Processing math: 63%

CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 7 - MCQExams.com

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x))
  • f(a)=g(c)
  • f(b)=g(b)
  • f(d)=g(b)
  • f(x)=g(a)
The inverse of the function f(x)=log(x2+3x+1),xϵ[1,3], assuming it to be an onto function, is
  • 3+5+4ex2
  • 3±5+4ex2
  • 35+4ex2
  • None of the above
Let f(x)=x33x+1. The number of different real solutions of f(f(x))=0
  • 2
  • 4
  • 5
  • 7
If f(x) and g(x) are two functions with g(x)=x1x and fg(x)=x31x3, then f(x) is equal to
  • 3x2+3
  • x21x2
  • 1+1x2
  • 3x2+3x4
 If f:RR, g:RR are defined byf(x)=5x3, g(x)=x2+3, then (gof1)(3)=
  • 253
  • 11125
  • 925
  • 25111
The inverse of the function y=5ln x is
  • x=y1ln5,y>0
  • x=yln5,y>0
  • x=y1ln5,y<0
  • x=5lny,y>0
If f(x)=2x3+7x5 then f1(4) is
  • Equal to 1
  • Equal to 2
  • Equal to 1/3
  • Non existent
f,g:RR are functions such that f(x)=3xsin(πx2),g(x)=x3+2xsin(πx2)
The value of ddxf1(g1(x))x=12 is equal to
  • 230+x
  • 230x
  • 23(28π)
  • 23(28+π)
If f:RR and g:RR are defined f(x)=x[x] and g(x)=[x]xϵR,f(g(x)).
  • x
  • 0
  • f(x)
  • g(x)
Let f:AB be a function defined as f(x)=x1x2, where A=R{2} and B=R{1}. Then f is :
  • invertible and f1(y)=2y+1y1
  • invertible and f1(y)=3y1y1
  • not invertible
  • invertible and f1(y)=2y1y1
If f(x) is a real valued function, then which of the following is one-one function?
  • f(x)=e|x|
  • f(x)=|ex|
  • f(x)=sinx
  • f(x)=|sinx|
If A={1,2,3} and B={4,5} then the number of function f:AB which is not onto is ______
  • 2
  • 6
  • 8
  • 4
If f:RR,g:RR are defined by f(x)=5x3,g(x)=x2+3, then, (gof1)(3)=
  • 253
  • 11125
  • 925
  • 25111
Let f:Ab be a function defined by f(x) =1x2
  • f(x) is one-one if A =[0,1]
  • f(x) is onto if B = [0,1]
  • f(x) is one-one if A =[-1 , 0]
  • f(x) is onto if B = [-1,1]
If f:RR,f(x)={1x>00x=01x<0 and g:RR,g(x)=[x], then (fg)(π) is:
  • π
  • 0
  • 1
  • 1
The inverse of the function y=exexex+ex is
  • 12 log1+x1x
  • 12 log2+x2x
  • 12 log1x1+x
  • 2log(1+x)
Let f(x)=x2 and g(x)=x (where x>0),then
  • f(g(x))=x
  • g(f(x))=x
  • The least value of f(g(x))+1g(f(x)) is 2
  • The least value of g(f(x))+1f(g(x)) is 2
The solution of  (34)3,  when is a binary operation on Z such that: ab=a+b, is.
  • 10
  • 10
  • 16
  • 6
If g(x)=x2+x2 and 12gof(x)=2x2+5x+2, then f(x) is
  • 2x3
  • 2x+3
  • 2x2+3x+1
  • 2x23x1
Let f : RR and g : RR be two one-one and onto functions such that they are the mirror images of each other about the line y =If h(x) = f(x) + g(x), then h(0) equal to
  • 2
  • 4
  • 0
  • 1
If f:AA defined by f(x)=4x+36x4 where A=R23. Find f1
  • 2x
  • 4x+36x4
  • x2
  • None of these
If the binary operation is defined on a set of integers as ab=a+3b2 , then the value of 23 is
  • 27
  • 29
  • 2
  • None of these
Let f, g:RR be two functions defined as f(x)=|x|+x, g(x)=|x|x,xR. Then, find fog(x) 
  • ||x|x||x|x
  • ||x|x|+|x|x
  • ||x|x||x|+x
  • None of thesse
Consider set A=1,2,3,4 and set B=0,2,4,6,8, then the number of one-one function from set A to set B is ?
  • 5
  • 24
  • 120
  • None of these
The function on N as
 ab=(ab)2 is a binary operator 
  • True
  • False
 If the binary operation is on set of  integers Z is defined as
ab=a+2b2 , then the value of (83)2
  • 26
  • 22
  • 32
  • 34
If f(x)=2x+5 and g(x)=x2+1 be two real function , then value of fog at x=1
  • 9
  • 6
  • 5
  • 4
If g(f(x))=|sinx| and f(g(x))=(sinx)2 , then 
  • f(x)=sin2x.g(x)=x
  • f(x)=sinx,g(x)=|x|
  • f(x)=x2,g(x)=sinx
  • f and g can not be determined
Let f:RR be defined by f(x)=x23x+4 for all xϵR, then f1(2) is 
  • 2
  • 1
  • Not defined
  • 12
Let f(x+1x)=x2+1x2(x0), then f(x)=
  • x2
  • x21
  • x22
  • N.O.T
The set onto which the derivative of the function f(x)=x(\log x-1) maps the range [1,\infty ) is
  • \left[1,\infty \right)
  • \left( e,\infty \right)
  • \left[e,\infty \right)
  • \left( 0,0 \right)
Let E=\{1, 2, 3, 4\} and F=\{1, 2\} then the number of onto functions from E to F is
  • 14
  • 16
  • 12
  • 8
Let f\left( x \right) ={ x }^{ 2 },g\left( x \right) ={ 2 }^{ x }, then solution set of fog\left( x \right) =gof\left( x \right) is
  • R
  • \left\{ 0 \right\}
  • \left\{ 0,2 \right\}
  • None of these
If f\left( x \right) =\begin{cases} 2+x,\quad x\ge 0 \\ 2-x,\quad x<0 \end{cases} then f\left( f\left( x \right)  \right) is given by
  • f\left( f\left( x \right) \right) =\begin{cases} 2+x,\quad x\ge 0 \\ 4-x,\quad x<0 \end{cases}
  • f\left( f\left( x \right) \right) =\begin{cases} 2+x,\quad x\ge 0 \\ 2-x,\quad x<0 \end{cases}
  • f\left( f\left( x \right) \right) =\begin{cases} 4+x,\quad x< 0 \\ x,\quad x\ge 0 \end{cases}
  • f\left( f\left( x \right) \right) =\begin{cases} 4+x,\quad x\ge 0 \\ x,\quad x<0 \end{cases}
Let f\left[-1, \dfrac{-1}{2}\right] \to [-1, 1] is defined by f(x) = 4x^3 - 3x, then f^{-1} (x) = ____ .
  • \cos \left(\dfrac{1}{3}\cos^{-1} x\right)
  • \cos \left(3\cos^{-1} x\right)
  • \sin \left(\dfrac{1}{3}\sin^{-1} x\right)
  • \cos \left(\dfrac{2\pi}{3}+\dfrac{1}{3} \cos^{-1} x\right)
If : f(x) = 5 {x}^{2}, g(x) = 3x^{4}, then : (fog) (-1) = 
  • 45
  • -54
  • -32
  • -64
Let f:X \to \left[ {1,\,27} \right] be  a function by f\left( x \right) = 5\sin x + 12\cos x + 14. The set X so that f is one-one and onto is 
  • \left[ { - \pi /2,\pi /2\,} \right]
  • \left[ {0,\,\pi } \right]
  • \left[ {0,\,\pi /2} \right]
  • non of these
For a,\ b\ \in \ R-\left\{ 0 \right\}, let f(x)=ax^{2}+bx+a satisfies f\left(x+\dfrac{7}{4}\right)=f\left(\dfrac{7}{4}-x\right) \forall \ x\ \in\ R.
Also the equation f(x)=7x+a has only one real distinct solution. The minimum value of f(x) in \left[0,\dfrac{3}{2}\right] is equal to
  • \dfrac{-33}{8}
  • 0
  • 4
  • -2
If f\left( x \right) = (1 - x) , x \in \left[ { - 3,3} \right] , then the domain of f\left( {f\left( x \right)} \right) is
  • \left[ { - 2,3} \right]
  • \left( { - 2,3} \right)
  • \left[ { - 2,3]} \right.
  • ( - 2,3]
If f(g(x))=5x+2 and g(x)=8x then f(x)=
  • \frac{5}{8}x+2.
  • \frac{8}{5}x+2.
  • \frac{5}{8}x-2.
  • 8x-2
  • 5x-2
Let g\left( x \right) =1+x-\left[ x \right]  and f\left( x \right) =\begin{cases} -1,x<0 \\ 0,x=0 \\ 1,x>0 \end{cases} Then for all x,f\left( g\left( x \right) \right)  is equal to (where \left[ . \right]  represents the greatest integer function)
  • x
  • 1
  • f\left( x \right)
  • g\left( x \right)
Let f:(2,3) \rightarrow (0,1) be defined by f(x)=x-[x] then f^{-1}(x) equals

  • x-2
  • x+1
  • x-1
  • x+2
If f(x)=\frac{x}{\sqrt{1-x^{2}}} and g(x) = f(x)=\frac{x}{\sqrt{1+x^{2}}} , then (fog)(x) =
  • f(x)=\frac{x}{\sqrt{1-x^{2}}}
  • f(x)=\frac{x}{\sqrt{1+x^{2}}}
  • x^{2}
  • x
Let f:X\rightarrow Y be an invertible  function. Then f has unique inverse.
  • True
  • False
If f:R \rightarrow R, f(x)=2x-1 and g; R \rightarrow R, g(x)=x^{2}+2, then (gof)(x) equals-
  • 2x^{2}-1
  • (2x-1)^{2}
  • 2x^{2}+3
  • 4x^{2}-4x+3
Let f(x)=\dfrac{1}{x^{2}} for x\ge 1, and g(x) is its reflection in the line mirror y=x, then function h(x)=\begin{cases} f\left( x \right)  & x\ge 1 \\ g\left( x \right)  & 0<x<1 \end{cases}, is
  • derivable at x=1
  • continuous at x=1
  • not derivable at x=1
  • not continuous at x=1
If f(x)=\begin{cases} x+1 & x\epsilon \left[ -1,0 \right]  \\ { x }^{ 2 }+1 & x\epsilon \left( 0,1 \right)  \end{cases}, then the value of \dfrac{f^{-1}(0)+f^{-1}(1)+f^{-1}(2)}{f(-1)+f(0)+f(1)} is-
  • 0
  • 1
  • 2
  • \dfrac{1}{3}
The last three digits, if (12345956)_{10} is expressed in binary system.
  • 110
  • 210
  • 100
  • 010
If f ( x ) = \left( a - x ^ { n } \right) ^ { 1 / n } where a > 0 and } n is a positive integer then( f o f ) ( x ) is
  • f ( x )
  • x
  • 0
  • 1
if f\left( x \right) = \log \left( {\dfrac{{1 +x}}{{1 - x}}} \right) and g\left( x \right) = \dfrac{{3x + {x^3}}}{{1 + 3{x^2}}} then \left( {f(g(x)))} \right) is equal to
  • - f\left( x \right)
  • 3f\left( x \right)
  • {\left( {f\left( x \right)} \right)^3}
  • f\left( {3x} \right)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers