Explanation
Since line makes an angle of π4 with positive direction of each of x-axis and y-axis, therefore α=π4,β=π4
We know that,
cos2α+cos2β+cos2γ=1
⇒cos2π4+cos2π4+cos2γ=1
⇒12+12+cos2γ=1
⇒cos2γ=0
⇒γ=900
If the direction cosines of a line are \left(\displaystyle \dfrac{1}{c},\dfrac{1}{c},\dfrac{1}{c}\right) then c=______
Let the vector v make an angle \alpha with each of the three axes, then direction cosine of v are
<\cos\,\alpha, \cos\,\alpha, \cos\,\alpha>
\Rightarrow \cos^2\alpha =\dfrac {1}{3}
\Rightarrow \cos\,\alpha=\pm \dfrac{1}{\sqrt{3}}
Hence, direction cosine of v are
<\dfrac{1}{\sqrt{3}}, \dfrac{1}{\sqrt{3}}, \dfrac{1}{\sqrt{3}}> or
<-\dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}}>
6x - 2 = 3y + 1 = 2z - 2
\dfrac{{x - \dfrac{1}{3}}}{{\dfrac{1}{6}}} = \dfrac{{y + \dfrac {1}{3}}}{{{\dfrac {1}{3}}}} = \dfrac{{z - 1}}{{\dfrac{1}{2}}}
\overrightarrow r = \overrightarrow a + \lambda \,\overrightarrow b
a = \left( {{1 \over 3}, - {1 \over 3},1} \right),b = \left( {{1 \over 6},{1 \over 3},{1 \over 2}} \right)
velue\,e{q^n}\,is\, = \left( {1,2,3} \right)
\mathop {{\text{ }}r}\limits^ \to = \dfrac{1}{3}\widehat i - \dfrac{1}{3}\widehat j + \widehat k + \lambda \left( {\dfrac{1}{6}\widehat i + \dfrac{1}{3}\widehat j + \dfrac{1}{2}\widehat k} \right)
\mathop {{\text{ }}r}\limits^ \to = \dfrac{1}{3}\widehat i - \dfrac{1}{3}\widehat j + \widehat k + \lambda \left( {\widehat i + 2\widehat j + 3\widehat k} \right)
Please disable the adBlock and continue. Thank you.