Loading [MathJax]/jax/element/mml/optable/Arrows.js
MCQExams
0:0:2
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 4 - MCQExams.com
CBSE
Class 12 Commerce Maths
Relations And Functions
Quiz 4
If
f
:
(
3
,
6
)
→
(
1
,
3
)
is a function defined by
f
(
x
)
=
x
−
[
x
3
]
(
where
[
.
]
denotes the greatest integer function
)
,
then
f
−
1
(
x
)
=
Report Question
0%
x
−
1
0%
x
+
1
0%
x
0%
none of these
Explanation
Given that
f
(
x
)
=
x
−
[
x
3
]
where
f
:
(
3
,
6
)
→
(
1
,
3
)
Now, inside the given domain, we will always have
[
x
3
]
=
1
∴
f
(
x
)
=
x
−
1
throughout its domain
⇒
y
=
x
−
1
⇒
x
=
y
+
1
=
f
−
1
(
y
)
∴
f
−
1
(
x
)
=
x
+
1
Let
g
(
x
)
=
1
+
x
−
[
x
]
and
f
(
x
)
=
{
−
1
x
<
0
0
x
=
0
1
x
>
0
Then for all
x
,
f
{
g
(
x
)
}
is equal to
Report Question
0%
x
0%
1
0%
f
(
x
)
0%
g
(
x
)
Explanation
Let
g
(
x
)
=
1
+
x
−
[
x
]
=
1
+
{
x
}
>
0
since
{
x
}
∈
[
0
,
1
)
∀
x
∈
R
Hence
f
{
g
(
x
)
}
=
1
The inverse of the function
f
(
x
)
=
log
2
(
x
+
√
x
2
+
1
)
is
Report Question
0%
2
x
+
2
−
x
0%
2
x
+
2
−
x
2
0%
2
−
x
−
2
x
2
0%
2
x
−
2
−
x
2
Explanation
We have to find the inverse of
f
(
x
)
which means
f
is one one and onto function
Let
f
(
x
)
=
y
=
log
2
(
x
+
√
x
2
+
1
)
∴
2
y
=
x
+
√
x
2
+
1
...(i)
2
−
y
=
1
x
+
√
x
2
+
1
=
√
x
2
+
1
−
x
1
...(ii)
By subtracting (i) and (ii) we have
∴
2
y
−
2
−
y
=
2
x
or
x
=
1
2
(
2
y
−
2
−
y
)
∴
f
−
1
(
y
)
=
1
2
(
2
y
−
2
−
y
)
Replace
y
→
x
∴
f
−
1
(
x
)
=
1
2
(
2
x
−
2
−
x
)
If
f
:
{
1
,
2
,
3
,
.
.
.
}
→
{
0
,
±
1
,
±
2
,
.
.
.
}
is defined by
y
=
f
(
x
)
=
{
x
2
if x is even
−
(
x
−
1
)
2
,
if x is odd
, then
f
−
1
(
100
)
is
Report Question
0%
Function is not invertible as it is not onto
0%
199
0%
201
0%
200
Explanation
Since
100
is even
f
−
1
(
x
)
=
2
x
Hence
f
−
1
(
100
)
=
200
If
f
(
y
)
=
y
√
1
−
y
2
;
g
(
y
)
=
y
√
1
+
y
2
then
(
f
o
g
)
y
is equal to
Report Question
0%
y
√
1
−
y
2
0%
y
√
1
+
y
2
0%
y
0%
2
f
(
x
)
Explanation
Given
f
(
y
)
=
y
√
1
−
y
2
and
g
(
y
)
=
y
√
1
+
y
2
∴
(
f
o
g
)
y
=
f
(
g
(
y
)
)
=
y
√
1
+
y
2
√
1
−
y
2
1
+
y
2
=
y
If
f
(
x
)
=
(
x
−
1
)
+
(
x
+
1
)
and
g
(
x
)
=
f
{
f
(
x
)
}
then
g
′
(
3
)
Report Question
0%
equals
1
0%
equals
0
0%
equals
3
0%
equals
4
Explanation
Simplifying,
f
(
x
)
we get
f
(
x
)
=
2
x
Hence
f
(
f
(
x
)
)
=
2
(
f
(
x
)
)
=
2
(
2
x
)
=
4
x
Hence
g
(
x
)
=
f
(
f
(
x
)
)
=
4
x
Thus
g
′
(
x
)
=
4
Hence
g
′
(
3
)
=
4
.
If
f
(
x
)
=
x
+
tan
x
and
g
−
1
=
f
then
g
′
(
x
)
equals
Report Question
0%
1
2
+
[
g
(
x
)
+
x
]
2
0%
1
1
+
[
g
(
x
)
−
x
]
2
0%
1
2
+
[
g
(
x
)
−
x
]
2
0%
1
2
−
[
g
(
x
)
−
x
]
2
Explanation
f
(
x
)
=
x
+
tan
x
⇢
Differentiating the above equation w.r.t x,
\\ 1=g^{ ' }\left( x \right) +(\sec ^{ 2 }{ g(x) } )g^{ ' }\left( x \right) \\ g^{ ' }\left( x \right) =\dfrac { 1 }{ 1+\sec ^{ 2 }{ g(x) } } =\dfrac { 1 }{ 2+\tan ^{ 2 }{ g\left( x \right) } } \quad \left( \because \sec ^{ 2 }{ g(x) } =1+\tan ^{ 2 }{ g\left( x \right) } \quad \right) \\ from\quad eqn\quad \left( iii \right) ,\quad \tan { g(x) } =x-g\left( x \right) \\ \therefore g^{ ' }\left( x \right) =\dfrac { 1 }{ 2+{ (x-g\left( x \right) ) }^{ 2 } }
Let
f:[4,\infty )\rightarrow [4,\infty )
be a function defined by
f\left( x \right)={ 5 }^{ x\left( x-4 \right) }
, then
f^{ -1 }\left( x \right)
is
Report Question
0%
2-\sqrt { 4+\log _{ 5 }{ x } }
0%
2+\sqrt { 4+\log _{ 5 }{ x } }
0%
\displaystyle { \left( \frac { 1 }{ 5 } \right) }^{ x\left( x-4 \right) }
0%
None of these
Explanation
Let
y={ 5 }^{ x\left( x-4 \right) }\Rightarrow x\left( x-4 \right) =\log _{ 5 }{ y } \Rightarrow { x }^{ 2 }-4x-\log _{ 5 }{ y } =0
\displaystyle \Rightarrow x=\frac { 4\pm \sqrt { 16+4\log _{ 5 }{ y } } }{ 2 } =\left( 2\pm \sqrt { 4+\log _{ 5 }{ y } } \right)
But
x\ge 4
, so
x=\left( 2+\sqrt { 4+\log _{ 5 }{ y } } \right)
\therefore f^{ -1 }\left( y \right) =2+\sqrt { 4+\log _{ 5 }{ y } }
\therefore f^{ -1 }\left( x \right) =2+\sqrt { 4+\log _{ 5 }{ x } }
Report Question
0%
Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
0%
Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
0%
Assertion is correct but Reason is incorrect
0%
Assertion is incorrect but Reason is correct
Explanation
For Onto function
codomain
\displaystyle =\left [ 0, \frac{\pi}{2} \right )=
Range
Which is possiable where
\displaystyle x^{2}+x+a\geq 0
Now using fact
\displaystyle f(x)\geq 0 \Rightarrow D\leq 0
\displaystyle \left ( A=1=b \right )\ and \ C=a
\displaystyle \Rightarrow 1-4a\leq 0
\displaystyle \Rightarrow a\geq \frac{1}{4}
\displaystyle \therefore
Assertion is false, Reason is true
Let
\displaystyle f:N\rightarrow Y
be a function defined as
f(x)=4x+3
where
\displaystyle Y=\left \{ y \in N:y=4x+3 \right \}
for some
\displaystyle x\in N
such that
f
is invertible then its inverse is
Report Question
0%
\displaystyle g\left ( y \right )=4+\frac{y+3}{4}
0%
\displaystyle g\left ( y \right )=\frac{2y-3}{4}
0%
\displaystyle g\left ( y \right )=\frac{3y+4}{3}
0%
\displaystyle g\left ( y \right )=\frac{y-3}{4}
Explanation
Let
\displaystyle y=f(x)\Rightarrow x= f^{-1}(y)
........(A)
\displaystyle \therefore y=4x+3
\displaystyle \Rightarrow 4x=y-3 \Rightarrow x=\frac{y-3}{4}
\displaystyle \Rightarrow f^{-1}(y)=\frac{y-3}{4}
.......(using A)
\displaystyle \Rightarrow g(y)=\frac{y-3}{4}
If
\displaystyle f\left ( x \right )=\left\{\begin{matrix} x^{2} x \geq 0\\ x x < 0 \end{matrix}\right.
then
\displaystyle (f o f)(x)
is given by
Report Question
0%
x^{2}
for
x\geq 0
and
x
for
x< 0
0%
\displaystyle x^{4}
for
\displaystyle x\geq 0
and
x^{2}
for
x< 0
0%
\displaystyle x^{4}
for
\displaystyle x\geq 0
and
-x^{2}
for
x < 0
0%
\displaystyle x^{4}
for
x\geq 0
and
x
for
x< 0
Explanation
For
x\ge0
,we have
\displaystyle f \circ f\left( x \right)= {\left( {{x^2}} \right)^2}=\left( {{x^4}} \right)
For
x<0
,we have
\displaystyle f \circ f\left( x \right)=x
If
\displaystyle f(x)= \frac{3x+2}{5x-3}
then
Report Question
0%
\displaystyle f^{-1}(x)= -f(x)
0%
\displaystyle f^{-1}(x)= f(x)
0%
\displaystyle fo(f(x))= -x
0%
\displaystyle f^{-1}(x)= -\frac{1}{19}f(x)
Explanation
Let
y=\displaystyle \frac{3x+2}{5x-3}
\Rightarrow \displaystyle x=\frac{3y+2}{5y-3}=f^{-1}(y)
\displaystyle \therefore f^{-1}(x)=\frac{3x+2}{5x-3}=f(x)
Let
\displaystyle f:R \rightarrow R
be defined as
\displaystyle f(x)= x^{2}+5x+9
then
\displaystyle f^{-1}(8)
equals to
Report Question
0%
\displaystyle \left \{ \frac{-5+\sqrt{20}}{2},\frac{-5-\sqrt{21}}{2} \right \}
0%
\displaystyle \left \{ \frac{-5+\sqrt{21}}{2} ,\frac{-5-\sqrt{21}}{2}\right \}
0%
\displaystyle \left \{ \frac{5-\sqrt{21}}{2} ,\frac{21-\sqrt{5}}{2}\right \}
0%
Does not exist.
Explanation
Let
\displaystyle f^{-1}(8)= x,
then
\displaystyle f(x)= 8
\implies x^{2}+5x+9= 8
\implies x^{2}+5x+1= 0
\displaystyle \Rightarrow x= \frac{-5\pm \sqrt{25-4}}{2}
\displaystyle x= \frac{-5+\sqrt{21}}{2},\frac{-5-\sqrt{21}}{2}\in R
Hence
\displaystyle f^{-1}(8)= \left \{ \frac{-5+\sqrt{21}}{2} ,\frac{-5-\sqrt{21}}{2}\right \}
Which of the following functions have inverse defined on the ranges
Report Question
0%
\displaystyle f\left ( x \right )=x^{2}, x
\displaystyle \in
R
0%
\displaystyle f\left ( x \right )=x^{3},x
\displaystyle \in
R
0%
\displaystyle f\left ( x \right )=e^{x},x
\displaystyle \in
R
0%
\displaystyle f(x)=\sin x,
\displaystyle 0< x< 2\pi
Explanation
We know that only one-one onto functions are invertible.
In (A) it is not one-one and hence not invertible.
In (B) and (C)both are one-one onto and both are invertible.
In (D) Since
\displaystyle f\left ( \frac{\pi}{4} \right )=f\left ( \frac{3\pi }{4} \right )=\frac{1}{\sqrt{2}}
\displaystyle \therefore
(D) is not invertible.
Let f(x)=tan x, x
\displaystyle \epsilon \left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]
and
\displaystyle g\left (x \right )=\sqrt{1-x^{2}}
Determine
g o f(1)
.
Report Question
0%
1
0%
0
0%
-1
0%
not defined
Find
\displaystyle \phi \left [ \Psi \left ( x \right ) \right ]
and
\displaystyle \Psi \left [ \phi \left ( x \right ) \right ]
if
\displaystyle \phi \left ( x \right )=x^{2}+1
and
\displaystyle \Psi \left ( x \right )=3^{x}.
Report Question
0%
\displaystyle \Psi \left [ \phi \left ( x \right ) \right ]=3^{x^{2}+1}.
0%
\displaystyle \phi \left [ \Psi \left [ x \right ] \right ]=3^{2x}+1
0%
\displaystyle \Psi \left [ \phi \left ( x \right ) \right ]=3^{x^{3}+1}.
0%
\displaystyle \phi \left [ \Psi \left [ x \right ] \right ]=3^{x}+1
Explanation
\displaystyle \phi \left [ \Psi \left [ x \right ] \right ]=\phi \left ( 3^{x} \right )=\left ( 3^{x} \right )^{2}+1=3^{2x}+1
and
\displaystyle \Psi \left [ \phi \left ( x \right ) \right ]=\Psi \left ( x^{2} +1\right )=3^{x^{2}+1}.
The inverse of the function
\displaystyle f(x)=(1-(x-5)^{3})^{1/5}
is
Report Question
0%
5-(1-x^{5})^{1/3}
0%
5+(1-x^{5})^{1/3}
0%
5+(1+x^{5})^{1/3}
0%
5-(1+x^{5})^{1/3}
Explanation
Let
y=(1-(x-5)^{3})^{\frac{1}{5}}
y^{5}=1-(x-5)^{3}
(x-5)^{3}=1-y^{5}
x-5=(1-y^{5})^{\frac{1}{3}}
x=5+(1-y^{5})^{\frac{1}{3}}
Replacing
x
with
y
gives us
f^{-1}(x)=5+(1-x^{5})^{\frac{1}{3}}
If
\displaystyle f\left ( x \right )=\frac{ax+b}{cx+d}
and
\displaystyle \left ( fof \right )x=x,
then d=?
Report Question
0%
a
0%
-a
0%
b
0%
-b
Explanation
\displaystyle \left ( fof \right )x=x\Rightarrow f\left [ f\left ( x \right ) \right ]=x
or
\displaystyle f\left [ \frac{ax+b}{cx+d} \right ]=x
or
\displaystyle\frac{a\left [ \frac{ax+b}{cx+d}\right ]+b}{c\left [\frac{ax+b}{cx+d} \right ]+d}=x
\displaystyle \therefore \frac{x\left ( a^{2}+bc \right )+b\left ( a+d \right )}{cx\left ( a+d \right )+\left ( bc+d^{2} \right )}=x
Clearly if
\displaystyle a+d=0
or
\displaystyle d=-a
then in that case
\displaystyle L.H.S.=\frac{x\left ( a^{2}+bc \right )+0}{0+\left ( bc+a^{2} \right )}=x
\displaystyle \because d=-a
The inverse of the function
\log_{e}x
is
Report Question
0%
10^{x}
.
0%
e ^{x}
0%
10^{e}
.
0%
x^{e}
.
Explanation
y=f^{ -1 }\left( x \right)
\Rightarrow x=f\left( y \right) =\log _{ e }{ y }
\Rightarrow y={ e }^{ x }
The total number of injective mappings from a set with
m
elements to a set with
n
elements,
\displaystyle m\leq n,
is
Report Question
0%
\displaystyle m^{n}
0%
\displaystyle n^{m}
0%
\displaystyle \frac{n!}{\left ( n-m \right )!}
0%
\displaystyle n!
Explanation
Let
A=\{a_1,a_2, a_3.....a_m\}
and
B=\{b_1,b_2, b_3.....b_n\}
where
m \le n
Given
f:A\rightarrow B
be an injective mapping.
So, for
a_1 \in A
, there are
n
possible choices for
f(a_1)\in B
.
For
a_2 \in A
, there are
(n-1)
possible choices for
f(a_2)\in B
.
Similarly for
a_m \in A
, there are
(n-m-1)
choices for
f(a_m)\in B
So, there are
n(n-1)(n-2).....(n-m-1)=\dfrac{n!}{(n-m)!}
injective mapping from
A
to
B.
If
\displaystyle A= \left \{ a,b,c,d \right \}, B= \left \{ 1,2,3 \right \}
find whether or not the following sets of ordered pairs are relations from
A
to
B
or not.
\displaystyle R_{1}= \left \{ \left ( a,1 \right ), \left ( a,3 \right ) \right \}
\displaystyle R_{2}= \left \{ \left ( a,1 \right ), \left ( c,2 \right ), \left ( d,1 \right ) \right \}
\displaystyle R_{3}= \left \{ \left ( a,1 \right ), \left ( b,2 \right ), \left ( 3,c \right ) \right \}.
Report Question
0%
R_{1}
R_{2}
are relations but
R_{3}
is not a relation.
0%
R_{1}
R_{3}
are relations but
R_{2}
is not a relation.
0%
All are relations
0%
none of these
Explanation
Given,
A= \left \{ a,b,c,d \right \}, B= \left \{ 1,2,3 \right \}
and
R_{1}= \left \{ \left ( a,1 \right ), \left ( a,3 \right ) \right \}
R_{2}= \left \{ \left ( a,1 \right ), \left ( c,2 \right ), \left ( d,1 \right ) \right \}
R_{3}= \left \{ \left ( a,1 \right ), \left ( b,2 \right ), \left ( 3,c \right ) \right \}.
We know that every relation from
A
to
B
will be a subset of
A \times B
.
Thus, both
R_{1}
and
R_{2}
are subsets of
A\times B
and hence are relations but
R_{3}
is not a relation because
R_{3}
is not a subset of
A\times B
because the element
(3,c) \notin (A\times B).
It belongs to
B\times A.
Are the following sets of ordered pairs functions? If so, examine whether the mapping is surjective or injective :
{(x, y): x is a person, y is the mother of x}
Report Question
0%
injective (one- one ) and surjective (into)
0%
injective (one- one ) and not surjective (into)
0%
not injective (one- one ) and surjective (into)
0%
not injective (one- one ) and not surjective (into)
Explanation
We have {(x, y) : x is a person, y is the mother of x}. Clearly each person 'x' has only one biological mother. So above set of ordered pair is a function. Now more than one person may have same mother. So function is many-one and surjective.
Given
\displaystyle f\left ( x \right )=\log \left ( \frac{1+x}{1-x} \right )
and
\displaystyle g\left ( x \right )=\frac{3x+x^{3}}{1+3x^{2}}, fog (x)
equals
Report Question
0%
-f(x)
0%
3f(x)
0%
\displaystyle \left [ f\left ( x \right ) \right ]^{3}
0%
none of these
Explanation
Given
f(x)\, =\, \log\, \left( \displaystyle \dfrac{1\, +\, x}{1\, -\, x} \right)
and
g(x)\, =\, \displaystyle \dfrac{3x\, +\, x^{3}}{1\, +\, 3x^{2}}
\therefore fog (x)\, =\, \log \left( \displaystyle \dfrac{1\, +\, \dfrac{3x\, +\, x^{3}}{1\, +\, 3x^{2}}}{1\, -\,\displaystyle \dfrac{3x\, +\, x^{3}}{1\, +\, 3x^{2}}} \right)
=\, \log\, \left(\displaystyle \dfrac{(1\, +\, x)^{3}}{(1\, -\, x)^{3}} \right)\, =\, 3\, \log\, \left(\displaystyle \dfrac{1\, +\, x}{1\, -\, x} \right)\, =\, 3\, f(x)
Let
R
be a relation from a set
A
to a set
B
,then
Report Question
0%
\displaystyle R=A\cup B
0%
\displaystyle R=A\cap B
0%
\displaystyle R\subseteq A\times B
0%
\displaystyle R\subseteq B\times A
Explanation
If
R
is a relation from
A
to
B
then
R
is the subset of
A \times B
because it contains all the possible mappings from
A
to
B
.
If
A=\{a,b,c,d\}, B=\{p,q,r,s\}
, then which of the following are relations from
A
to
B
?
Report Question
0%
\displaystyle R_{1}= \left \{ \left ( a,p \right ), \left ( b,r \right ), \left ( c,s \right ) \right \}
0%
\displaystyle R_{2}= \left \{ \left ( q,b \right ), \left ( c,s \right ), \left ( d,r \right ) \right \}
0%
\displaystyle R_{3}= \left \{ \left ( a,p \right ), \left ( a,q \right ), \left ( d,p \right ), \left ( c,r \right ), \left ( b,r \right ) \right \}
0%
\displaystyle R_{4}= \left \{ \left ( a,p \right ), \left ( q,a \right ), \left ( b,s \right ), \left ( s,b \right ) \right \}
Explanation
From then definiation of Relation
Let
R
be
a
relation from
A
to
B
i.e.,
R\subseteq A\times B,
then
Domain of {
a:a\in A,\left( a,b \right) \in R
for some
b\in B
}
Range of
R=
{
b:b\in B,\left( a,b \right) \in R
for some
a\in A
}.
Therefore,
(A)
\displaystyle R,=\left\{ \left( a,p \right) ,\left( b,s \right) ,\left( c,s \right) \right\}
is a relation as
\left\{ a,b,c \right\} \subseteq A
and
\left\{ p,r,s \right\} \subseteq B.
(B)
{ R }_{ 2 }=\left\{ \left( q,b \right) ,\left( c,s \right) ,\left( d,r \right) \right\}
is not a relation as
q
is not from set
A.
(C)
{ R }_{ 3 }=\left\{ \left( a,p \right) ,\left( a,q \right) ,\left( d,p \right) ,\left( c,r \right) ,\left( b,r \right) \right\}
is a relation as
\displaystyle \left\{ a,d,c,b \right\} \subseteq A
and
\displaystyle \left\{ p,q,r \right\} \subseteq B.
(D)
{ R }_{ 4 }=\left\{ \left( a,p \right) ,\left( q,a \right) ,\left( b,s \right) ,\left( s,b \right) \right\}
is not a relation as
q
and
s
does not belong to set
A.
If
f:R\rightarrow R
and
g:R\rightarrow R
are functions defined by
f(x)=3x-1; g(x)=\sqrt{x+6}
, then the value of
(g\circ f^{-1})(2009)
is
Report Question
0%
26
0%
29
0%
16
0%
15
Explanation
Given
f(x)=3x-1, g(x)=\sqrt{x+6}
Let
f(x)=y
\Rightarrow y=3x-1\Rightarrow y+1-3x\Rightarrow x=\cfrac{y+1}{3}
Now,
f^{-1}(y)=x=\cfrac{y+1}{3}
\Rightarrow f^{-1}(x)=\cfrac{x+1}{3}
and
g(x)=\sqrt {x+6}
Consider,
(g\circ f^{-1})(2009)=g[{f^{-1}(2009)}]
=g\left(\cfrac{2009+1}{3}\right)=g\left(\cfrac{2010}{3}\right)
=\sqrt{\cfrac{2010}{3}+6}=\sqrt{\cfrac{2028}{3}}=\sqrt{676}=26
Hence, option
A
is correct.
If
\displaystyle X= \left \{ 1,2,3,4,5 \right \}, Y= \left \{ 1,3,5,7,9 \right \}
determine which of the following sets are mappings, relations or neither from A to B:
(i)
\displaystyle F= \left \{ \left ( x,y \right ) \because y= x+2, x \in X, y \in Y \right \}
Report Question
0%
It is clearly a one-one onto mapping i.e. a bijection. It is also a relation.
0%
It is clearly a many-one onto mapping. It is also a relation.
0%
It is clearly a one-one but not onto mapping. It is also a relation.
0%
It is not a mapping but a relation
Explanation
Given def of F as
\displaystyle F= \left \{ \left ( x,y \right ) \because y= x+2, x \epsilon X, y \epsilon Y \right \}
where
\displaystyle X= \left \{ 1,2,3,4,5 \right \}, Y= \left \{ 1,3,5,7,9 \right \}
So, we get
\left \{ \left ( 1,3 \right ), \left ( 2,4 \right ), \left ( 3,5 \right ), \left ( 4,6 \right ), \left ( 5,7 \right ) \right \}
Since,
\displaystyle y \in Y
and in the above 4,6 do not belong to Y.
\displaystyle \therefore
we exclude the ordered pair (2,4) and (4,6)
\displaystyle \therefore \displaystyle F=\left \{ \left ( 1,3 \right ), \left ( 3,5 \right ), \left ( 5,7 \right ) \right \}
F is not a mapping because the elements 2,4
\displaystyle \epsilon X
do not have any image.
\displaystyle F\subset X\times Y
and hence F is a relation from X to Y.
Let
f:[2,\infty)\rightarrow [1,\infty)
defined by
f(x)=2^{x^{4}-4x^{2}}
and
\displaystyle g:\left[ \frac{\pi}{2},\pi \right] \rightarrow A
defined by
\displaystyle g(x)=\frac {\sin x+4}{\sin x-2}
be two invertible functions, then
f^{-1}(x)
is equal to
Report Question
0%
\sqrt{2+\sqrt{4-\log_{2}x}}
0%
\sqrt{2+\sqrt{4+\log_{2}x}}
0%
\sqrt{2-\sqrt{4+\log_{2}x}}
0%
None of these
Explanation
\because ff^{-1}(x)=x
2^{(f^{-1}(x))^{4}}-4^{(f^{-1}(x))^{2}}=x
\Rightarrow (f^{-1}(x))^{4}-4(f^{-1}(x))^{2}=\log _{2}x=0
\therefore (f^{-1}(x))^{2}=2+\sqrt{4+\log _{2}x}
\therefore
Range of
f^{-1}(x)
is
(2, \infty )
.
\therefore f^{-1}(x)=\sqrt{2+\sqrt{4+\log _{2}x}}
If
f_{0}(x)\, =\, \dfrac{x}{(x\, +\, 1)}
and
f_{n\, +\, 1}\, =\, f_{0}\circ f_{n}(x)
for
n = 0, 1, 2,\cdots
then
f_{n}(x)
is
Report Question
0%
\displaystyle \frac{x}{(n\, +\, 1) x\, +\, 1}
0%
f_{0}(x)
0%
\displaystyle \frac{nx}{nx\, +\, 1}
0%
\displaystyle \frac{x}{nx\, +\, 1}
Explanation
Given
f_{0}\left(x\right)=\dfrac{x}{ \left(x\, +\, 1\right)}\cdots\cdots\left(1\right)
Also given
f_{n\, +\, 1}\, =\, f_{0}\, o\, f_{n}
for
(n = 0, 1, 2,\cdots)\ldots\left(2\right)
Put
n=0
in eqn (2)
f_1=f_{0} o f_0
f_1\left(x\right)=f_{0}[f_{0}\left(x\right)]
\Rightarrow f_{1}\left(x\right)=f_{0}\left(\dfrac{x}{x+1}\right)
=\dfrac{\dfrac{x}{x+1}}{\dfrac{x}{x+1}+1}
=\dfrac{x}{2x+1}
\Rightarrow f_1\left(x\right)=\dfrac{x}{2x+1}
Put
n=1
in eqn
(2)
f_2=f_{0} o f_1
f_2\left(x\right)=f_{0}[f_{1}\left(x\right)]
\Rightarrow f_{2}\left(x\right)=f_{0}\left(\dfrac{x}{2x+1}\right)
=\dfrac{\dfrac{x}{2x+1}}{\dfrac{x}{2x+1}+1}
=\dfrac{x}{3x+1}
\Rightarrow f_2\left(x\right)=\dfrac{x}{3x+1}
Hence,
f_n\left(x\right)=\dfrac{x}{\left(n+1\right)x+1}
Let
f(x)=x^{2}-2x
and
g(x)=f(f(x)-1)+f(5-f(x)),
then
Report Question
0%
g(x)<0,\forall x\in R
0%
g(x)<0
for some
x\in R
0%
g(x)\leq 0
for some
x\in R
0%
g(x)\geq 0,\forall x\in R
Explanation
Given,
f(x) = x^2 - 2x
Now,
f(f(x) - 1) \\ = f(x^2 - 2x - 1 ) \\ = (x^2 - 2x - 1 )^2 - 2 (x^2 - 2x - 1 )
And,
f(5 - f(x) ) \\ = f(5 - x^2 + 2x ) \\ = (5 - x^2 + 2x )^2 - 2 (5 - x^2 + 2x )
Hence,
g(x) = f(f(x) - 1) + f (5 - f(x)) \\ \therefore g(x) = (x^2 - 2x - 1)^2 - 2 (x^2 - 2x -1 ) + (5 - x^2 + 2x )^2 - 2(5 - x^2 + 2x ) \\ \Rightarrow g(x) = (x^2 - 2x - 1)^2 + (5- x^2 + 2x)^2 - 2(x^2 - 2x - 1 + 5 - x^2 + 2x) \\ \therefore g(x) = (x^2 + 2x - 1 )^2 + ( 5 - 2x ^2 + 2 x^2)^2 - 8
Since the first two terms are in square,
\therefore
it can not be negative and if x = 9 then we also get positive value.
\therefore g(x) \geq 0 \, \, \forall x \in R
\therefore
option D is
correct
If
f(x)=\begin{cases} 2x+3\quad \quad x\le 1 \\ a^{ 2 }x+1\quad x>1 \end{cases}
, then the values of
a
for which
f(x)
is injective.
Report Question
0%
-3
0%
1
0%
0
0%
none of these
Explanation
A function is called injective (one-one) if it is monontonic.
Clearly for
x<1
f is increasing and it's maximum values is
2(1)+3=5
Hence for f to be monotonic
(x>1)
,
f(1) \geq 5
\Rightarrow a^2(1)+1\geq 5 \Rightarrow a^2\geq 2 \Rightarrow a\in R-(-2,2)
Which of the functions defined below are NOT one-one function(s)
Report Question
0%
f(x)\, =\, 5(x^{2}\, +\, 4),\, (x\, \in\, R)
0%
g(x)\, =\, 2x\, +\, \dfrac1x
0%
h(x)\, =\, ln(x^{2}\, +\, x\, +\, 1)\,, (x\, \in\, R)
0%
f(x)\, =\, e^{-x}
If
g(x)=1+\sqrt { x }
and
f(g(x))=3+2\sqrt { x } +x
, then
f(x)=
Report Question
0%
1+2{ x }^{ 2 }
0%
2+{ x }^{ 2 }
0%
1+x
0%
2+x
Explanation
We have
g\left( x \right)=1+\sqrt { x }
and
f(g(x))=3+2\sqrt { x } +x
...(1)
Also,
f\left( g\left( x \right) \right) =f\left( 1+\sqrt { x } \right)
...(2)
From (1) and (2), we get
f\left( 1+\sqrt { x } \right) =3+2\sqrt { x } +x
Let
1+\sqrt { x } =y\Rightarrow x={ \left( y-1 \right) }^{ 2 }
\therefore f\left( y \right) =3+2\left( y-1 \right) +{ \left( y-1 \right) }^{ 2 }\\ =3+3y-2+{ y }^{ 2 }-2y+1=2+{ y }^{ 2 }\\ \therefore f\left( x \right) =2+{ x }^{ 2 }
Let
X=\left\{ 1,2,3,4 \right\}
and
Y=\left\{ 1,2,3,4 \right\}
. Which of the following is a relation from
X
to
Y
.
Report Question
0%
{R}_{1}=\left\{ (x,y)| y=2+x, x\in X, y\in Y \right\}
0%
{R}_{2}=\left\{ (1,1),(2,1),(3,3),(4,3),(5,5) \right\}
0%
{R}_{3}=\left\{ (1,1),(1,3),(3,5),(3,7),(5,7) \right\}
0%
{R}_{4}=\left\{ (1,3),(2,5),(2,4),(7,9) \right\}
Explanation
Given
X=\left\{ 1,2,3,4 \right\}
and
Y=\left\{ 1,2,3,4 \right\}
X\times Y=\{ (1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)
(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)\}
Now,
R_1=\{(1,3),(2,2)\}
Since,
R_1\subset X\times Y
Hence,
R_1
is a relation from
X
to
Y
{R}_{2}=\left\{ (1,1),(2,1),(3,3),(4,3),(5,5) \right\}
Since,
(5,5) \in R_2
but
\notin X\times Y
So,
R_2
is not a relation from
X
to
Y
{R}_{3}=\left\{ (1,1),(1,3),(3,5),(3,7),(5,7) \right\}
Since,
(3,5),(3,7),(5,7) \in R_3
but
\notin X\times Y
So,
R_3
is not a relation from
X
to
Y
{R}_{4}=\left\{ (1,3),(2,5),(2,4),(7,9) \right\}
Since,
(2,5),(7,9) \in R_4
but
\notin X\times Y
So,
R_4
is not a relation from
X
to
Y
Find inverse
f(x)=\log_{e}(x+\sqrt{x^{2}+1})
Report Question
0%
\sinh(x)
0%
\cosh(x)
0%
\tanh(x)
0%
\coth(x)
Explanation
y=\log(x+\sqrt{x^{2}+1})
\Rightarrow e^{y}=x+\sqrt{x^{2}+1}
\Rightarrow e^{y}-x=\sqrt{x^{2}+1}
\Rightarrow x^{2}-2xe^{y}+e^{2y}=x^{2}+1
\Rightarrow e^{2y}=1+2xe^{y}
\Rightarrow 2x=\dfrac{e^{2y}-1}{e^{y}}
\Rightarrow x=\dfrac{e^{y}-e^{-y}}{2}
Replacing x with y
f^{-1}(x)=\dfrac{e^{x}-e^{-x}}{2}
=\sinh(x)
Let f : {x,y,z}
\rightarrow
{a,b,c} be a one-one function. It is known that only one of the following statment is true, and only one such function exists :
find the function f (as ordered pair).
(i) f(x)
\neq
b
(i) f(y) = b
(ii) f(z)
\neq
a
Report Question
0%
{(x,b), (y,a), (z,c)}
0%
{(x,a), (y,b), (z,c)}
0%
{(x,b), (y,c), (z,a)}
0%
{(x,c), (y,a), (z,b)}
Explanation
When (i) is true, then
f(x) \neq b, f(y) \neq b , f(z) = a,b,c
\Rightarrow
Two ordered pair function is possible
f(x) = a, f(y) = c, f(z) = b
or
f(x) = c, f(y) = a, f(z) = b
But given
f
is one-one and only one such function is possible. Hence (i) can't be true.
When (ii) is true, then
f(y) = b, f(z) =c , f(x) = a\Rightarrow f(x) = a, f(y) = b, f(z) = c
Clearly if (ii) is true then it is satisfying every condition.
Hence ordered pair of
f
is
\{(x,a), (y,b), (z,c)\}
Suppose f and g both are linear function with
\displaystyle f(x)=-2x+1
and
\displaystyle f \left ( g\left ( x \right ) \right )=6x-7
then slope of line
y=g(x)
is
Report Question
0%
3
0%
-3
0%
6
0%
-2
Explanation
Given,
f(x)=-2x+1
\therefore f(g(x))=-2g(x)+1=6x-7
\Rightarrow g(x)=-3x+4
\Rightarrow g'(x)=-3
Hence slope of
g(x)
is
-3
from the given statement
N
denotes the natural number and
W
denotes the whole number, so which statement in the following is correct
Report Question
0%
N=W
0%
N
\subset
W
0%
W
\subset
N
0%
N
\cong
W
Explanation
Natural numbers are naturally occurring counts of an object
1, 2, 3, 4,…
forming an infinite list in which the first number is
1
and every next number is equal to the preceding number
+1.
Whole number include the set of all Natural numbers and also
0.
Let
N
and
W
elements of natural and whole numbers.
N=\{1,2,3,4,....\infty\}
W=\{0,1,2,3,4,...\infty\}
So, here we can say
N
is subset of
W.
\therefore
N\subset W
is correct statement.
If
f(x)=\begin{cases} x+1,\quad \quad if\quad x\, \leq \, 1 \\ 5-x^{ 2 }\quad \quad if\quad x>1 \end{cases},g(x)=\begin{cases} x\quad \quad if\quad x\leq 1 \\ 2-x\quad if\quad x>1 \end{cases}
and
x\, \in\, (1, 2)
, then
g(f(x))
is equal to
Report Question
0%
x^{2}\, +\, 3
0%
x^{2}\, -\, 3
0%
5\, -\, x^{2}
0%
1 - x
Explanation
x\, \epsilon\, (1, 2)
Hence for x >1,
f(x) = 5-x^2
and
f(x) \epsilon (1,4)
f(x) >1
g(f(x)) = 2 - f(x)= 2-5+x^2 = x^2-3
If
g(x) = 2x + 1
and
h(x) = 4x^{2} + 4x + 7
, find a function
f
such that
f o g = h
Report Question
0%
f(x) = x^{3} - 6
0%
f(x) = x^{2} + 6
0%
f(x) = x^{2} - 6
0%
f(x) = (2x+1)^2 + 6
Explanation
f(g(x)) = h = 4x^2+4x+7=(2x+1)^2+6=(g(x))^2+6
\Rightarrow f(x) =x^2+6
Let
X = \left\{1,2,3,4\right\}
and
Y = \left\{1,3,5,7,9\right\}
. Which of the following is relations from
X
to
Y
Report Question
0%
R_1 = \left\{(x,y) | y = 2x+1, x \in X, y \in Y\right\}
0%
R_2 = \left\{(1,1),(2,1),(3,3),(4,3),(5,5)\right\}
0%
R_3 = \left\{(1,1),(1,3),(3,5),(3,7),(5,7)\right\}
0%
R_4 = \left\{(1,3),(2,5), (2,4), (7,9)\right\}
Explanation
We have
X = \left\{1,2,3,4\right\}
and
Y = \left\{1,3,5,7,9\right\}
.
X \times Y=\{(1,1),(1,3),(1,5),(1,7),(1,9), (2,1),(2,3),(2,5),
(2,7),(2,9), (3,1),(3,3),(3,5),(3,7),(3,9),(4,1),(4,3),(4,5),(4,7),(4,9)\}
Let's take option A,
R_1 = \left\{(x,y) | y = 2x+1, x \in X, y \in Y\right\}
R_{1}= \{(1,3),(2,5),(3,7), (4,9)\}
Since,
R_1 \subseteq X\times Y
So,
R_1
is a relation from
X
to
Y
Clearly,
R_2
is not a relation from
X
to
Y
as
(5,5) \notin X\times Y
Similarly,
R_3
is not a relation from
X
to
Y
as
(5,7) \notin X\times Y
In the same manner,
R_4
is also not a relation from
X
to
Y
as
(7,9) \notin X\times Y
Which of the following are two distinct linear functions which map the interval
[-1, 1]
onto
[0, 2]
Report Question
0%
f(x) = 1 + x
or
1 - x
0%
f(x) = 1 + 2x
or
1 - x
0%
f(x) = 1 + x
or
1 - 2x
0%
f(x) = 1 + x
or
2 - x
Explanation
Out of two linear functions one will be increasing and other will be decreasing.
Let
f(x) = ax+b
For increasing:
f(-1)=0=> b-a=0\Rightarrow b=a
and
f(1) = 2\Rightarrow a+b=2\Rightarrow a=b=1\therefore f(x) = 1+x
For decreasing:
f(-1)=2=> b-a=2
and
f(1) = 0\Rightarrow a+b=2\Rightarrow b=1, a=-1\therefore f(x) = 1-x
If
f(x) =\ln {\displaystyle \frac { 1+x }{ 1-x } }
and
g(x)=\displaystyle \frac {3x+x^3}{1+3x^2}
, then
f[g(x)]
equals.
Report Question
0%
f(x)
0%
[f(x)]^3
0%
3f(x)
0%
{f(x)}^2
Explanation
Given
f(x)=\ln {\displaystyle \frac { 1+x }{ 1-x } }
and
g(x)=\displaystyle \frac {3x+x^3}{1+3x^2}
then
f[g(x)]=\ln {\displaystyle \frac { 1+\displaystyle\frac { 3x+x^{ 3 } }{ 1+3x^{ 2 } } }{ 1-\displaystyle\frac { 3x+x^{ 3 } }{ 1+3x^{ 2 } } } }
=\ln {\displaystyle \frac { 1+3x^{ 2 }+3x+x^{ 3 } }{ 1+3x^{ 2 }-3x-x^{ 3 } } }
=\ln\left[ {\displaystyle \frac { 1+x }{ 1-x } }\right]^3
=3\ln {\displaystyle \frac { 1+x }{ 1-x } }
\Rightarrow f[g(x)]=3f(x)
Hence, option C.
Let
f(x) = e^{3x}, g(x) = \log_ex, x > 0
, then
fog (x)
is
Report Question
0%
3x
0%
x^3
0%
\log_{10}3x
0%
\log3x
Explanation
Given
f(x) = e^{3x}, g(x) = \log_ex, x > 0
fog(x)=f(\log_ex)=e^{3\log_ex}=x^3
Hence, option B.
f(x)\, >\, x;\, \forall\, x\, \epsilon\, R.
The equation
f (f(x)) -x = 0
has
Report Question
0%
Atleast one real root
0%
More than one real root
0%
No real root if f(x) is a polynomial & one real root if f(x) is not a polynomial
0%
No real root at all
Explanation
Given
f(x) > x
\forall x \epsilon R
Hence,
f(x)-x
has no real roots, because
f(x)-x >0
Since,
x \epsilon R \implies f(x) \epsilon R
f(f(x))>x
\implies f(f(x))-x>0
Hence it will have no real root.
If
f : R \rightarrow R, f(x) = (x + 1)^2
and
g : R \rightarrow R, g(x) = x^2 + 1
then
(fog)(3)
is equal to
Report Question
0%
121
0%
144
0%
112
0%
11
Explanation
Given,
f : R \rightarrow R, f(x) = (x + 1)^2
and
g : R \rightarrow R,g(x) = x^2 + 1
g(3)=3^2+1=10
f(10)=(10+1)^2=121
\therefore fog(3)=f\left(g(3)\right)=f(10)=121
Hence, option A.
If
f(x) = \sqrt{| x-1|}
and
g(x) = \sin x
, then
(fog) (x)
equals
Report Question
0%
\sin \sqrt{| x-1|}
0%
\left|\sin\dfrac{x}{2} - \cos\dfrac{x}{2}\right|
0%
\left|\sin x + \cos x\right|
0%
\left|\sin\dfrac{x}{2} + \cos\dfrac{x}{2}\right|
Explanation
\displaystyle fog\left( x \right) =f\left( g\left( x \right) \right) =\sqrt { \left| \sin { x } -1 \right| }
=\sqrt { \left| 1-\cos { \left( \dfrac { \pi }{ 2 } -x \right) } \right| } =\sqrt { 2 } \left| \sin { \left( \dfrac { \pi }{ 4 } -\dfrac { x }{ 2 } \right) } \right| =\left| \sin { \dfrac { x }{ 2 } } -\cos { \dfrac { x }{ 2 } } \right|
If
f(x) = \log x
,
g(x) = x^3
, then
f[g(a)] + f[g(b)]
equals
Report Question
0%
f[g(a) + g(b)]
0%
3f(ab)
0%
g[f(ab)]
0%
g[f(a) + f(b)]
Explanation
We have
f(x) = \log x
g(x) = x^3
g(a) = a^3
f(g(a)) = \log (a^3)
f(g(a)) =3 \log a
Similarly,
f(g(b)) = 3 \log b
\Rightarrow f(g(a)) + f(g(b)) = 3 \log a + 3 \log b
\Rightarrow f(g(a)) + f(g(b)) = 3 \log ab
\Rightarrow f(g(a)) + f(g(b)) = 3 f(ab)
If
f(x) = x^3
and
g(x) = sin2x
, then
Report Question
0%
g[f(1)] = 1
0%
f(g(\pi/12) = 1/8
0%
g{f(2)} = \sin 2
0%
none of these
Explanation
Given,
f(x)=x^3
and
g(x)=\sin 2x
Clearly,
f(1)=1 \Rightarrow g[f(1)]=\sin 2
g(\cfrac{\pi}{12}) =\dfrac{1} {2} \Rightarrow f[g(\dfrac{\pi}{12})]=\dfrac{1}{8}
and,
f(2)=8 \Rightarrow g[f(2)]= \sin 16
So, the correct option is (B).
If
f(x) = (a x^n)^{1/n},
where
\ n \in N
, then
f\{f(x)\}
equals
Report Question
0%
0
0%
x
0%
x^n
0%
none of these
Explanation
We have,
f(x) = (a x^n)^{1/n}=a^{1/n}x=kx
where
k = a^{1/n}
\therefore f\{f(x)\} = kf(x) = k^2x =a^{2/n} x
0:0:2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page