Processing math: 0%

CBSE Questions for Class 12 Commerce Maths Three Dimensional Geometry Quiz 10 - MCQExams.com

The direction cosine of a line equally inclined to the axes are
  • 13,13,13
  • 13,13,13
  • 13,13,13
  • none of these
If l_1, m_1, n_1 and l_2, m_2, n_2 be the DC's of two concurrent lines, the direction cosines of the line bisecting the angles between them are proportional to 
  • l_1 l_2, m_1 m_2, n_1, n_2
  • l_1m_2, l_1 n_2, l_1 n_3
  • l_1 + l_2, m_1 + m_2, n_1 + n_2
  • None of these
The angle between the lines \displaystyle 2x=3y=-z\:and\:6x=-y=-4z is 
  • \displaystyle \frac{\pi}{2}
  • 0
  • \displaystyle \frac{\pi}{6}
  • \displaystyle \frac{\pi}{4}
The direction cosines of a line whose equations are \dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-2}{-3}
  • \dfrac{1}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{2}{\sqrt{14}}
  • \dfrac{2}{\sqrt{29}},\dfrac{4}{\sqrt{29}},\dfrac{-3}{\sqrt{29}}
  • \dfrac{1}{\sqrt{29}},\dfrac{-3}{\sqrt{29}},\dfrac{2}{\sqrt{29}}
  • 2,4,-3
If the foots of the perpendicular from the origin to a plane is (a,b,c), the equation of the plane is
  • \displaystyle \frac { x }{ a } +\frac { y }{ b } +\frac { z }{ c } =3
  • ax+by+cz=3
  • ax+by+cz={ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }
  • ax+by+cz=a+b+c

If equation of the plane through the straight line \displaystyle \dfrac{x -1}{2}=\dfrac{y +2}{-3}=\dfrac{z}{5} and perpendicular to the plane x - y + z + 2 = 0 \: is \:ax- by + cz + 4 = 0, then find the value of   a^2 + b^2 + c

  • 12
  • 14
  • 16
  • 18
if a line makes angles \alpha,\beta,\gamma,\delta with four diagonals a cube then value of sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma+sin^{2}\delta equals 
  • 2
  • \displaystyle \frac{4}{3}
  • \displaystyle \frac{8}{3}
  • 1
Three points whose position vectors are \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} will be collinear if
  • \lambda \overrightarrow{a}+\mu \overrightarrow{b}=\left ( \lambda +\mu \right )\overrightarrow{c}
  • \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c}+\overrightarrow{c}\times \overrightarrow{a}=\overrightarrow{0}
  • \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}=0
  • None of these
Determine the equation of the plane on which the co - ordinates of the foot of perpendicular drawn from origin O is the point \displaystyle P\left ( \alpha ,\beta ,\gamma  \right ).
  • \displaystyle \alpha^{2} x+\beta^{2} y+\gamma^{2} z=\alpha ^{3}+\beta ^{3}+\gamma ^{3}
  • \displaystyle \alpha x+\beta y+\gamma z=\alpha ^{2}+\beta ^{2}+\gamma ^{2}
  • \displaystyle \alpha^{2} x+\beta^{2} y+\gamma^{2} z=\alpha +\beta +\gamma
  • none of these
If \displaystyle l_{1},m_{1},n_{1} and \displaystyle l_{2},m_{2},n_{2} are D.C.'s of the two lines inclined to each other at an angle \displaystyle \theta , then the D. C.'s of the internal and external bisectors of the angle between these lines are
  • \displaystyle \frac{l_{1}+l_{2}}{2\sin \left ( \theta /2 \right )},\, \frac{m_{1}+m_{2}}{2\sin \left ( \theta /2 \right )},\, \frac{n_{1}+n_{2}}{2\sin \left ( \theta /2 \right )}
  • \displaystyle \frac{l_{1}+l_{2}}{2\cos \left ( \theta /2 \right )},\, \frac{m_{1}+m_{2}}{2\cos \left ( \theta /2 \right )},\, \frac{n_{1}+n_{2}}{2\cos \left ( \theta /2 \right )}
  • \displaystyle \frac{l_{1}-l_{2}}{2\sin \left ( \theta /2 \right )},\, \frac{m_{1}-m_{2}}{2\sin \left ( \theta /2 \right )},\, \frac{n_{1}-n_{2}}{2\sin \left ( \theta /2 \right )}
  • \displaystyle \frac{l_{1}-l_{2}}{2\cos \left ( \theta /2 \right )},\, \frac{m_{1}-m_{2}}{2\cos \left ( \theta /2 \right )},\, \frac{n_{1}-n_{2}}{2\cos \left ( \theta /2 \right )}
O is the origin and A is the point \displaystyle \left ( a,b,c \right ). Find the direction cosines of the join of OA and deduce the equation of the plane through A at right angles to OA.
  • \displaystyle ax+by+cz=a^{2}-b^{2}-c^{2}
  • \displaystyle ax+by+cz=a^{2}+b^{2}+c^{2}
  • \displaystyle ax-by-cz=a^{2}+b^{2}+c^{2}
  • \displaystyle ax-by-cz=a^{2}-b^{2}-c^{2}
The direction cosines of the lines bisecting the internal angle \theta between the lines whose direction cosines are l_{1},m_{1},n_{1} and l_{2},m_{2},n_{2} are
  • < l_{1}+l_{2},m_{1} +m_{2},n_{1}+n_{2}>
  • \displaystyle < \frac{l_{1}+l_{2}}{2\sin \frac{\theta}{2}},\frac{m_{1}+m_{2}}{2\sin \frac{\theta}{2}},\frac{n_{1}+n_{2}}{2\sin \frac{\theta}{2}}>
  • \displaystyle < \frac{l_{1}+l_{2}}{2\cos \frac{\theta}{2}},\frac{m_{1}+m_{2}}{2\cos \frac{\theta}{2}},\frac{n_{1}+n_{2}}{2\cos \frac{\theta}{2}}>
  • none of these
The projection of a directed line segment on the co-ordinate axes are 12, 4, 3, the DC's of the line are
  • \displaystyle \frac {-12}{13}, \frac {-4}{13}, \frac {-3}{13}
  • \displaystyle \frac {12}{13}, \frac {4}{13}, \frac {3}{13}
  • \displaystyle \frac {12}{13}, \frac {-4}{13}, \frac {3}{13}
  • \displaystyle \frac {12}{13}, \frac {4}{13}, \frac {-3}{13}
The projections of a line segment on x, y, z axes are 12, 4, 3. The length and the direction cosines of the line segments are
  • \displaystyle 13,< 12/13, 4/13, 3/13>
  • \displaystyle 19,< 12/19, 4/19, 19>
  • \displaystyle 11,< 12/11, 4/11, 3/11>
  • None of these
The line \displaystyle \frac{x - 1}{2} = \frac{y}{-1} = \frac{z + 2}{2} cuts the plane \displaystyle x + y + z = 1 at \displaystyle P. If the foot of the perpendicular from \displaystyle P to a point Q\displaystyle \left ( 3, \: -4, \: 1 \right ) on the plane S then the equation of the plane S is
  • \displaystyle 3x - 2y - z = 0
  • \displaystyle 2x - y + 2z = 12
  • \displaystyle 2x - 10y + 5z = 51
  • none of these
The projection of a line segment joining the points P\left ( x_{1},y_{1},z_{1}, \right ) and Q\left ( x_{1},y_{1},z_{1}, \right ) on another line whose DC's are l, m, n is given by
  • l\left ( x_{1}+x_{2} \right )+m\left (y _{2}+y_{2} \right )+n\left ( z_{1}+z_{2} \right )
  • \displaystyle 2\left [ \frac{\left ( lx_{2}+my_{2}+nz_{2} \right )}{2}-\frac{\left (lx_{1}+my_{1}+nz_{1} \right )}{2} \right ]
  • \displaystyle l\left ( x_{2}-x_{1} \right )+ m\left ( y_{2}-y_{1} \right )+n\left ( z_{2}-z_{1} \right )
  • \displaystyle \frac{x_{2}-x_{1}}{l}+\frac{y_{2}-y_{1}}{m}+\frac{z_{2}-z_{1}}{n}
If A , B and C are three collinear points, where A= i + 8 j - 5k , B  = 6i-2j and C= 9i + 4j - 3 k, then B divides AC in the ratio of :
  • \dfrac{5}{7}
  • \dfrac{5}{3}
  • \dfrac{2}{3}
  • None of these
If the position vectors of the points A, B, and C be i + j , i - j and ai + bj+ ck respective;y , then the points A, B and C are collinear if:
  • a = b = c = 1
  • a= 1 , b and c are arbitrary scalars
  • a =b= c= 0
  • c = 0 , a =1 and b is a arbitrary scalar.
The angle between the lines whose direction cosines are given by the equations {l}^{2}+{m}^{2}-{n}^{2}=0,l+m+n=0 is
  • \displaystyle\frac{\pi}{6}
  • \displaystyle\frac{\pi}{4}
  • \displaystyle\frac{\pi}{3}
  • \displaystyle\frac{\pi}{2}
If direction cosines of two lines are proportional to (2,3,-6) and (3,-4,5), then the acute angle between them is
  • \cos ^{ -1 }{ \left( \cfrac { 49 }{ 36 } \right) }
  • \cos ^{ -1 }{ \left( \cfrac { 18\sqrt { 2 } }{ 35 } \right) }
  • {96}^{o}
  • \cos ^{ -1 }{ \left( \cfrac { 18 }{ 35 } \right) }
If the median through A of a \triangle ABC having vertices A\equiv \left( 2,3,5 \right), B\equiv \left( -1,3,2 \right) and C\equiv \left( \lambda ,5,\mu  \right) is equally inclined to the axes, then 
  • \lambda =7
  • \mu=10
  • \lambda =10
  • \mu=7
Find the unit vectors perpendicular to the following pair of vectors:
2i+j+ki-2j+k
  • \displaystyle \frac{1}{\sqrt{35}}(3i-j-5k)
  • \displaystyle \frac{1}{\sqrt{35}}(3i+j-5k)
  • \displaystyle \frac{1}{\sqrt{27}}(i-j-5k)
  • \displaystyle \frac{1}{\sqrt{27}}(i-j+5k)
If the direction cosines of two lines are given by l+m+n=0 and l^2-5m^2+n^2=0, then the angle between them is
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{6}
  • \dfrac{\pi}{4}
  • \dfrac{\pi}{3}
The vector equation of the line \displaystyle L_{1} is \displaystyle a+\lambda \overline{b} then \displaystyle \overline{a} equals
  • \displaystyle -\hat{i}+2\hat{j}-\hat{k}
  • \displaystyle 2\hat{i}-\hat{j}+\hat{k}
  • \displaystyle 2\hat{i}-2\hat{j}+3\hat{k}
  • \displaystyle \hat{i}+2\hat{j}+3\hat{k}
The, position vector of the foot of the \perper drawn from origin to the plane is \displaystyle  4\hat{i}-2\hat{j}-5\hat{k} then equation of the plane is
  • \displaystyle \overline{r}.\left ( 4\hat{i}+2\hat{j}+5\hat{k} \right )=45
  • \displaystyle \overline{r}.\left ( 4\hat{i}-2\hat{j}-5\hat{k} \right )=45
  • \displaystyle \overline{r}.\left ( 4\hat{i}-2\hat{j}-5\hat{k} \right )+45=0
  • \displaystyle \overline{r}.\left ( 4\hat{i}+2\hat{j}-5\hat{k} \right )=37
If the points a(cos \alpha + i sin \alpha) , b(cos \beta + i sin \beta) and c(cos \gamma + isin \gamma) are collinear then the value of |z| is:  
( where {z = bc  \ sin(\beta-\gamma) + ca \ sin(\gamma-\alpha) + ab \ sin(\alpha - \beta) + 3i -4k} )
  • 2
  • 5
  • 1
  • None of these.
The angle between two diagonals of a cube is
  • \cos^{-1}\left (\dfrac {1}{\sqrt {3}}\right )
  • \cos^{-1}\left (\dfrac {1}{3}\right )
  • 30^{\circ}
  • 45^{\circ}
Equation of the plane through the mid-point of the line segment joining the points P(4, 5, -10), \,Q(-1, 2, 1) and perpendicular to PQ is
  • r. \left( \dfrac{}3{}2 \widehat i + \dfrac{7}{2} \widehat j - \dfrac{9}{2} \widehat k\right ) =45
  • r. (- \widehat i + 2 \widehat j + \widehat k) = \dfrac{135}{2}
  • r. (5 \widehat i + 3 \widehat j - 11 \widehat k) + \dfrac{135}{2} = 0
  • r. (4 \widehat i + 5 \widehat j - 10 \widehat k) = 85
  • r. (5\widehat i + 3 \widehat j - 11\widehat k) = \dfrac{135}{2}
If (2, -1, 3) is the foot of the perpendicular drawn from the origin to the plane, then the equation of the plane is
  • 2x + y - 3z + 6 = 0
  • 2x - y + 3z - 14 = 0
  • 2x - y + 3z - 13 = 0
  • None of these
The equation of the line parallel to \cfrac { x-3 }{ 1 } =\cfrac { y+3 }{ 5 } =\cfrac { 2z-5 }{ 3 } and passing through the point (1,3,5) in vector form, is:
  • \vec { r } =\left( \vec { i } +5\vec { j } +3\vec { k } \right) +t\left( \vec { i } +3\vec { j } +5\vec { k } \right)
  • \vec { r } =\left( \vec { i } +3\vec { j } +5\vec { k } \right) +t\left( \vec { i } +5\vec { j } +3\vec { k } \right)
  • \vec { r } =\left( \vec { i } +5\vec { j } +\cfrac { 3 }{ 2 } \vec { k } \right) +t\left( \vec { i } +3\vec { j } +5\vec { k } \right)
  • \vec { r } =\left( \vec { i } +3\vec { j } +5\vec { k } \right) +t\left( \vec { i } +5\vec { j } +\cfrac { 3 }{ 2 } \vec { k } \right)
What is the angle between the lines \cfrac { x-2 }{ 1 } =\cfrac { y+1 }{ -2 } =\cfrac { z+2 }{ 1 } and \cfrac { x-1 }{ 1 } =\cfrac { 2y+3 }{ 3 } =\cfrac { z+5 }{ 2 } =?
  • \cfrac { \pi }{ 2 }
  • \cfrac { \pi }{ 3 }
  • \cfrac { \pi }{ 6 }
  • None of the above
A plane mirror is placed at the origin so that the direction ratios of its normal are (1,-1,1). A ray of light, coming along the positive direction of the x-axis, strikes the mirror. The direction cosines of the reflected ray are
  • \cfrac { 1 }{ 3 } ,\cfrac { 2 }{ 3 } ,\cfrac { 2 }{ 3 }
  • -\cfrac { 1 }{ 3 } ,\cfrac { 2 }{ 3 } ,\cfrac { 2 }{ 3 }
  • -\cfrac { 1 }{ 3 } ,-\cfrac { 2 }{ 3 } ,-\cfrac { 2 }{ 3 }
  • -\cfrac { 1 }{ 3 } ,-\cfrac { 2 }{ 3 } ,\cfrac { 2 }{ 3 }
The equation of the plane passing through (1, -2, 4), (3, -4, 5) and perpendicular to yz-plane is.
  • 2y + z = 0
  • y + 2y + 6 = 0
  • y + 2y - 6 = 0
  • 3y + 2z - 2 = 0
L_{1} and L_{2} are two lines whose vector equations are
L_{1} = \vec {r} = \lambda [(\cos \theta + \sqrt {3})\hat {i} + (\sqrt {2}\sin \theta)\hat {j} + (\cos \theta - \sqrt {3})\hat {k}]
L_{2} = \vec {r} = \mu (a\hat {i} + b\hat {j} + c\hat {k}), where \lambda and \mu are scalars and \alpha is the acute angle between L_{1} and L_{2}. If the angle '\alpha' is independent of \theta then the value of '\alpha' is
  • \dfrac {\pi}{6}
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{3}
  • None of these
If points P\left( 4,5,x \right) ,Q\left( 3,y,4 \right) and R\left( 5,8,0 \right) are colinear, then the value of x+y is
  • -4
  • 3
  • 5
  • 4
If \alpha,\beta,\gamma\in[0,2\pi], then the sum of all possible values of \alpha, \beta,\gamma if \sin \alpha=-\dfrac{1}{\sqrt{2}}, \cos \beta=-\dfrac{1}{2}, \tan \gamma=-\sqrt{3}, is
  • \dfrac{22\pi}{3}
  • \dfrac{21\pi}{3}
  • \dfrac{20\pi}{3}
  • 8\pi
If\,\ell ,\,m,\,n\,\& \,\ell ',\,m',\,n'\, be the cosine of two lines which include then
  • \cos \,\theta = \ell \ell ' + mm' + nn'
  • \sin \,\theta = \ell \ell ' + mm' + nn'
  • \cos \,\theta \, = mn' + m'n + n\ell ' + n'\ell + \ell m' + \ell 'm
  • \sin \,\theta \, = mn' + m'n + n\ell ' + n'\ell + \ell m' + \ell 'm
In \Delta ABC, |\bar{CB}| = a, |\bar{CA}| = b, |\bar{AB}| = c. CD is median through the vertex C. Then \bar{CA}.\bar{CD} equals.
  • \dfrac{1}{4}(3a^2 + b^2 - c^2)
  • \dfrac{1}{4}(a^2 + 3b^2 - c^2)
  • \dfrac{1}{4}(a^2 + b^2 - 3c^2)
  • \dfrac{1}{4}(-3a^2 + b^2 - c^2)
The equation of plane passing through a point A(2, - 1, 3) and parallel to the vectors a= (3, 0, - 1) and b=(- 3, 2, 2) is:
  • 2x - 3y + 6z - 25 = 0
  • 2x - 3y + 6z + 25 = 0
  • 3x - 2y + 6z - 25 = 0
  • 3x - 2y + 6z + 25 = 0
If a = 4i + 3j and b be two vectors perpendicular to each other on the xy- plane. Then, a vector in the same plane having projections 1 and 2 along a and b respectively, is 
  • i + 2j
  • 2i - j
  • 2i + j
  • None of these
If a line makes angle 90^{o},135^{o},45^{o} with the X-,Y- and Z-axes respectively, then its direction cosines are
  • 0,\dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}}
  • 0,-\dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} 

  • 0,\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}}
  • 0,-\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}}

In the isosceles \triangleABC, |AB| = |BC|=8 and point E divides AB internally in the ratio 1 : 3 then the cosine of angel between CE and CA is (where, |CA| = 12)  ?
  • -\dfrac { \sqrt [ 3 ]{ 7 } }{ 8 }
  • \dfrac { \sqrt [ 3 ]{ 8 } }{ 17 }
  • \dfrac { \sqrt [ 3 ]{ 7 } }{ 8 }
  • -\dfrac { \sqrt [ 3 ]{ 8 } }{ 17 }
The direction cosines of the line x=44z+3; y=2-2\sqrt{19}z is...
  • \dfrac{44}{\sqrt{2013}};\dfrac{-2\sqrt{19}}{\sqrt{2013}};\dfrac{1}{\sqrt{2013}}
  • \dfrac{-44}{\sqrt{2013}};\dfrac{2\sqrt{19}}{\sqrt{2013}};\dfrac{1}{\sqrt{2013}}
  • \dfrac{44}{\sqrt{2013}};\dfrac{2\sqrt{19}}{\sqrt{2013}};\dfrac{1}{\sqrt{2013}}
  • \dfrac{-44}{\sqrt{2013}};\dfrac{-2\sqrt{19}}{\sqrt{2013}};\dfrac{-1}{\sqrt{2013}}
The distance of the point 3\hat {i}+5\hat {k} from the line parallel to 6\hat {i}+\hat {j}  2\hat {k} and passing through the point 8\hat {i}+3\hat {j}+\hat {k} is 
  • 1
  • 2
  • 3
  • 4
Three points whose position vectors are x\bar{i}+y\bar{j}+z\bar{k}, \bar{i}+2\bar{j} and -\bar{i}-\bar{j} are collinear, then relation between x, y, z is?
  • x-2y=1, z=0
  • z+y=1, z=0
  • x-y=1, z=0
  • None of these
A line makes equal angles with the coordinate axis. The direction cosines of this line are
  • \left(\dfrac{1}{3},\dfrac{1}{3},\dfrac{1}{3}\right)
  • \left(\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}}\right)
  • \left(\dfrac{1}{\sqrt{3}},\dfrac{1}{3},\dfrac{1}{3}\right)
  • \left(\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}}\right)
If vector \overrightarrow{a}+\overrightarrow{b} bisects the between \overrightarrow{a} and \overrightarrow{b}, then \overrightarrow|{a}|=\overrightarrow|{b}|.
  • True
  • False
The direction Ratio's of normal of the plane through (1, 0, 0), (0, 1, 0)  which makes angle \pi/4 with plane x+y =3 are
  • 1, \sqrt{2}, 1
  • 1, \sqrt{2}, \sqrt{2}
  • \sqrt{2}, 1, 1
  • 1, 1, \sqrt{2}
A line passes through the point (6, -7, -1) and (2, -3, 1). Then the sum of the direction cosines of the line, if the line makes acute angle with positive direction of x-axis, is?
  • 1/3
  • 4/3
  • -1/3
  • 2/3
The direction ratios of a line perpendicular to both the lines whose direction ratios are 3,-2,4 and 1,3,-2
  • 2,-5,6
  • 4,-10,12
  • -8,10,11
  • -8,10,-11
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers