Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

CBSE Questions for Class 12 Commerce Maths Three Dimensional Geometry Quiz 1 - MCQExams.com

If a line makes an angle of π/4 with the positive direction of each of x-axis and y-axis, then the angle that the line makes with the positive direction of the z-axis is
  • π6
  • π3
  • π4
  • π2
A line AB in three-dimensional space makes angles 45o and 120o with the positive x-axis and the positive y-axis respectively. lf AB makes an acute angle e with the positive z-axis, then e equals
  • 45o
  • 60o
  • 75o
  • 30o
A line makes the same angle Θ, with each of the x and z axis. If the angle β, which it makes with y-axis, is such that sin2β=3sin2Θ, then cos2Θ equals: 
  • 23
  • 15
  • 35
  • 25
A line in the 3-dimensional space makes an angle θ(0<θπ2) with both the x and y axes, then the set of all values of θ is the interval :
  • [0,π4]
  • [π6,π3]
  • [π4,π2]
  • [π3,π2]
The points with position vectors 60ˆi+3ˆj, 40ˆi8ˆj, aˆi52ˆj are collinear if
  • a=40
  • a=40
  • a=20
  • None of these
The vector equation r=i2jk+t(6jk) represents a straight line passing through the points:
  • (0,6,1) and (1,2,1)
  • (0,6,1) and (1,4,2)
  • (1,2,1) and (1,4,2)
  • (1,2,1) and (0,6,1)
A line makes the same angle θ with each of the X and Z-axes. If the angle β, which it makes with Y-axis, is such that sin2β=3sin2θ, then cos2θ equals
  • 25
  • \dfrac {1}{5}`
  • \dfrac {3}{5}
  • \dfrac {2}{3}
The points with position vectors 60i + 3j,  40i -8j and ai -52j are collinear if
  • a = -40
  • a = 40
  • a = 20
  • None of these
Equation to a line parallel to the vector 2\hat{i}-\hat{j}{+}\hat{k} and passing through the point \hat{i}+\hat{j}{+\hat{k}}
  • (x-1)\hat{i}+(y-1)\hat{j}+(z -1)\hat{k}=\lambda(2\hat{i}-\hat{j}+\hat{k})
  • (x-2)\hat{i}+(y-1)\hat{j}+(z+1)\hat{k}=\lambda(\hat{i}+\hat{j}+\hat{k})
  • 2x\hat{i}-y\hat{j}+z\hat{k}=\lambda(\hat{i}+\hat{j}+\hat{k})
  • (x-1)\hat{i}+(y+1)\hat{j}+(z+1)\hat{k}=\lambda(\hat{i}+\hat{j}+\hat{k})
The direction ratios of the diagonal of the cube joining the origin to the opposite corner are (when the 3 concurrent edges of the cube are coordinate axes)
  • \displaystyle \dfrac{2}{\sqrt{3}},\dfrac{2}{3},\dfrac{2}{3}
  • 1,1,1
  • 2,-2,1
  • 1,2,3

If the direction cosines of a line are \left(\displaystyle \dfrac{1}{c},\dfrac{1}{c},\dfrac{1}{c}\right) then c=______

  • 3
  • 1/\sqrt{3}
  • \pm\sqrt{3}
  • \displaystyle \pm\dfrac{1}{\sqrt{3}}
l = m =n = 1 represents the direction cosines of 

  • x-axis
  • y-axis
  • z-axis
  • none of these
 List IList II 
1) d.c's of x - axisa) (1,1,1) 
2) d.c's of y - axisb)\left(\displaystyle \frac{]}{\sqrt{3}}\frac{]}{\sqrt{3}},\frac{]}{\sqrt{3}}\right)
3) d.c's of z - axisc) (1,0,0)
4) d.c's of a line makes equal angles with axesd) (0,1,0)
 e) (0,0,1)
The correct order for 1, 2, 3, 4 is
  • c,d,e,b
  • a,b,c,e
  • c,d,a,b
  • b,c,a,e
If P(x, y, z) moves such that x=0, z=0, then the locus of P is the line whose d.cs are
  • y-axis
  • 1, 0, 0
  • 0, 1, 0
  • 0, 0, 0
If P is a point on the line passing through the point A with position vector 2\overline{i}+\overline{j}-3\overline{k} and parallel to \overline{i}+2\overline{j}+\overline{k} such that AP=2\sqrt{6} then the position vector of P is
  • 4\overline{i}+5\overline{j}+\overline{k}
  • 3\overline{j}+5\overline{k}
  • 4\overline{i}+5\overline{j}-\overline{k}
  • 3\overline{j}-4\overline{k}
If the points A(\overline{a}), B(\overline{b}), C(\overline{c}) satisfy the relation 3\mathrm{a}-8\mathrm{b}+5\mathrm{c}=0 then the points are
  • Vertices of an equilateral triangle
  • Collinear
  • Vertices of a right angled triangle
  • Vertices of a isosceles triangle
Cosine of the angle between two diagonals of a cube is equal to
  • \displaystyle \frac{2}{\sqrt 6}
  • \displaystyle \frac{1}{3}
  • \displaystyle \frac{1}{2}
  • None of these
Area of \displaystyle \Delta ABC is
  • 45 squares units
  • 55 squares units
  • 65 squares units
  • none of these
A vector is equally inclined to the x-axis, y-axis and z-axis respectively, its direction cosines are
  • < \dfrac{1}{\sqrt{3}}, \dfrac{1}{\sqrt{3}}, \dfrac{1}{\sqrt{3}}>
  • < -\dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}}>
  • < \dfrac{1}{\sqrt{3}}, \dfrac{1}{\sqrt{3}}, \dfrac{1}{\sqrt{3}}> or < -\dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}}>
  • None of these
What are the DR's of vector parallel to \left( 2,-1,1 \right) and \left( 3,4,-1 \right) ?
  • \left( 1,5,-2 \right)
  • \left( -2,-5,2 \right)
  • \left( -1,5,2 \right)
  • \left( -1,-5,-2 \right)
The direction cosines of the vectors 2\vec {i} + \vec {j} - 2\vec {k} is equal to
  • \dfrac {2}{3}, \dfrac {1}{3}, -\dfrac {2}{3}
  • \dfrac {2}{3}, \dfrac {1}{3}, \dfrac {2}{3}
  • \dfrac {1}{3}, \dfrac {2}{3}, -\dfrac {2}{3}
  • \dfrac {2}{3}, \dfrac {2}{3}, \dfrac {1}{3}
The Cartesian equation of the plane passing through the point (3, -2, -1) and parallel to the vectors \overline {b} = \overline {i} - 2\overline {j} + 4\overline {k} and \overline {c} = 3\overline {i} + 2\overline {j} - 5\overline {k} is
  • 2x - 17y - 8z + 63 = 0
  • 3x + 17y + 8z - 36 = 0
  • 2x + 17y + 8z + 36 = 0
  • 3x - 16y + 8z - 63 = 0
A straight line is equally inclined to all the three coordinate axes. Then an angle made by the line with the y-axis is
  • \cos^{1}\left (\dfrac {1}{3}\right )
  • \cos^{1}\left (\dfrac {1}{\sqrt {3}}\right )
  • \cos^{1}\left (\dfrac {2}{\sqrt {3}}\right )
  • \dfrac {\pi}{4}
If the foot of the perpendicular from (0, 0, 0) to a plane is (1, 2, 3), then the equation of the plane is
  • 2x + y + 3z = 14
  • x + 2y + 3z = 14
  • x + 2y + 3z + 14 = 0
  • x + 2y - 3z = 14
A line makes angles \alpha, \beta, \gamma, \delta with four diagonals of a cube. then  \displaystyle \sum_{r\epsilon \{\alpha, \beta, \gamma, \delta\}} cos^2(r)=
  • \dfrac{-4}{3}
  • \dfrac{4}{3}
  • \dfrac{3}{4}
  • \dfrac{3}{5}
Find vector equation for the line passing through the points 3\overline i+4\overline j-7\overline k,\overline i-\overline j+6\overline k.

  • \overline r=(3-2\lambda)\overline i+(4-5\lambda)\overline j+(-7+13\lambda)\overline k
  • \overline r=(2\lambda)\overline i+(4+5\lambda)\overline j+(-7-13\lambda)\overline k
  • \overline r=(3-2\lambda)\overline i-(4-5\lambda)\overline j+(-7+13\lambda)\overline k
  • \overline r=(3-2\lambda)\overline i+(4-5\lambda)\overline j-(-7+13\lambda)\overline k
Find vector equation of line passing through  (1,4,1),(1,2,2).
  • \overline r=\overline i+(4-2\lambda)\overline j+(1+\lambda)\overline k
  • \overline r=\overline i+(4+2\lambda)\overline j+(1+\lambda)\overline k
  • \overline r=\overline i-(4-2\lambda)\overline j+(1+\lambda)\overline k
  • \overline r=\overline i+(4-2\lambda)\overline j+(1-\lambda)\overline k
The projections of a directed line segment on the coordinate axes are 12, 4, 3 respectively.
What are the direction cosines of the line segment?
  • (12/13, 4/13, 3/13)
  • (12/13, -4/13, 3/13)
  • (12/13, -4/13, -3/13)
  • (-12/13, -4/13, 3/13)
From the point P(3, -1, 11), a perpendicular is drawn on the line L given by the equation \dfrac {x}{2} = \dfrac {y - 2}{3} = \dfrac {z - 3}{4}. Let Q be the foot of the perpendicular.
What are the direction ratios of the line segment PQ?
  • (1, 6, 4)
  • (-1, 6, -4)
  • (-1, -6, 4)
  • (2, -6, 4)
Find the vector equation of line joining the points (2,1,3) and (-4,3,-1)
  • \overline r=2(1-3\lambda)\overline i-(1+2\lambda)\overline j-(3-4\lambda)\overline k
  • \overline r=2(1-3\lambda)\overline i-(1+2\lambda)\overline j+(3-4\lambda)\overline k
  • \overline r=2(1-3\lambda)\overline i+(1+2\lambda)\overline j+(3-4\lambda)\overline k
  • \overline r=2(1+3\lambda)\overline i+(1+2\lambda)\overline j+(3+4\lambda)\overline k
The vector equation of line passing through two points A(x_1,y_1,z_1),B(x_2,y_2,z_2) is
  • \vec r=\vec a-\vec b
  • \vec r=\vec a +\lambda(\vec b-\vec a)
  • \vec r=\vec a+\lambda\vec b
  • \vec r=\vec a+\vec b
Which of the following represents direction cosines of the line:
  • 0,\cfrac { 1 }{ \sqrt { 2 } } ,\cfrac { 1 }{ 2 }
  • 0,\cfrac { -\sqrt { 3 } }{ 2 } ,\cfrac { 1 }{ \sqrt 2  }
  • 0,\cfrac { \sqrt { 3 } }{ 2 } ,\cfrac { 1 }{  { 2 } }
  • \cfrac { 1 }{ 2 } ,\cfrac { 1 }{ 2 } ,\cfrac { 1 }{ 2 }
A line passes through the points (6, -7, -1) and (2, -3, 1). What are the direction ratios of the line ? 
  • (4, -4, 2)
  • ( 4, 4, 2 )
  • ( -4, 4, 2 )
  • ( 2, 1, 1 )
The length of perpendicular from the origin to the plane which makes intercepts \dfrac{1}{3},\dfrac{1}{4},\dfrac{1}{5} respectively on the coordinate axes is 
  • \dfrac{1}{\sqrt[5]{2}}
  • \dfrac{1}{10}
  • \displaystyle\sqrt[5]{2}
  • 5
ABCD is a trapezium in which AB and CD are parallel.that the mid points of the sides AB ,CD and the intersection of the diagonals are collinear.
  • True
  • False
If points (1,2), (3 , 5) and (0 , b ) are collinear the value of b is  
  • \dfrac{1}{2}
  • \dfrac{7}{2}
  • 2
  • -1
The direction angles of the line x = 4z + 3, y = 2 - 3z are \alpha, \beta and \gamma, then \cos \alpha + \cos \beta + \cos \gamma = ________.
  • \dfrac {2}{\sqrt {26}}
  • \dfrac {8}{\sqrt {26}}
  • 1
  • 2
The angle between the lines whose direction cosines are \left( \dfrac {\sqrt{3}}{4}, \dfrac {1}{4}, \dfrac {\sqrt{3}}{2} \right) and \left( \dfrac {\sqrt{3}}{4}, \dfrac {1}{4}, -\dfrac {\sqrt{3}}{2} \right) is :
  • \pi
  • \dfrac {\pi}{2}
  • \dfrac {\pi}{3}
  • \dfrac {\pi}{4}
If a line makes the angles \alpha , \beta and \gamma with the axes, then what is the value of 1+\cos 2\alpha +\cos 2\beta+\cos 2\gamma equal to ?
  • -1
  • 0
  • 1
  • 2
Direction cosines of the line \cfrac { x+2 }{ 2 } =\cfrac { 2y-5 }{ 3 } ,z=-1 are ____
  • \cfrac { 4 }{ 5 } ,\cfrac { 3 }{ 5 } ,0
  • \cfrac { 3 }{ 5 } ,\cfrac { 4 }{ 5 } ,\cfrac { 1 }{ 5 }
  • -\cfrac { 3 }{ 5 } ,\cfrac { 4 }{ 5 } ,0
  • \cfrac { 4 }{ 5 } ,-\cfrac { 2 }{ 5 } ,\cfrac { 1 }{ 5 }
The following lines are \hat { r } =\left( \hat { i } +\hat { j }  \right) +\lambda \left( \hat { i } +2\hat { j } -\hat { k }  \right) +\mu \left( -\hat { i } +\hat { j } -\hat { 2k }  \right)
  • collinear
  • skew-lines
  • co-planar lines
  • parallel lines
L and M are two points with position vectors 2\overline { a } -\overline { b } and a+2\overline { b } respectively. The position vector of the point N which divides the line segment LM in the ratio 2:1 externally is
  • 3\overline { b }
  • 4\overline { b }
  • 5\overline { b }
  • 3\overline { a } +4\overline { b }
If the normal of the plane makes an angles \dfrac {\pi}{4}, \dfrac {\pi}{4} and \dfrac {\pi}{2} with positive X-axis, Y-axis and Z-axis respectively and the length of the perpendicular line segment from origin to the plane is \sqrt {2}, then the equation of the plane is ________.
  • x + y + z = \sqrt {2}
  • x + y + z = 1
  • x + y = 2
  • x = \sqrt {2}
Direction cosines of ray from P(1, -2, 4) to Q(-1, 1, -2) are
  • -2, 3, -6
  • 2, -3, 6
  • 2, 3, 6
  • \dfrac{-2}{7}, \dfrac{3}{7}, \dfrac{-6}{7}
If the lines x=1+a,y=-3-\lambda a,z=1+\lambda a and x=\cfrac { b }{ 2 } ,y=1+b,z=2-b are coplanar, then \lambda is equal to
  • -3
  • 2
  • 1
  • -2
Vector equation of the line 6x - 2 = 3y + 1 = 2z - 2 is 
  • \vec r = \hat i + \hat j + 3\hat k + \lambda (\hat i - 2\hat j + 3\hat k)
  • \vec r = \hat i - 2\hat j + 3\hat k + \lambda \left( {\frac{1}{3}\hat i + \frac{1}{3}\hat j + \hat k} \right)
  • \vec r = \frac{1}{3}\hat i - \frac{1}{3}\hat j\, + \hat k + \lambda (\hat i + 2\hat j + 3\hat k)
  • \vec r = - 2\hat i + \hat j\, - 2\hat k + \lambda (6\hat i + 3\hat j + 2\hat k)
The points with position vectors 60\hat{i}+3\hat{j}, 40\hat{i}-8\hat{j}, a\hat{i}-52\hat{j}  are collinear if
  • a=-40
  • a=40
  • a=20
  • None\ of\ these
Direction cosines l, m, n of two lines are connected by the equation l-5m+3n=0 and 7l^{2}+5m^{2}-3n^{2}=0. The direction cosines of one of the lines are
  • -1/\sqrt{6},1/\sqrt{6},2/\sqrt{6}
  • 2/\sqrt{6},1/\sqrt{6},-1/\sqrt{6}
  • 1/\sqrt{6},2/\sqrt{6},-1/\sqrt{6}
  • 1/\sqrt{6},1/\sqrt{6},2/\sqrt{6}
The direction ratios of the line joining the points A(4,-3,7) and B(1,3,5) are:
  • (5,0,12)
  • (3,-6,2)
  • (5,6,2)
  • \left(\dfrac{5}{2},0,6\right)
Can \dfrac{1}{\sqrt{3}}, \dfrac{2}{\sqrt{3}}, \dfrac{-2}{\sqrt{3}} be the direction cosines of any directed line?
  • Yes
  • No
  • Cannot say
  • None of these
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers