CBSE Questions for Class 12 Commerce Maths Matrices Quiz 9 - MCQExams.com

If $$A = \begin{bmatrix} 1& 4 & 4\\ 4 & 1 & 4\\ 4 & 4 & 1\end{bmatrix}$$, then $$A^{2} - 6A =$$ _____.
  • $$27 I_{3}$$
  • $$5 I_{3}$$
  • $$20 I_{3}$$
  • $$30 I_{3}$$
If $$A =\begin{pmatrix} -2& 2\\ 2 & -2\end{pmatrix}$$, then which one of the following is correct?
  • $$A^{2} = -2A$$
  • $$A^{2} = -4A$$
  • $$A^{2} = -3A$$
  • $$A^{2} = 4A$$
If $$A=\begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}$$, then $${ A }^{ 12 }$$ is
  • $$\begin{bmatrix} 0 & 0 \\ 0 & 60 \end{bmatrix}$$
  • $$\begin{bmatrix} 0 & 0 \\ 0 & { 5 }^{ 12 } \end{bmatrix}$$
  • $$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
  • $$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
If $$A=\begin{bmatrix} 3 & 3 & 3\\ 3 & 3 & 3\\ 3 & 3 & 3\end{bmatrix}$$, then $$A^3=$$ ___________.
  • $$243$$A
  • $$81$$A
  • $$27$$A
  • $$729$$A
If $$A=\begin{bmatrix}x&y&z\end{bmatrix},$$ $$ B=\begin{bmatrix}a&h&g\\h&b&f\\g&f&c\end{bmatrix}, C=\begin{bmatrix}\alpha & \beta & \gamma \end{bmatrix}^{T}$$ then $$ABC$$ is
  • Not defined
  • a $$1\times1$$ matrix
  • a $$3\times3$$ matrix
  • a $$3\times2$$ matrix
Is it possible to define the matrix $$A + B $$ when both $$A $$ and $$B $$ are square matrices of the same order?
  • True
  • False
Let A = $$\begin{bmatrix}
              0 & 0 & -1 \\[0.3em]
              0 & -1 & 0 \\[0.3em]
              -1 & 0 & 0
              \end{bmatrix}.$$ Then the only correct statement $$A$$ is
  • $$A = 0$$
  • $$A = (-1) I$$
  • $$A^{-1} $$ does not exist
  • $$A^2 = I$$
If A = $$ \begin{bmatrix} \alpha & 0 \\ 1 & 1\end{bmatrix}$$ , B = $$ \begin{bmatrix} 1 & 0 \\ 5 & 1\end{bmatrix}$$ whenever $$A^2 \, = \, B$$
then values of $$\alpha$$ is 
  • $$1$$
  • $$-1$$
  • $$4$$
  • no real value of $$\alpha$$
Using elementary row transformation find the inverse of the matrix A = $$\left[\begin {array}{ll} 3 & -1  &  -2\\ 2  &  0  & -1\\ 3 & -5  &  0 \end {array}\right]$$
  • $$\left[\begin {array} {ll} \dfrac{-5}{8} & \dfrac{5}{4} & \dfrac{1}{8} \\
    \dfrac{-3}{8} & \dfrac{3}{4} & \dfrac{-1}{8} \\
    \dfrac{-5}{4} & \dfrac{3}{2} &\dfrac{1}{4} \end {array}\right]$$
  • $$\dfrac {1}{8}\left [\begin {array} {ll} 5 & -5 & 1 \\ 3 & -3 & 1 \\ 0 & 3 & 1\end {array}\right]$$
  • $$\dfrac{1}{8} \left[\begin {array} {ll} 5 & 5 & 1 \\
    3 & 6 & -1 \\
    10 & -12 & 2 \end {array}\right]$$
  • None of these
Obtain the inverse of the following matrix using elementary operation:
$$A = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$
  • $$\begin{bmatrix} -3 & -4 & -3 \\ 2 & 3 & -2 \\ 8 & -12 & 9 \end{bmatrix}$$
  • $$\begin{bmatrix} 3 & 4 & 3 \\ 2 & 3 & -2 \\ 8 & -12 & 9 \end{bmatrix}$$
  • $$\begin{bmatrix} -3 & -4 & 3 \\ 2 & 3 & -2 \\ -8 & -12 & 9 \end{bmatrix}$$
  • $$\begin{bmatrix}3& -2 &8 \\ -4& 3&-12\\3 &-2&9\end{bmatrix}$$
If $$I =\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \quad \quad 0 & \quad 1 \end{pmatrix},$$ $$P=\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & \quad \quad 0 & \quad -2 \end{pmatrix},$$ then the matrix $$P^3+2P^2$$ is equal to 
  • $$P$$
  • $$1-P$$
  • $$2I+P$$
  • $$2I-P$$
Given $$A= \begin{bmatrix}  3&6  \\ -2&-8 \end{bmatrix}$$ and $$B = \begin{bmatrix} 2 & 16\end{bmatrix}$$, find the matrix $$X$$ such that $$XA=B$$.
  • $$\begin{bmatrix} -\dfrac{4}{3} & -3 \end{bmatrix}$$
  • $$\begin{bmatrix} \dfrac{4}{3} & 3 \end{bmatrix}$$
  • $$\begin{bmatrix} \dfrac{4}{3} & -3 \end{bmatrix}$$
  • $$\begin{bmatrix} -\dfrac{4}{3} & 3 \end{bmatrix}$$
The  matrix equation satisfied by $$A$$ is ______$$, $$ if $$A=\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}.$$ 
  • $$A^2-4A-5I=0$$
  • $$A^2-4A-5=0$$
  • $$A^2+4A-5I=0$$
  • $$A^2+4A-5=0$$
State true/false:
If $$A=\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$$ and $$B=[-2-1-4],$$ then $$(AB)^t\ne B^tA^t$$.
  • True
  • False
If $$A = \begin{bmatrix}3&-3&4\\2&-3&4\\0&-1&1\end{bmatrix}$$ and $$B = \begin{bmatrix}3&1&2\\2&0&5\\1&2&0\end{bmatrix}$$, find $$AB$$.
  •  $$\begin{bmatrix}5&6&-9\\4&3&-9\\-1&3&-2\end{bmatrix}$$
  •  $$\begin{bmatrix}2&4&7\\1&5&3\\-1&0&-5\end{bmatrix}$$
  •  $$\begin{bmatrix}7&11&-9\\4&10&-11\\-1&2&-5\end{bmatrix}$$
  •  $$\begin{bmatrix}7&8&-19\\4&1&-5\\-1&12&-5\end{bmatrix}$$
$$\left[ \begin{matrix} 1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{matrix} \right] +\left[ \begin{matrix} 5 & 1& -2 \\ 1 & 1 & 0 \\ -2 & -2 & 1 \end{matrix} \right] \ $$

What will be the sum of the diagonal elements of the resultant matrix?
  • 10
  • 6
  • 9
  • 7
If $$A=\begin{bmatrix} 1 & 0 \\ \frac { 1 }{ 2 }  & 1 \end{bmatrix}$$, then $$A^{100}$$ is equal to
  • $$\begin{bmatrix} 1 & 0 \\ \left( \frac { 1 }{ 2 } \right) \times { 100 } & 1 \end{bmatrix}$$
  • $$\begin{bmatrix} 1 & 0 \\ 25 & 1 \end{bmatrix}$$
  • $$\begin{bmatrix} 1 & 0 \\ 50 & 1 \end{bmatrix}$$
  • $$\begin{bmatrix} 1 & 0 \\ 100 & 1 \end{bmatrix}$$
If$$A=\begin{bmatrix}1&3\\2&4\end{bmatrix}$$ and $$B=\begin{bmatrix}4&7\\5&6\end{bmatrix},$$ then $$AB=$$
  • $$\begin{bmatrix}19&25\\28&38\end {bmatrix}$$
  • $$\begin{bmatrix}25&8\\26&14\end {bmatrix}$$
  • $$\begin{bmatrix}34&8\\58&23\end {bmatrix}$$
  • $$\begin{bmatrix}5&10\\7&10\end {bmatrix}$$
$$B=A+A^{2}+A^{3}+A^{4}$$ 
If order of $$A$$ is $$3$$ then order of $$B$$ is 
  • $$3$$
  • $$6$$
  • $$2$$
  • $$9$$
If $$A=\begin{bmatrix} 2 & 5 & -3 \\ -1 & 3 & 1 \\ 4 & 1 & 2 \end{bmatrix}$$ then $${A}^{2}$$ is
  • $$\begin{bmatrix} -13 & 22 & -7 \\ 15 & 25 & -7 \\ -1 & 5 & 8 \end{bmatrix}$$
  • $$\begin{bmatrix} -13 & 22 & -7 \\ -1 & 5 & 8 \\ 15 & 25 & -7 \end{bmatrix}$$
  • $$\begin{bmatrix} -13 & 22 & -7 \\ 15 & 25 & 7 \\ 1 & 5 & 8 \end{bmatrix}$$
  • $$\begin{bmatrix} 13 & 22 & 7 \\ 15 & 25 & -7 \\ -1 & 5 & 8 \end{bmatrix}$$
If the graph of $$y = f(x)$$ is symmetrical about the lines $$x = 1$$ and $$x = 2$$, then which of the following is true?
  • $$f(x + 1) = f(x)$$
  • $$f(x + 3) = f(x)$$
  • $$f(x + 2) = f(x)$$
  • None of these
Find the inverse of the following matrix.

$$\left[ {\begin{array}{ccccccccccccccc}0&1&2\\1&2&3\\3&1&1\end{array}} \right]$$
  • $$\displaystyle \left[ {\begin{array}{ccccccccccccccc}{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}\\{ 4}&3&{  1}\\{ - \frac{5}{2}}&{ - \frac{3}{2}}&{\frac{1}{2}}\end{array}} \right]$$
  • $$\displaystyle \left[ {\begin{array}{ccccccccccccccc}{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}\\{ - 4}&-3&{ - 1}\\{ - \frac{5}{2}}&{ - \frac{3}{2}}&{\frac{1}{2}}\end{array}} \right]$$
  • $$\displaystyle \left[ {\begin{array}{ccccccccccccccc}{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}\\{ - 4}&3&{ - 1}\\{ - \frac{5}{2}}&{ - \frac{3}{2}}&{\frac{1}{2}}\end{array}} \right]$$
  • $$\left[ {\begin{array}{ccccccccccccccc}0&1&2\\1&-2&3\\3&1&-1\end{array}} \right]$$
State true or false:
The product matrix of $$\left[ \begin{array}{l}1\,\,\,\,\,\,0\\0\,\,\,\,\,\,1\end{array} \right] $$ and $$\left[ \begin{array}{l}0\,\,\,\,\,\,\,\,1\\1\,\,\,\,\,\,\,\,0\end{array} \right]$$ is an identity matrix.
  • True
  • False
If $$A$$ and $$B$$ are two non-singular matrices and both are symmetric and commute each other, then
  • Both $$A^{-1}B$$ and $$A^{-1}B^{-1}$$ are symmetric
  • $$A^{-1}B$$ is symmetric but $$A^{-1}B^{-1}$$ is not symmetric
  • $$A^{-1}B^{-1}$$ is symmetric but $$A^{-1}B$$ is not symmetric
  • Neither $$A^{-1}B$$ nor $$A^{-1}B^{-1}$$ are symmetric
If $$A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$$ and $$kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$$, then the value of $$k, a, b $$, are respectively. 
  • $$-6, -12, -18$$
  • $$-6, 4, 9$$
  • $$-6, -4, -9$$
  • $$-6, 12, 18$$
If $$A = \left[ {\begin{array}{*{20}{c}}2 & 0 & 0\\0 & 2 & 0\\0 & 0 & 2\end{array}} \right]$$ then $$A^6$$ = _____________.
  • $$6A$$
  • $$12A$$
  • $$16A$$
  • $$32A$$
If $$\left[ {\begin{array}{*{20}{c}}x & 4 & { - 1}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}2 & 1 & 0\\1 & 0 & 2\\0 & 2 & 4\end{array}} \right]\left[ {\begin{array}{*{20}{c}}x\\4\\{ - 1}\end{array}} \right] = 0$$ then $$x$$ is equal to
  • $$ - 1 + \sqrt 6 $$
  • $$ 8 \pm \sqrt 5 $$
  • $$ - 2 \pm \sqrt {10} $$
  • $$ 3 \pm \sqrt 6 $$
If $$A=\begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix},B=\begin{bmatrix} { a }^{ 2 } & ab & ac \\ ba & { b }^{ 2 } & bc \\ ca & cb & { c }^{ 2 } \end{bmatrix}$$ then $$AB=$$ 
  • $$O$$
  • $$I$$
  • $$2I$$
  • None of these
The value of $$x$$, so that $$\left\lceil 1\quad x\quad 1 \right\rceil \begin{bmatrix} 1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2 \end{bmatrix}\begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix}=0$$ is
  • $$\cfrac{-7\pm \sqrt{35}}{2}$$
  • $$\cfrac{-9\pm \sqrt{53}}{2}$$
  • $$\pm 2$$
  • $$\dfrac{-7}{10}$$
If A be square matrix of order n and k is a scalar, then adj (KA) is:
  • $$K^{n}(adjA)$$
  • K (adj A)
  • $$K^{n-1}(adjA)$$
  • $$K^{n+1}(adjA)$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers