Loading [MathJax]/jax/element/mml/optable/Arrows.js

CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 4 - MCQExams.com

If f:(3,6)(1,3) is a function defined by f(x)=x[x3] ( where [.] denotes the greatest integer function ), then f1(x)=
  • x1
  • x+1
  • x
  • none of these
Let g(x)=1+x[x] and f(x)={1x<00x=01x>0 Then for all  x,f{g(x)} is equal to 
  • x
  • 1
  • f(x)
  • g(x)
The inverse of the function f(x)=log2(x+x2+1) is
  • 2x+2x
  • 2x+2x2
  • 2x2x2
  • 2x2x2
If f:{1,2,3,...}{0,±1,±2,...} is defined by
y=f(x)={x2 if x is even (x1)2, if x is odd , then f1(100) is
  • Function is not invertible as it is not onto
  • 199
  • 201
  • 200
If f(y)=y1y2; g(y)=y1+y2 then (fog)y is equal to
  • y1y2
  • y1+y2
  • y
  • 2f(x)
If f(x)=(x1)+(x+1) and
g(x)=f{f(x)} then g(3)
  • equals 1
  • equals 0
  • equals 3
  • equals 4
If f(x)=x+tanx and g1=f then g(x) equals
  • 12+[g(x)+x]2
  • 11+[g(x)x]2
  • 12+[g(x)x]2
  • 12[g(x)x]2
Let f:[4,\infty )\rightarrow [4,\infty ) be a function defined by f\left( x \right)={ 5 }^{ x\left( x-4 \right)  }, then f^{ -1 }\left( x \right) is
  • 2-\sqrt { 4+\log _{ 5 }{ x } }
  • 2+\sqrt { 4+\log _{ 5 }{ x } }
  • \displaystyle { \left( \frac { 1 }{ 5 } \right) }^{ x\left( x-4 \right) }
  • None of these
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect but Reason is correct
Let \displaystyle f:N\rightarrow Y  be a function defined as f(x)=4x+3 where \displaystyle Y=\left \{ y \in N:y=4x+3 \right \} for some \displaystyle x\in N such that f is invertible then its inverse is
  • \displaystyle g\left ( y \right )=4+\frac{y+3}{4}
  • \displaystyle g\left ( y \right )=\frac{2y-3}{4}
  • \displaystyle g\left ( y \right )=\frac{3y+4}{3}
  • \displaystyle g\left ( y \right )=\frac{y-3}{4}
If \displaystyle f\left ( x \right )=\left\{\begin{matrix} x^{2}         x \geq 0\\ x              x < 0 \end{matrix}\right.
then \displaystyle (f o f)(x) is given by
  • x^{2} for x\geq 0 and x for x< 0
  • \displaystyle x^{4} for \displaystyle x\geq 0 and x^{2} for x< 0
  • \displaystyle x^{4} for \displaystyle x\geq 0 and -x^{2} for x < 0
  • \displaystyle x^{4} for x\geq 0 and x for x< 0
If \displaystyle f(x)= \frac{3x+2}{5x-3} then
  • \displaystyle f^{-1}(x)= -f(x)
  • \displaystyle f^{-1}(x)= f(x)
  • \displaystyle fo(f(x))= -x
  • \displaystyle f^{-1}(x)= -\frac{1}{19}f(x)
Let \displaystyle f:R \rightarrow R be defined as \displaystyle f(x)= x^{2}+5x+9 then \displaystyle f^{-1}(8) equals to 
  • \displaystyle \left \{ \frac{-5+\sqrt{20}}{2},\frac{-5-\sqrt{21}}{2} \right \}
  • \displaystyle \left \{ \frac{-5+\sqrt{21}}{2} ,\frac{-5-\sqrt{21}}{2}\right \}
  • \displaystyle \left \{ \frac{5-\sqrt{21}}{2} ,\frac{21-\sqrt{5}}{2}\right \}
  • Does not exist.
Which of the following functions have inverse defined on the ranges
  • \displaystyle f\left ( x \right )=x^{2}, x \displaystyle \in R
  • \displaystyle f\left ( x \right )=x^{3},x \displaystyle \in R
  • \displaystyle f\left ( x \right )=e^{x},x \displaystyle \in R
  • \displaystyle f(x)=\sin x, \displaystyle 0< x< 2\pi
Let f(x)=tan x, x\displaystyle \epsilon \left [ -\frac{\pi }{2},\frac{\pi }{2} \right ] and \displaystyle g\left (x  \right )=\sqrt{1-x^{2}} Determine g o f(1).
  • 1
  • 0
  • -1
  • not defined
Find \displaystyle \phi \left [ \Psi \left ( x \right ) \right ] and \displaystyle \Psi \left [ \phi \left ( x \right ) \right ] if \displaystyle \phi \left ( x \right )=x^{2}+1 and \displaystyle \Psi \left ( x \right )=3^{x}.
  • \displaystyle \Psi \left [ \phi \left ( x \right ) \right ]=3^{x^{2}+1}.
  • \displaystyle \phi \left [ \Psi \left [ x \right ] \right ]=3^{2x}+1
  • \displaystyle \Psi \left [ \phi \left ( x \right ) \right ]=3^{x^{3}+1}.
  • \displaystyle \phi \left [ \Psi \left [ x \right ] \right ]=3^{x}+1
The inverse of the function\displaystyle f(x)=(1-(x-5)^{3})^{1/5} is 
  • 5-(1-x^{5})^{1/3}
  • 5+(1-x^{5})^{1/3}
  • 5+(1+x^{5})^{1/3}
  • 5-(1+x^{5})^{1/3}
If \displaystyle f\left ( x \right )=\frac{ax+b}{cx+d} and \displaystyle \left ( fof \right )x=x, then d=?
  • a
  • -a
  • b
  • -b
The inverse of the function \log_{e}x  is 
  • 10^{x}.
  • e ^{x}
  • 10^{e}.
  • x^{e}.
The total number of injective mappings from a set with m elements to a set with n elements,\displaystyle m\leq n, is
  • \displaystyle m^{n}
  • \displaystyle n^{m}
  • \displaystyle \frac{n!}{\left ( n-m \right )!}
  • \displaystyle n!
If \displaystyle A= \left \{ a,b,c,d \right \}, B= \left \{ 1,2,3 \right \} find whether or not the following sets of ordered pairs are relations from A to B or not.
\displaystyle R_{1}= \left \{ \left ( a,1 \right ), \left ( a,3 \right ) \right \}
\displaystyle R_{2}= \left \{ \left ( a,1 \right ), \left ( c,2 \right ), \left ( d,1 \right ) \right \}
\displaystyle R_{3}= \left \{ \left ( a,1 \right ), \left ( b,2 \right ), \left ( 3,c \right ) \right \}.
  • R_{1} R_{2} are relations but R_{3} is not a relation.
  • R_{1} R_{3} are relations but R_{2} is not a relation.
  • All are relations
  • none of these
Are the following sets of ordered pairs functions? If so, examine whether the mapping is surjective or injective :
{(x, y): x is a person, y is the mother of x}
  • injective (one- one ) and surjective (into)
  • injective (one- one ) and not surjective (into)
  • not injective (one- one ) and surjective (into)
  • not injective (one- one ) and not surjective (into)
Given \displaystyle f\left ( x \right )=\log \left ( \frac{1+x}{1-x} \right ) and \displaystyle g\left ( x \right )=\frac{3x+x^{3}}{1+3x^{2}}, fog (x) equals
  • -f(x)
  • 3f(x)
  • \displaystyle \left [ f\left ( x \right ) \right ]^{3}
  • none of these
Let R be a relation from a set A to a set B,then
  • \displaystyle R=A\cup B
  • \displaystyle R=A\cap B
  • \displaystyle R\subseteq A\times B
  • \displaystyle R\subseteq B\times A
If A=\{a,b,c,d\}, B=\{p,q,r,s\}, then which of the following are relations from A to B
  • \displaystyle R_{1}= \left \{ \left ( a,p \right ), \left ( b,r \right ), \left ( c,s \right ) \right \}
  • \displaystyle R_{2}= \left \{ \left ( q,b \right ), \left ( c,s \right ), \left ( d,r \right ) \right \}
  • \displaystyle R_{3}= \left \{ \left ( a,p \right ), \left ( a,q \right ), \left ( d,p \right ), \left ( c,r \right ), \left ( b,r \right ) \right \}
  • \displaystyle R_{4}= \left \{ \left ( a,p \right ), \left ( q,a \right ), \left ( b,s \right ), \left ( s,b \right ) \right \}
If f:R\rightarrow R and g:R\rightarrow R are functions defined by f(x)=3x-1; g(x)=\sqrt{x+6}, then the value of (g\circ f^{-1})(2009) is 
  • 26
  • 29
  • 16
  • 15
If \displaystyle X= \left \{ 1,2,3,4,5 \right \}, Y= \left \{ 1,3,5,7,9 \right \} determine which of the following sets are mappings, relations or neither from A to B:
(i)\displaystyle F= \left \{ \left ( x,y \right ) \because y= x+2, x \in X, y \in Y \right \}
  • It is clearly a one-one onto mapping i.e. a bijection. It is also a relation.
  • It is clearly a many-one onto mapping. It is also a relation.
  • It is clearly a one-one but not onto mapping. It is also a relation.
  • It is not a mapping but a relation
Let f:[2,\infty)\rightarrow [1,\infty)defined by f(x)=2^{x^{4}-4x^{2}} and \displaystyle g:\left[ \frac{\pi}{2},\pi \right] \rightarrow A defined by \displaystyle g(x)=\frac {\sin x+4}{\sin x-2} be two invertible functions, then
f^{-1}(x) is equal to
  • \sqrt{2+\sqrt{4-\log_{2}x}}
  • \sqrt{2+\sqrt{4+\log_{2}x}}
  • \sqrt{2-\sqrt{4+\log_{2}x}}
  • None of these
If f_{0}(x)\, =\, \dfrac{x}{(x\, +\, 1)} and f_{n\, +\, 1}\, =\, f_{0}\circ f_{n}(x) for n = 0, 1, 2,\cdots then f_{n}(x) is
  • \displaystyle \frac{x}{(n\, +\, 1) x\, +\, 1}
  • f_{0}(x)
  • \displaystyle \frac{nx}{nx\, +\, 1}
  • \displaystyle \frac{x}{nx\, +\, 1}
Let f(x)=x^{2}-2x and g(x)=f(f(x)-1)+f(5-f(x)), then
  • g(x)<0,\forall x\in R
  • g(x)<0 for some x\in R
  • g(x)\leq 0 for some x\in R
  • g(x)\geq 0,\forall x\in R
If f(x)=\begin{cases} 2x+3\quad \quad x\le 1 \\ a^{ 2 }x+1\quad x>1 \end{cases}, then the values of a for which f(x) is injective. 
  • -3
  • 1
  • 0
  • none of these
Which of the functions defined below are NOT one-one function(s) 
  • f(x)\, =\, 5(x^{2}\, +\, 4),\, (x\, \in\, R)
  • g(x)\, =\, 2x\, +\, \dfrac1x
  • h(x)\, =\, ln(x^{2}\, +\, x\, +\, 1)\,, (x\, \in\, R)
  • f(x)\, =\, e^{-x}
If g(x)=1+\sqrt { x } and f(g(x))=3+2\sqrt { x } +x, then f(x)=
  • 1+2{ x }^{ 2 }
  • 2+{ x }^{ 2 }
  • 1+x
  • 2+x
Let X=\left\{ 1,2,3,4 \right\} and Y=\left\{ 1,2,3,4 \right\} . Which of the following is a relation from X to Y.
  • {R}_{1}=\left\{ (x,y)| y=2+x, x\in X, y\in Y \right\}
  • {R}_{2}=\left\{ (1,1),(2,1),(3,3),(4,3),(5,5) \right\}
  • {R}_{3}=\left\{ (1,1),(1,3),(3,5),(3,7),(5,7) \right\}
  • {R}_{4}=\left\{ (1,3),(2,5),(2,4),(7,9) \right\}
Find inverse f(x)=\log_{e}(x+\sqrt{x^{2}+1})
  • \sinh(x)
  • \cosh(x)
  • \tanh(x)
  • \coth(x)
Let f : {x,y,z} \rightarrow {a,b,c} be a one-one function. It is known that only one of the following statment is true, and only one such function exists :

find the function f (as ordered pair).(i) f(x) \neq b
(i) f(y) = b

(ii) f(z) \neq a
  • {(x,b), (y,a), (z,c)}
  • {(x,a), (y,b), (z,c)}
  • {(x,b), (y,c), (z,a)}
  • {(x,c), (y,a), (z,b)}
Suppose f and g both are linear function with \displaystyle f(x)=-2x+1  and \displaystyle f \left ( g\left ( x \right ) \right )=6x-7 then slope of line y=g(x) is
  • 3
  • -3
  • 6
  • -2
 from the given statement N denotes the natural number and W denotes the whole number, so which statement in the following is correct
  • N=W
  • N \subset W
  • W \subset N
  • N \cong W
If f(x)=\begin{cases} x+1,\quad \quad if\quad x\, \leq \, 1 \\ 5-x^{ 2 }\quad \quad if\quad x>1 \end{cases},g(x)=\begin{cases} x\quad \quad if\quad x\leq 1 \\ 2-x\quad if\quad x>1 \end{cases}

and x\, \in\, (1, 2), then g(f(x)) is equal to
  • x^{2}\, +\, 3
  • x^{2}\, -\, 3
  • 5\, -\, x^{2}
  • 1 - x
If g(x) = 2x + 1 and h(x) = 4x^{2} + 4x + 7, find a function f such that f o g = h
  • f(x) = x^{3} - 6
  • f(x) = x^{2} + 6
  • f(x) = x^{2} - 6
  • f(x) = (2x+1)^2 + 6
Let X = \left\{1,2,3,4\right\} and Y = \left\{1,3,5,7,9\right\}. Which of the following is relations from X to Y
  • R_1 = \left\{(x,y) | y = 2x+1, x \in X, y \in Y\right\}
  • R_2 = \left\{(1,1),(2,1),(3,3),(4,3),(5,5)\right\}
  • R_3 = \left\{(1,1),(1,3),(3,5),(3,7),(5,7)\right\}
  • R_4 = \left\{(1,3),(2,5), (2,4), (7,9)\right\}
Which of the following are two distinct linear functions which map the interval [-1, 1] onto [0, 2]
  • f(x) = 1 + x or 1 - x
  • f(x) = 1 + 2x or 1 - x
  • f(x) = 1 + x or 1 - 2x
  • f(x) = 1 + x or 2 - x
If f(x) =\ln {\displaystyle \frac { 1+x }{ 1-x }  } and g(x)=\displaystyle \frac {3x+x^3}{1+3x^2}, then f[g(x)] equals.

  • f(x)
  • [f(x)]^3
  • 3f(x)
  • {f(x)}^2
Let f(x) = e^{3x}, g(x) = \log_ex, x > 0, then fog (x) is
  • 3x
  • x^3
  • \log_{10}3x
  • \log3x
f(x)\, >\, x;\, \forall\, x\, \epsilon\, R. The equation f (f(x)) -x = 0 has
  • Atleast one real root
  • More than one real root
  • No real root if f(x) is a polynomial & one real root if f(x) is not a polynomial
  • No real root at all
If f : R \rightarrow R, f(x) = (x + 1)^2 and g : R \rightarrow  R, g(x) = x^2 + 1 then (fog)(3) is equal to
  • 121
  • 144
  • 112
  • 11
If f(x) = \sqrt{| x-1|} and g(x) = \sin x, then (fog) (x) equals
  • \sin \sqrt{| x-1|}
  • \left|\sin\dfrac{x}{2} - \cos\dfrac{x}{2}\right|
  • \left|\sin x + \cos x\right|
  • \left|\sin\dfrac{x}{2} + \cos\dfrac{x}{2}\right|
If f(x) = \log x, g(x) = x^3, then f[g(a)] + f[g(b)] equals
  • f[g(a) + g(b)]
  • 3f(ab)
  • g[f(ab)]
  • g[f(a) + f(b)]
If f(x) = x^3 and g(x) = sin2x, then
  • g[f(1)] = 1
  • f(g(\pi/12) = 1/8
  • g{f(2)} = \sin 2
  • none of these
If f(x) = (a x^n)^{1/n}, where \ n \in N, then f\{f(x)\} equals
  • 0
  • x
  • x^n
  • none of these
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers