Explanation
Since line makes an angle of π4 with positive direction of each of x-axis and y-axis, therefore α=π4,β=π4
We know that,
cos2α+cos2β+cos2γ=1
⇒cos2π4+cos2π4+cos2γ=1
⇒12+12+cos2γ=1
⇒cos2γ=0
⇒γ=900
If the direction cosines of a line are (1c,1c,1c) then c=______
Let the vector v make an angle α with each of the three axes, then direction cosine of v are
<cosα,cosα,cosα>
⇒cos2α=13
⇒cosα=±1√3
Hence, direction cosine of v are
<1√3,1√3,1√3> or
<−1√3,−1√3,−1√3>
6x−2=3y+1=2z−2
x−1316=y+1313=z−112
→r=→a+λ→b
a=(13,−13,1),b=(16,13,12)
velueeqnis=(1,2,3)
→ r=13ˆi−13ˆj+ˆk+λ(16ˆi+13ˆj+12ˆk)
→ r=13ˆi−13ˆj+ˆk+λ(ˆi+2ˆj+3ˆk)
Please disable the adBlock and continue. Thank you.