Explanation
If a line makes an angle $$\alpha , \beta , \gamma$$ with the axes, then
$$\cos^{2}\alpha +\cos^{2}\beta +\cos^{2}\gamma=1$$ $$[\because \cos \alpha,\cos \beta,\cos \gamma $$ are directional cosines$$ ]$$
$$3-(\sin^{2}\alpha +\sin^{2}\beta +\sin^{2}\gamma)=1$$
$$\Rightarrow \ \sin^{2}\alpha +\sin^{2}\beta +\sin^{2}\gamma=2$$
Also $$\sin^{2}\alpha +\sin^{2}\beta +\sin^{2}\gamma \ \ge \sin \alpha \sin \beta +\sin \beta \sin \gamma +\sin \gamma \sin \alpha$$
$$\Rightarrow \displaystyle \sum \sin \alpha \sin \beta \le 2$$ $$\dots(1)$$
Also $$(\displaystyle \sum \sin \alpha)^{2}=\displaystyle \sum \sin^{2}\alpha +2\displaystyle \sum \sin \alpha \sin \beta$$ $$[\because (a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca]$$
$$(\displaystyle \sum \sin \alpha)^{2} > 0$$
$$\displaystyle \sum \sin^{2}\alpha +2\displaystyle \sum \sin \alpha \sin \beta > 0$$
$$2+2\displaystyle \sum \sin \alpha \sin \beta > 0$$
$$2\displaystyle \sum \sin \alpha \sin \beta > -2$$
$$\displaystyle \sum \sin \alpha \sin \beta > \dfrac {-2}{2}$$
$$\displaystyle \sum \sin \alpha \sin \beta >-1$$ $$\dots(2)$$
From $$(1)\ and\ (2)$$
$$\displaystyle 2 \geq \sum \sin \alpha \sin \beta >-1$$
Hence the range of $$\displaystyle \sum \sin \alpha \sin \beta$$ is $$(-1, 2]$$
Please disable the adBlock and continue. Thank you.