CBSE Questions for Class 12 Commerce Maths Three Dimensional Geometry Quiz 2 - MCQExams.com

The projection of the join of the two points $$(1,4,5), (6,7,2)$$ on the line whose d.s's are $$(4,5,6)$$ is
  • $$\dfrac{{17}}{{\sqrt {77} }}$$
  • $$\dfrac{7}{6}$$
  • $$21$$
  • $$\dfrac{7}{9}$$
If the $$d.c's$$ of two lines are connected by the equations $$l + m + n = 0, l^2 + m^2 - n^2 = 0$$, then angle between the lines is
  • $$\dfrac{\pi}{3}$$
  • $$\dfrac{\pi}{4}$$
  • $$\dfrac{\pi}{6}$$
  • $$\dfrac{\pi}{2}$$
The direction cosines of a line which is equally inclined to axes, is given by
  • $$\pm \dfrac{1}{3}$$
  • $$\pm \dfrac{1}{\sqrt{3}}$$
  • $$1$$
  • $$0$$
The equation of the plane passing through $$(2, -3, 1)$$ and is normal to the line joining the points $$(3, 4, -1)$$ and $$(2, -1, 5)$$ is given by
  • $$x+5y-6z+19=0$$
  • $$x-5y + 6z-19=0$$
  • $$x+5y+6z+19=0$$
  • $$x-5y-6z-19=0$$
The equation of the plane containing the line 
$$\vec r = \hat i + \hat j + t\left( {2\hat i + \hat j + 4\hat k} \right)$$, is
  • $$\vec r.\left( {\hat i + 2\hat j - \hat k} \right) = 3$$
  • $$\vec r.\left( {\hat i + 2\hat j - \hat k} \right) = 6$$
  • $$\vec r.\left( { - \hat i - 2\hat j + \hat k} \right) = 3$$
  • None of these
A line passes through the points $$(6, -7, -1)$$ and $$(2, -3, 1)$$. The direction cosines of the line so directed that the angle made by it with the positive direction of x-axis is acute, is?
  • $$\dfrac{2}{3}, -\dfrac{2}{3}, -\dfrac{1}{3}$$
  • $$-\dfrac{2}{3}, \dfrac{2}{3}, \dfrac{1}{3}$$
  • $$\dfrac{2}{3}, -\dfrac{2}{3}, \dfrac{1}{3}$$
  • $$\dfrac{2}{3}, \dfrac{2}{3}, \dfrac{1}{3}$$
If $$P$$ be the point $$(2,6,3)$$ then the equation of the plane trough $$P$$, at right angles to $$OP$$, where  $$'O'$$ is the origin is
  • $$2x+6y+3z=7$$
  • $$2x-6y+3z=7$$
  • $$2x+6y-3z=49$$
  • $$2x+6y+3z=49$$
The equation of the plane passing through $$(a,b,c)$$ and parallel to the plane $$r.(\hat{i}+\hat{j}+\hat{k})=2$$ is,
  • $$x+y+z=1$$
  • $$ax+by+cz=1$$
  • $$x+y+z=a+b+c$$
  • None of these
Angle between the lines $$3x=6y=2z$$ and $$3x+2y+z-5=0=x+y-2z-3$$ is?
  • $$\dfrac{\pi}{6}$$
  • $$\dfrac{\pi}{3}$$
  • $$\dfrac{\pi}{4}$$
  • $$\dfrac{\pi}{2}$$
The points $$i + j + k, \, i + 2j, \, 2i+2j+k,\, 2i+3j+2k$$ are
  • collinear
  • coplanar but not collinear
  • non-coplanar
  • none
If the dr's the line are $$(1+\lambda, 1-\lambda, 2)$$ and it makes an angle $${60}^{o}$$ with the Y-axis then $$\lambda$$ is
  • $$1\pm \sqrt{3}$$
  • $$4\pm \sqrt{5}$$
  • $$2\pm 2\sqrt{3}$$
  • $$2\pm \sqrt{5}$$
The line joining the points $$(-2, 1, -8)$$ and $$(a, b, c)$$ is parallel to the line whose direction ratios are $$6, 2, 3$$. The value of $$a, b, c$$ are
  • $$(4, 3, -5)$$
  • $$(1, 2, -13/2)$$
  • $$(10, 5, -2)$$
  • $$(-5, 3, 4)$$
If a line has the direction ratio $$18, 12, 4 $$, then its direction cosines are:
  • $$\dfrac{9}{11}$$, $$\dfrac{6}{11}$$, $$\dfrac{2}{11}$$
  • $$\dfrac{9}{13}$$, $$\dfrac{6}{13}$$, $$\dfrac{2}{13}$$
  • $$\dfrac{9}{7}$$, $$\dfrac{6}{7}$$, $$\dfrac{2}{7}$$
  • None of these
Equation of a line passing through the point $$\hat{i}+\hat{j}-\hat{k}$$ and parallel to the vector $$2\hat{i}+\hat{j}{+}2\hat{k}$$ is
  • $${\vec{r}}=(1+2{t})\hat{i}+(1+{t})\hat{j}{+}(1+2t)\hat{k}$$
  • $${\vec{r}}=(1+2{t})\hat{i}+(1+{t})\hat{j}{+}(2{t}-1)\hat{k}$$
  • $${\vec{r}}=(2{t}-1)\hat{i}+(1+{t})\hat{j}{+}(2{t}+1)\hat{k}$$
  • $${\vec{r}}=(1-2{t})\hat{i}+(1+{t})\hat{i}{+}(2{t}+1)\hat{k}$$
A line with positive direction cosines passes through the point $$P(2, -1, 2)$$ and makes equal angles with the coordinate axes. The line meets the plane $$2x + y + z = 9$$ at point $$Q$$. The length of the line segment $$PQ$$ equals
  • 1
  • $$\sqrt{2}$$
  • $$\sqrt{3}$$
  • 2
Assertion ($$A$$): The points with position vectors $$\overline{a},\overline{b},\overline{c}$$ are collinear if $$2\overline{a}-7\overline{b}+5\overline{c}=0$$.
Reason ($$R$$): The points with position vectors $$\overline{a},\overline{b},\overline{c}$$ are collinear if $$l\overline{a}+m\overline{b}+n\overline{c}=\overline{0}$$.
  • Both $$A$$ and $$R$$ are true and $$R$$ is correct reason of $$A$$
  • Both $$A$$ and $$R$$ are true and $$R$$ is not correct reason of $$A$$
  • $$A$$ is true $$R$$ is false
  • $$A$$ is false $$R$$ is true
If the points with position vectors $$60\hat{i}+3\hat{j},40\hat{i}-8\hat{j}$$ and $$a\hat{i}-52\hat{j}$$ are collinear then $$a$$ is equal to
  • $$-40$$
  • $$-20$$
  • $$20$$
  • $$40$$
The three points $$ABC$$ have position vectors $$(1,x,3),(3,4,7)$$ and $$(y,-2,-5)$$ are collinear then $$(x,y)=$$
  • $$(2,-3)$$
  • $$(-2,3)$$
  • $$(-2,-3)$$
  • $$(2,3)$$
If $$\overline{a}$$ and $$\overline{b}$$ are two non-collinear vectors, then the points $$l_{1}\overline{a}+m_{1}\overline{b}$$, $$  l_{2}\overline{a}+m_{2}\overline{b}$$ and $$l_{3}\overline{a}+m_{3}\overline{b}$$ are collinear if
  • $$\displaystyle \sum l_{1}(m_{2}-m_{3}) =0$$
  • $$\displaystyle \sum l_{1}(m_{1}-m_{3})=0$$
  • $$\displaystyle \sum l_{1}(m_{1}+m_{3})=0$$
  • $$\displaystyle \sum l_{1}(m_{2}+m_{3})=0$$
A line makes an angle $$\alpha,\beta,\gamma$$ with the $$X,Y,Z$$ axes. Then $$\sin^2\alpha+\sin^2\beta+\sin^2\gamma=$$
  • $$1$$
  • $$2$$
  • $$\dfrac 32$$
  • $$4$$
The vectors $$2\hat{i}+3\hat{j};5\hat{i}+6\hat{j};8\hat{i}+\lambda\hat{j}$$ have their initial points at $$(1,1 )$$. The value of  $$\lambda$$ so that the vectors terminate on one straight line is
  • $$0$$
  • $$3$$
  • $$6$$
  • $$9$$
The position vectors of three points are $$2\overrightarrow { a } -\overrightarrow { b } +3\overrightarrow { c } ,\overrightarrow { a } -2\overrightarrow { b } +\lambda \overrightarrow { c } $$ and $$\mu \overrightarrow { a } -5\overrightarrow { b } $$, where $$\overrightarrow { a } ,\overrightarrow { b } ,\overrightarrow { c } $$ are non-coplanar vectors. The points are coliinear when
  • $$\displaystyle\lambda =-2,\mu =\frac { 9 }{ 4 } $$
  • $$\displaystyle\lambda =-\frac { 9 }{ 4 } ,\mu =2$$
  • $$\displaystyle\lambda =\frac { 9 }{ 4 } ,\mu =-2$$
  • None of these
The line passing through the points $$10\hat{i}+3\hat{j}$$, $$ 12\hat{i}+5\hat{j}$$ also passes through the point $$a\hat{i}+11 \hat{j}$$, then $$a=$$
  • $$-8$$
  • $$4$$
  • $$18$$
  • $$12$$
If the points $$(h, 3, -4), (0, -7, 10)$$ and $$(1, k, 3)$$ are collinear, then $$h + k$$ is
  • $$4$$
  • $$0$$
  • $$-4$$
  • $$14$$
The point collinear with $$(1, -2, -3)$$ and $$(2, 0, 0)$$ among the following is
  • $$(0,4,6)$$
  • $$(0,-4,-5)$$
  • $$(0, -4, -6)$$
  • $$(0,-4,6)$$
If the points whose position vectors are $$2\overline{i}+\overline{j}+\overline{k},\ 6\overline{i}-\overline{j}+2\overline{k}$$ and $$14\overline{i}-5\overline{j}+p\overline{k}$$ are collinear then the value of $$\mathrm{p}$$ is
  • $$2$$
  • $$4$$
  • $$6$$
  • $$8$$
The points with position vectors $$\vec{a}+\vec{b},\vec{a}-\vec{b}$$ and $$\vec{a}+\lambda\vec{b}$$ are collinear for
  • Only integrals values of $$\lambda$$
  • No value of $$\lambda$$
  • All real values of $$\lambda$$
  • Only rational values of $$\lambda$$
If $$A = (1, 2, 3), B = (2, 10, 1)$$, $$Q$$ are collinear points and $$Q_x=-1$$, then $$Q_z=$$
  • $$-3$$
  • $$7$$
  • $$-14$$
  • $$-7$$
If $$PQR$$ are the three points with respective position vectors $$\hat{i}+\hat{j},\ \hat{i}-\hat{j}$$ and $$a\hat{i}+b\hat{j}+c\hat{k}$$, then the points $$PQR$$ are collinear if
  • $$a=b=c=1$$
  • $$a=b=c=0$$
  • $$a=1,\ b,c$$ in $$R$$
  • $$a=1, c=0,\ b\in R$$
Find the angle between the two lines having direction ratio $$(1,1,2)$$ and $$\left( \left( \sqrt { 3 } -1 \right) ,\left( -\sqrt { 3 } -1 \right) ,4 \right) $$.
  • $$\displaystyle \dfrac { \pi  }{ 3 } $$
  • $$\displaystyle \dfrac { \pi  }{ 2 } $$
  • $$\displaystyle \dfrac { \pi  }{ 6 } $$
  • None of these
The three points whose position vectors are $$\overline{i}+2\overline{j}+3\overline{k,}$$ $$3\overline{i}+4\overline{j}+7\overline{k,}$$ and  $$-3\overline{i}-2\overline{j}-5\overline{k}$$
  • Form the vertices of an equilateral triangle
  • Form the vertices of an right angled triangle
  • Are collinear
  • Form the vertices of an isosceles triangle
Find the angle between the lines $$\overrightarrow { r } =3i+2j-4k+\lambda \left( i+2j+2k \right) $$ and $$\overrightarrow { r } =\left( 5j-2k \right) +\mu \left( 3i+2j+6k \right) $$ 
  • $$\displaystyle \theta =\cos ^{ -1 }{ \left( \frac { 19 }{ 21 }  \right)  } $$
  • $$\displaystyle \theta =\sin ^{ -1 }{ \left( \frac { 19 }{ 21 }  \right)  } $$
  • $$\displaystyle \theta =\cos ^{ -1 }{ \left( \frac { 20 }{ 21 }  \right)  } $$
  • None of these
If $$\vec{a},\vec{b},\vec{c}$$ are the position vectors of points lie on a line, then $$\vec{a}\times \vec{b}+\vec{b}\times \vec{c}+\vec{c}\times \vec{a}=$$
  • $$0$$
  • $$ \vec{b}$$
  • $$1$$
  • $$\vec{a}$$
The product of the d.r's of a line perpendicular to the plane passing through the points $$(4,0,0),(0,2,0)$$ and $$( 1,0,1)$$ is
  • $$6$$
  • $$2$$
  • $$0$$
  • $$1$$
The d.r's of the line of intersection of the planes $$x+y+z-1$$ $$=0$$ and $$2x+3y+4z-7$$ $$=0$$ are
  • $$1, 2, -3$$
  • $$2, 1, -3$$
  • $$4, 2, -6$$
  • $$1, -2, 1$$
The d.c's of the normal to the plane $$2x-y+2z+5=0$$ are 
  • $$(3, -2, 6)$$
  • $$\left (\displaystyle \dfrac{2}{7},\dfrac{3}{7},\dfrac{-6}{7}\right)$$

  • $$\left (\displaystyle \dfrac{3}{7}\dfrac{-2}{7},\dfrac{6}{7}\right)$$

  • $$\left (\displaystyle \dfrac{2}{3}\dfrac{-1}{3},\dfrac{2}{3}\right)$$

The plane which passes through the point $$(-1, 0, -6)$$ and perpendicular to the line whose direction ratios is $$(6, 20, -1)$$ also passes through the point:
  • $$(1, 1, -26)$$
  • $$(0, 0, 0)$$
  • $$(2, 1, -32)$$
  • $$(1, 1, 1)$$
If $$R(a+2,a+3,a+4)$$ divides the line segment joining $$P(2, 3, 4)$$ and $$Q(4, 5, 6) $$ in the ratio $$-3:2$$, then the value of the parameter which represents $$a$$ is
  • $$3$$
  • $$2$$
  • $$6$$
  • $$-1$$
lf the equation of the plane perpendicular to the $$\mathrm{z}$$ -axis and passing through the point $$(2, -3,4)$$ is $$ax+by+cz=d$$ then $$\displaystyle \dfrac{a+b+c}{d}=$$
  • $$4$$
  • $$\displaystyle \dfrac{3}{4}$$
  • $$3$$
  • $$\displaystyle \dfrac{1}{4}$$
The equation to the plane bisecting the line segment joining $$(-3, 3, 2), (9, 5, 4)$$ and perpendicular to the line segment is
  • $$x-y+4_{Z}-13=0$$
  • $$2x-2y+7z-23=0$$
  • $$x-7y+2_{Z}-1=0$$
  • $$6x+y+z-25=0$$
The direction ratios of a normal to the plane through $$(1,\ 0,\ 0),\ (0,\ 1,\ 0)$$ which makes an angle of $$\displaystyle \dfrac{\pi}{4}$$ with the plane $$x+y=3$$ are
  • $$1,\ \sqrt{2},\ 1$$
  • $$1,\ 1,\ \ \sqrt{2}$$
  • $$1,\ 1,\ 2$$
  • $$\sqrt{2},\ 1,\ 1$$
Equation of the plane through the mid-point of the join of $$A(4,5,-10)$$ and $$B(-1,2,1)$$ and perpendicular to $$AB$$ is
  • $$\vec{r}.(5i+3j-11k)+\dfrac{135}{2}=0$$
  • $$\vec{r}.(5i+3j-11k)=\dfrac{135}{2}$$
  • $$\vec{r}.\left (\dfrac{3}{2}\hat{i}+\dfrac{7}{2}\hat{j}-\dfrac{9}{2}\hat{k}\right)=5\hat{i}+3\hat{j}-11\hat{k}$$
  • $$\vec{r}.(5i+3j-11k)+\dfrac{185}{2}=0$$
If $$(2, 3, -1)$$ is the foot of the perpendicular from $$(4, 2, 1)$$ to a plane, then the equation of that plane is $$ax+by+cz=d$$. Then $$a+d$$ is
  • $$3$$
  • $$1$$
  • $$-2$$
  • $$2$$
The product of the d.cs of the line which makes equal angles with $$ox, oy, oz$$ is
  • $$1$$
  • $$\sqrt{3}$$
  • $$\displaystyle \dfrac{1}{3\sqrt{3}}$$
  • $$\displaystyle \dfrac{1}{\sqrt{3}}$$

lf $$\theta $$ is the angle  between two lines whose d.cs are $$l_{1},m_{\mathrm{1}},n_{\mathrm{1}}$$ and $$l_{2},m_{2},n_{2}$$, then

$$\displaystyle \dfrac{\Sigma(l_{1}+l_{2})^{2}}{4\cos^{2}(\dfrac{\theta}{2})}+\dfrac{\Sigma(l_{\mathrm{I}}-l_{2})^{2}}{4\sin^{2}(\dfrac{\theta}{2})}=$$

  • $$1$$
  • $$0$$
  • $$-1$$
  • $$2$$
lf a line makes angles $$\displaystyle \dfrac{\pi}{12}, \displaystyle \dfrac{5\pi}{12}$$ with $$OY, OZ $$ respectively where $$O=({0}, 0,0)$$, then the angle made by that line with $$OX$$ is
  • $$45^{o}$$
  • $$90^{o}$$
  • $$60^{o}$$
  • $$30^{\mathrm{o}}$$
The plane $$2x+3y+kz-7=0$$ is parallel to the line whose direction ratios are $$(2, -3, 1)$$, then $$k=$$
  • $$5$$
  • $$8$$
  • $$1$$
  • $$0$$
If the foot of the perpendicular from $$(0,0,0)$$ to the plane is $$(1,2,2)$$, then the equation of the plane is
  • $$-x+2y+8z-9=0$$
  • $$x+2y+2z-9=0$$
  • $$x+y+z-5=0$$
  • $$x+2y-3z+1=0$$
The sum of the squares of sine of the angles made by the line $$AB$$ with $$OX, OY, OZ$$ where $$O$$ is the origin is
  • $$1$$
  • $$2$$
  • $$-1$$
  • $$3$$
The direction ratios of a normal to the plane passing through $$(0,1,1), (1,1,2)$$ and $$(-1,2,-2)$$ are
  • $$(1,1,1)$$
  • $$(2,1,-1)$$
  • $$(1,2,-1)$$
  • $$(1,-2,-1)$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers