle B=\begin{bmatrix}a^{2} &ab &ac \\ab &b^{2} &bc \\ac &bc &c^{2} \end{bmatrix}
Then,
\displaystyle AB= \begin{bmatrix} 0& c & -b\\ -c & 0 & a\\b &-a &0 \end{bmatrix}\begin{bmatrix} a^{2} & ab & ac\\ ab & b^{2} & bc \\ ac & bc & c^{2}\end{bmatrix}
=\begin{bmatrix} abc-abc & b^{2}c-b^{2}c & bc^{2}-bc^{2} \\ -a^{2}c+a^{2}c & -abc+abc & -ac^{2}+ac^{2} \\ a^2b-a^2b & ab^2-ab^2 & abc-abc \end{bmatrix}
=O
If
A = \begin{pmatrix}1& 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{pmatrix}
If
A^2 - 4A =pI
where
I
and
O
are the unit matrix and the null matrix of order
3
respectively. Find the value of
p
Report Question
0%
p=2
0%
p=3
0%
p=4
0%
p=5
Explanation
Given
\quad A = \begin{pmatrix}1& 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{pmatrix}
\therefore A^2 = A.A = \begin{pmatrix}1& 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{pmatrix}\times\begin{pmatrix}1& 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{pmatrix}
\quad = \begin{pmatrix}1+4+4 & 2+2+4 & 2+4+2 \\ 2+2+4 & 4+1+4 & 4+2+2 \\ 2+4+2 & 4+2+2 & 4+4+1 \end{pmatrix}
\quad = \begin{pmatrix}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9\end{pmatrix}
\therefore \quad A^2 - 4A = \begin{pmatrix}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9\end{pmatrix} - 4\begin{pmatrix}1& 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{pmatrix}
\quad = \begin{pmatrix}9&8&8 \\ 8&9&8 \\ 8&8&9\end{pmatrix} - \begin{pmatrix}4&8&8 \\ 8&4&4 \\ 4&4&8\end{pmatrix} = \begin{pmatrix}5&0&0 \\ 0&5&0 \\ 0&0&5\end{pmatrix}=5I
Let
\displaystyle A = \begin{bmatrix}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{bmatrix}
. The only correct statement about the matrix
A
is
Report Question
0%
\displaystyle A
is a zero matrix
0%
\displaystyle A = \left ( -1 \right )I_{3}
0%
A^2=-I
0%
\displaystyle A^{2} = I
Explanation
\displaystyle A = \begin{bmatrix}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{bmatrix}
\displaystyle A^2=\begin{bmatrix}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{bmatrix}\begin{bmatrix}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{bmatrix}=\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}
\therefore A^2=I
Hence, option D.
If
A
is a square matrix then
A-{A}'
is a
Report Question
0%
diagonal matrix
0%
skew symmetric matrix
0%
symmetric matrix
0%
None of these
Explanation
Consider,
(A-A')'=A'-(A')'
=A'-A
=-(A-A')
\Rightarrow (A-A')'=-(A-A')
Hence,
A-A'
is skew-symmetric
Let
\displaystyle A=\begin{bmatrix}-1\\2\\3 \end{bmatrix}
and
\displaystyle B=\begin{bmatrix} -2 & -1 & -4 \end{bmatrix},
then matrix
(AB) A
equals
Report Question
0%
12A
0%
-12A
0%
4A
0%
3A
Explanation
A=\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix},B=\begin{bmatrix} -2 & -1 & -4 \end{bmatrix}
AB=\begin{bmatrix} 2 & 1 & 4 \\ -4 & -2 & -8 \\ -6 & -3 & -12 \end{bmatrix}
(AB)A=\begin{bmatrix} 2 & 1 & 4 \\ -4 & -2 & -8 \\ -6 & -3 & -12 \end{bmatrix}\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}
\Rightarrow (AB)A=\begin{bmatrix} 12 \\ -24 \\ -36 \end{bmatrix}=-12\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}=-12A
Use the method of elementary row transformation to compute the inverse of
\quad \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{bmatrix}
Report Question
0%
\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{2}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{13}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}
0%
\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{1}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{11}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{2}{7} & -\displaystyle\frac{2}{21}\end{bmatrix}
0%
\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{4}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{16}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{2}{7} & -\displaystyle\frac{4}{21}\end{bmatrix}
0%
\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{4}{21} & \displaystyle\frac{2}{7} & -\displaystyle\frac{13}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{4}{21} & -\displaystyle\frac{2}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}
Explanation
Let
\quad A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{bmatrix}
\Rightarrow \quad Write \space A A^{-1}= I
\quad \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{bmatrix} A^{-1}= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}
\quad \begin{matrix}R_{21}(-2)\\ \mbox{~}\\ R_{31}(1)\end{matrix}\begin{bmatrix}1 & 0 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{bmatrix}A^{-1} = \begin{bmatrix}1& 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1\end{bmatrix}
\quad \begin{matrix}R_2(-1) \\ \mbox{~} \\ R_3(1/3)\end{matrix}\begin{bmatrix}1 & 2 & 5 \\ 0 & 1 & 9 \\ 0 & 1 & 2\end{bmatrix}A^{-1} = \begin{bmatrix}1& 0 & 0 \\ 2 & -1 & 0 \\ \displaystyle\frac{1}{3} & 0 & \displaystyle\frac{1}{3}\end{bmatrix}
\quad \begin{matrix}R_{12}(-2) \\ \mbox{~} \\ R_{32}(-1)\end{matrix}\begin{bmatrix}1 & 0 & -13 \\ 0 & 1 & 9 \\ 0 & 0 & -7\end{bmatrix} A^{-1}= \begin{bmatrix}-3 & 2 & 0 \\ 2 & -1 & 0 \\ -\displaystyle\frac{5}{3} & 1 & \displaystyle\frac{1}{3}\end{bmatrix}
\quad \begin{matrix}R_3(-1/7)\\ \mbox{~}\end{matrix}\begin{bmatrix}1 & 0 & -13 \\ 0 & 1 & 9 \\ 0 & 0 & 1\end{bmatrix}A^{-1} = \begin{bmatrix}-3 & 2 & 0 \\ 2 & -1 & 0 \\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}
\quad \begin{matrix}R_{13}(13) \\ \mbox{~} \\ R_{23}(-9)\end{matrix}\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}A^{-1} = \begin{bmatrix}\displaystyle\frac{2}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{13}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}
Hence,
\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{2}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{13}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}
Report Question
0%
Both (A) & (R) are individually true & (R) is correct explanation of (A),
0%
Both (A) & (R) are individually true but (R) is not the correct (proper) explanation of (A).
0%
(A)is true but (R} is false,
0%
(A)is false but (R} is true.
Explanation
\displaystyle A=\begin{pmatrix}0 &a &b \\-a &0 &c \\-b &-c &0 \end{pmatrix}
\displaystyle \therefore A^{T}=\begin{pmatrix}0 &-a &-b \\a &0 &-c \\b &c &0 \end{pmatrix}
\displaystyle A^{T}=-A
\therefore
Assertion (A) & Reason (R) both are true & Reason(R) is correct explanation of Assertion (A).
If
\displaystyle A=\begin{bmatrix} 1 & \frac { 1 }{ 2 } \\ 0 & 1 \end{bmatrix}
then
{ A }^{ 64 }
is
Report Question
0%
\begin{bmatrix} 1 & 32 \\ 32 & 1 \end{bmatrix}
0%
\begin{bmatrix} 1 & 0 \\ 32 & 1 \end{bmatrix}
0%
\begin{bmatrix} 1 & 32 \\ 0 & 1 \end{bmatrix}
0%
none of these
Explanation
\displaystyle { A }^{ 2 }=\begin{bmatrix} 1 & \frac { 1 }{ 2 } \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & \frac { 1 }{ 2 } \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\\ { A }^{ 4 }=\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\\ { A }^{ 8 }=\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}
Similarly,
{ A }^{ 64 }=\begin{bmatrix} 1 & 32 \\ 0 & 1 \end{bmatrix}
If
A =(a_{ij})_{3\times 3}
is a skew symmetric matrix, then
Report Question
0%
a_{ii}=0\: \forall \: i
0%
A + A^T
is a null matrix
0%
|A|=0
0%
A
is not invertible.
Explanation
Let
A=\begin{bmatrix} a & \alpha & \beta \\ -\alpha & b & \gamma \\ -\beta & -\gamma & c \end{bmatrix}\quad \Rightarrow \quad -A=\begin{bmatrix} -a & -\alpha & -\beta \\ \alpha & -b & -\gamma \\ \beta & \gamma & -c \end{bmatrix}
A^{ T }=\begin{bmatrix} a & -\alpha & -\beta \\ \alpha & b & -\gamma \\ \beta & \gamma & c \end{bmatrix}
since A is a skew-symmetric matrix
A^{T}=-A
\Rightarrow a=-a,b=-b,c=-c
\Rightarrow a=b=c=0
\therefore a_{ii}=0
for all i
A^{T}=-A
\Rightarrow A^{T}+A=O
|A|=0
(
\because
A is a skew-symmetric of odd order)
since
|A|=0
A is not invertible. (
\because
only non-singular matrices are invertible).
\displaystyle A=\begin{bmatrix}a &b \\b &a \end{bmatrix}
and
\displaystyle A^{2} =\begin{bmatrix}\alpha & \beta \\\beta & \alpha \end{bmatrix}
then
Report Question
0%
\displaystyle \alpha=a^{2}+b^{2},\beta =2ab
0%
\displaystyle \alpha=a^{2}+b^{2},\beta =a^{2}-b^{2}
0%
\displaystyle \alpha=2ab ,\beta =a^{2}+b^{2}
0%
\displaystyle \alpha=a^{2}+b^{2},\beta =ab
Explanation
\displaystyle A^{2}=AA=\begin{pmatrix}a &b \\b &a \end{pmatrix}\begin{pmatrix}a &b \\b &a \end{pmatrix}
\displaystyle =\begin{pmatrix}a^{2}+b^{2} &2ab \\2ab &a^{2}+b^{2} \end{pmatrix}
\displaystyle = \begin{pmatrix} \alpha &\beta \\\beta &\alpha \end{pmatrix}
If
\omega \neq 1
is cube root of unity, and
A=\begin{bmatrix} 1&\omega &\omega ^2 \\\omega & \omega ^2 &1 \\ \omega ^2 &1 &\omega \end{bmatrix}
is
Report Question
0%
symmetric
0%
skew symmetric
0%
singular
0%
orthogonal
Explanation
A=\begin{bmatrix} 1&\omega &\omega ^2 \\\omega & \omega ^2 &1 \\ \omega ^2 &1 &\omega \end{bmatrix}
A^{T}=\begin{bmatrix} 1&\omega &\omega ^2 \\\omega & \omega ^2 &1 \\ \omega ^2 &1 &\omega \end{bmatrix}
\Rightarrow A^{T}=A
i.e
A
is a symmetric matrix.
|A|=\begin{vmatrix} 1&\omega &\omega ^2 \\\omega & \omega ^2 &1 \\ \omega ^2 &1 &\omega \end{vmatrix}=0
i.e
A
is singular.
Hence, options A and C.
Let
A
be a symmetric matrix such that
A^5 =0
and
B=I +A + A^2 +A^3 +A^4
, then
B
is
Report Question
0%
symmetric
0%
singular
0%
non-singular
0%
skew symmetric
Explanation
Given
A
be a symmetric matrix such that
A^5 =0
and
B=I +A + A^2 +A^3 +A^4
B^{-1}=(I+A+A^2+A^3+A^4)^{-1}=I'+A^{-1}+(A^{-1})^2+(A^{-1})^3+(A^{-1})^4=I +A + A^2 +A^3 +A^4=B
\therefore B
is symmetric.
BA=(I +A + A^2 +A^3 +A^4)A=A + A^2 +A^3 +A^4+A^5=B-I
\Rightarrow BA=B-I
\Rightarrow B(I-A)=I \Rightarrow B^{-1}=I-A
B^{-1}
exists.
\therefore B
is non-singualr.
Hence, options A and C.
If
A =\begin{bmatrix}\alpha &\beta \\\gamma &-\alpha \end{bmatrix}
is such that
A^2 = I
, then
Report Question
0%
1 +\alpha^2+\beta\gamma=0
0%
1 -\alpha^2-\beta\gamma=0
0%
1 -\alpha^2+\beta\gamma=0
0%
1 +\alpha^2-\beta\gamma=0
Explanation
A =\begin{bmatrix}\alpha &\beta \\\gamma &-\alpha \end{bmatrix}
A^2=\begin{bmatrix}\alpha^2+\beta \gamma &\alpha \beta-\alpha \beta \\\alpha \gamma - \alpha \gamma&\beta \gamma +\alpha^2 \end{bmatrix}
but,
A^2=I
\Rightarrow \alpha ^2+\beta \gamma = 1
\Rightarrow 1 -\alpha ^2-\beta \gamma=0
Hence, option B is correct.
If
A
and
B
are two matrices of the same order, then
Report Question
0%
A^2 -B^2 = (A + B) (A -B)
0%
A^2=I\Leftrightarrow (A + I) (A -I) = 0
0%
(A')' = A
0%
A + A'
is symmetric
Explanation
A and B
\rightarrow
Two matrices of same order
Option A:
{ A }^{ 2 }-{ B }^{ 2 }=\left( A+B \right) \left( A-B \right)
RHS
={ A }^{ 2 }-AB+BA+{ B }^{ 2 }
RHS
=
LHS if and only if
AB=BA
\rightarrow
Option A is not true for all cases
Option B:
{ A }^{ 2 }=I\Leftrightarrow \left( A+I \right) \left( A-I \right) =0
RHS
={ A }^{ 2 }-A+A-I=0
\Rightarrow { A }^{ 2 }=I
\Rightarrow
Option B is correct
Option C:
{ \left( { A }^{ T } \right) }^{ T }=A
Transpose means we reverse the columns and rows
Let C be columns and R be rows
{ A }^{ T }
means C becomes rows
{ \left( { A }^{ ' } \right) }^{ ' }
mean columns and rows are again interchanged
C\rightarrow
columns
R\rightarrow
rows
\therefore { \left( { A }^{ ' } \right) }^{ ' }=A
Option C is correct
Option D Let
A+{ A }^{ T }=P\quad { P }^{ T }={ \left( A+{ A }^{ ' } \right) }^{ ' }={ A }^{ ' }+A
\therefore P={ P }^{ T }\quad \therefore A+{ A }^{ T }={ \left( A+{ A }^{ T } \right) }^{ T }\Rightarrow
symmetric
Option D is correct
If
A =\begin{bmatrix} ab&b^2 \\-a^2 &-ab \end{bmatrix}
, then
A^2
is equal
Report Question
0%
O
0%
I
0%
-I
0%
none of these
Explanation
A =\begin{bmatrix} ab&b^2 \\-a^2 &-ab \end{bmatrix}
A^2=\begin{bmatrix} ab&b^2 \\-a^2 &-ab \end{bmatrix}\begin{bmatrix} ab&b^2 \\-a^2 &-ab \end{bmatrix}
=\begin{bmatrix} a^{ 2 }b^{ 2 }-a^{ 2 }b^{ 2 } & ab^{ 3 }-ab^{ 3 } \\ -a^{ 3 }b+a^{ 3 }b & -a^{ 2 }b^{ 2 }+a^{ 2 }b^{ 2 } \end{bmatrix}=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
\therefore A^2=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} =O
Hence, option A.
If A is any square matrix then (1/2)
\displaystyle \left ( A+A^{T} \right )
is a _____ matrix
Report Question
0%
symmetric
0%
skew symmetric
0%
scalar
0%
identity
Explanation
Given
\cfrac { 1 }{ 2 } \left( A+{ A }^{ T } \right)
Let
A+{ A }^{ T }=P
Then
{ P }^{ T }={ \left( A+{ A }^{ T } \right) }^{ T }=A+{ A }^{ T }=P
\because { P }^{ T }=P
\Rightarrow { \left( A+{ A }^{ T } \right) }^{ T }=A+{ A }^{ T }
\Rightarrow \cfrac { 1 }{ 2 } \left( A+{ A }^{ T } \right)
is symmetric
OPTION A
Find the value of
x
and
y
that satisfy the equation:
\begin{bmatrix} 3&-2 \\3 &0 \\2 &4 \end{bmatrix} \begin{bmatrix} y&y \\x &x \end{bmatrix}=\begin{bmatrix} 3&3 \\3y &3y \\10 &10 \end{bmatrix}
Report Question
0%
x=3/2, \:y = 2
0%
x=2, \:y = 3/2
0%
x=3, \:y = 2
0%
x=2, \:y = 3
Explanation
\left[ \begin{matrix} 3\quad & -2 \\ 3 & \quad 0 \\ 2 & \quad 4 \end{matrix} \right] \begin{bmatrix} y\quad & y \\ x\quad & x \end{bmatrix}=\left[ \begin{matrix} 3\quad & 3 \\ 3y\quad & 3y \\ 10\quad & 10 \end{matrix} \right] \\ \Rightarrow \left[ \begin{matrix} 3y-2x\quad & 3y-2x \\ 3y\quad & 3y \\ 2y+4x\quad & 2y+4x \end{matrix} \right] =\left[ \begin{matrix} 3 & \quad 3 \\ 3y\quad & 3y \\ 10\quad & 10 \end{matrix} \right]
\therefore 3y-2x=3
and
2y+4x=10
\displaystyle \Rightarrow x=\frac { 3 }{ 2 } ,y=2
Let
A
be square matrix. Then which of the following is not a symmetric matrix.
Report Question
0%
A+A'
0%
AA'
0%
A'A
0%
A-A'
Explanation
If
A
is a square matrix, then and if
A'
represents its transpose, then
A+A'
is symmetric and
A-A'
is skew symmetric.
Hence matrix A can be written as
A=(\dfrac{A+A'}{2})+(\dfrac{A-A'}{2})
Therefore of all the above matrix,
A-A'
is not symmetric.
Say true or false:
All positive odd integral powers of skew-symmetric matrix are symmetric.
Report Question
0%
True
0%
False
Explanation
All positive odd integral power of a skew-symmetric matrix are skew-symmetric and positive even integral power of a skew-symmetric matrix are symmetric.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page