Processing math: 13%

CBSE Questions for Class 12 Commerce Maths Matrices Quiz 6 - MCQExams.com

Given A,B,C are three matrices such that 
A=[xyz], B=[ahghbfgfc], C=[xyz]. Evaluate ABC.
  • ABC=[ax2+by2+cz2+2hxy+2gzx+2fyz]
  • ABC=[ax2by2+cz2+2hxy+2gzx+2fyz]
  • ABC=[ax2by2+cz22hxy+2gzx+2fyz]
  • ABC=[ax2+by2+cz22hxy+2gzx2fyz]
If A=[123425] and B=[234521]. Find AB and show that ABBA
  • AB=[04103]
  • AB=[04103]
  • AB=[04103]
  • None of these.
If [x+yy2xxy][22]=[32] then xy is equal to
  • 2
  • 2
  • 4
  • 6
If [1x1][1322511532][12x]=O then x is
  • 2
  • 2
  • 14
  • none of these
If \displaystyle A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \\ 0 & 6 \end{bmatrix} and \displaystyle B=\begin{bmatrix} 5 & 4 & 6 \\ 4 & 1 & 2 \\ -5 & -1 & 1 \end{bmatrix} , then
  • A + B exists
  • AB exists
  • BA exists
  • none of these
If \displaystyle A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix} and \displaystyle B = \begin{bmatrix} a^2 & ab & ac \\ ba & b^2 & bc \\ ca & cb & c^2 \end{bmatrix} then AB is equal to
  • [0]
  • I
  • 2I
  • none of these
If A = \begin{bmatrix}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}, \space B = \begin{bmatrix}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}, then AB
  • \begin{bmatrix}5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4\end{bmatrix}
  • \begin{bmatrix}5 & 9 & 13 \\ -1 & -2 & 4 \\ 2 & -2 & -4\end{bmatrix}
  • \begin{bmatrix}5 & -9 & 13 \\ 1 & -2 & 4 \\ 2 & -2 & 4\end{bmatrix}
  • \begin{bmatrix}5 & -9 & 13 \\ 1 & -2 & 4 \\ -2 & 2 & 4\end{bmatrix}
Given A = \begin{bmatrix}1 & -1 \\ 2 & -1\end{bmatrix}, which of the following result is true?
  • A^2 = I
  • A^2 = -I
  • A^2 = 2I
  • None of these
A = \begin{bmatrix}4 & x+2 \\ 2x-3 & x+1\end{bmatrix} is symmetric, then x =
  • 3
  • 5
  • 2
  • 4
If \displaystyle A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix} then \displaystyle A^2 is equal to
  • A
  • I
  • \displaystyle A^T
  • none of these
If A be a matrix such that \displaystyle A \times  \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix} then A is
  • \displaystyle \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix}
  • \displaystyle \begin{bmatrix} -1 & 1 \\ 4 & 2 \end{bmatrix}
  • \displaystyle \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}
  • none of these
If \displaystyle A=\begin{bmatrix}0 &c  &-b \\-c  &0  &a \\b  &-a  &0 \end{bmatrix}  and \displaystyle B=\begin{bmatrix}a^{2} &ab  &ac \\ab  &b^{2}  &bc \\ac  &bc  &c^{2} \end{bmatrix}, then AB=
  • \displaystyle A^{3}
  • \displaystyle B^{2}
  • I
  • O
If A = \begin{pmatrix}1& 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{pmatrix}

If  A^2 - 4A =pI where I and O are the unit matrix and the null matrix of order 3 respectively. Find the value of p
  • p=2
  • p=3
  • p=4
  • p=5
Let \displaystyle A = \begin{bmatrix}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{bmatrix}. The only correct statement about the matrix A is
  • \displaystyle A is a zero matrix
  • \displaystyle A = \left ( -1 \right )I_{3}
  • A^2=-I
  • \displaystyle A^{2} = I
If A is a square matrix then A-{A}' is a
  • diagonal matrix
  • skew symmetric matrix
  • symmetric matrix
  • None of these
Let \displaystyle A=\begin{bmatrix}-1\\2\\3 \end{bmatrix} and \displaystyle B=\begin{bmatrix} -2 & -1 & -4 \end{bmatrix},  then matrix (AB) A equals
  • 12A
  • -12A
  • 4A
  • 3A
Use the method of elementary row transformation to compute the inverse of 
\quad \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{bmatrix}
  • \quad A^{-1} = \begin{bmatrix}\displaystyle\frac{2}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{13}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}
  • \quad A^{-1} = \begin{bmatrix}\displaystyle\frac{1}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{11}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{2}{7} & -\displaystyle\frac{2}{21}\end{bmatrix}
  • \quad A^{-1} = \begin{bmatrix}\displaystyle\frac{4}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{16}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{2}{7} & -\displaystyle\frac{4}{21}\end{bmatrix}
  • \quad A^{-1} = \begin{bmatrix}\displaystyle\frac{4}{21} & \displaystyle\frac{2}{7} & -\displaystyle\frac{13}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{4}{21} & -\displaystyle\frac{2}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}
  • Both (A) & (R) are individually true & (R) is correct explanation of (A),
  • Both (A) & (R) are individually true but (R) is not the correct (proper) explanation of (A).
  • (A)is true but (R} is false,
  • (A)is false but (R} is true.
If \displaystyle A=\begin{bmatrix} 1 & \frac { 1 }{ 2 }  \\ 0 & 1 \end{bmatrix} then { A }^{ 64 } is
  • \begin{bmatrix} 1 & 32 \\ 32 & 1 \end{bmatrix}
  • \begin{bmatrix} 1 & 0 \\ 32 & 1 \end{bmatrix}
  • \begin{bmatrix} 1 & 32 \\ 0 & 1 \end{bmatrix}
  • none of these
If A =(a_{ij})_{3\times 3} is a skew symmetric matrix, then
  • a_{ii}=0\: \forall \: i
  • A + A^T is a null matrix
  • |A|=0
  • A is not invertible.
\displaystyle A=\begin{bmatrix}a &b \\b  &a \end{bmatrix} and \displaystyle A^{2} =\begin{bmatrix}\alpha & \beta \\\beta & \alpha \end{bmatrix} then
  • \displaystyle \alpha=a^{2}+b^{2},\beta =2ab
  • \displaystyle \alpha=a^{2}+b^{2},\beta =a^{2}-b^{2}
  • \displaystyle \alpha=2ab ,\beta =a^{2}+b^{2}
  • \displaystyle \alpha=a^{2}+b^{2},\beta =ab
If \omega \neq 1 is cube root of unity, and A=\begin{bmatrix} 1&\omega   &\omega ^2 \\\omega  & \omega ^2 &1 \\ \omega ^2 &1  &\omega  \end{bmatrix} is
  • symmetric
  • skew symmetric
  • singular
  • orthogonal
Let A be a symmetric matrix such that A^5 =0 and B=I +A + A^2 +A^3 +A^4, then B is
  • symmetric
  • singular
  • non-singular
  • skew symmetric
If A =\begin{bmatrix}\alpha &\beta  \\\gamma  &-\alpha  \end{bmatrix} is such that A^2 = I, then

  • 1 +\alpha^2+\beta\gamma=0
  • 1 -\alpha^2-\beta\gamma=0
  • 1 -\alpha^2+\beta\gamma=0
  • 1 +\alpha^2-\beta\gamma=0
If A and B are two matrices of the same order, then
  • A^2 -B^2 = (A + B) (A -B)
  • A^2=I\Leftrightarrow (A + I) (A -I) = 0
  • (A')' = A
  • A + A' is symmetric
If A =\begin{bmatrix} ab&b^2 \\-a^2 &-ab \end{bmatrix}, then A^2 is equal
  • O
  • I
  • -I
  • none of these
If A is any square matrix then (1/2) \displaystyle \left ( A+A^{T} \right ) is a _____ matrix
  • symmetric
  • skew symmetric
  • scalar
  • identity
Find the value of x and y that satisfy the equation:
\begin{bmatrix} 3&-2 \\3  &0 \\2 &4 \end{bmatrix} \begin{bmatrix} y&y \\x &x \end{bmatrix}=\begin{bmatrix} 3&3 \\3y  &3y \\10 &10 \end{bmatrix}
  • x=3/2, \:y = 2
  • x=2, \:y = 3/2
  • x=3, \:y = 2
  • x=2, \:y = 3
Let A be square matrix. Then which of the following is not a symmetric matrix.
  • A+A'
  • AA'
  • A'A
  • A-A'
Say true or false:
All positive odd integral powers of skew-symmetric matrix are symmetric.
  • True
  • False
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers